CS340 Machine learning Causality

"Structure and strength in causal induction", Griffiths and Tenenbaum, Cognitive Psychology, 51:334-384, 2005

Does C cause E?

- Consider the case of a single cause and a single effect.
- The data can be summarized as a contingency table.

	Effect absent $E = 0$	Effect present $E = 1$
Cause absent $C = 0$	N(E=0,C=0)	N(C=0, E=1)
Cause present $C = 1$	N(E=0,C=1)	N(C=1, E=1)

Which chemical causes the effect?

 Chemical 1 is injected into 60 mice, of which 36 show an effect; c1 is not injected into another 60 mice, of which 30 show an effect

	Effect absent $E = 0$	Effect present $E = 1$
Cause absent $C = 0$	30/60 = 0.5	30/60 = 0.5
Cause present $C = 1$	24/60 = 0.4	36/60 = 0.6

 Chemical 2 is injected into 60 mice, of which 60 show an effect; c2 is not injected into another 60 mice, of which 54 show an effect

	Effect absent $E = 0$	Effect present $E = 1$
Cause absent $C = 0$	6/60 = 0.1	54/60 = 0.9
Cause present $C = 1$	0/60 = 0	60/60 = 1

Measures of causal strength

- A χ^2 score or mutual information yields a measure of statistical dependency between C and E, but is symmetric, so cannot tell us about causality.
- We will see how a simple Bayesian model can capture people's intuitive notions of causality better than rival approaches.
- In psychology, 2 measures of causal strength are popular:
- Delta P: $\Delta P = p(e = 1|c = 1) p(e = 1|c = 0)$
- Causal power: $CP = \frac{\Delta P}{1 p(e = 1 | c = 0)}$
- Intuitively, CP discounts cases in which the effect is already present (so masking any possible effect of C)

$\Delta P vs CP$

• Chemical 1: $\Delta P = 0.1$, CP = 0.2

Effect absent E = 0Effect present E = 1Cause absent C = 030/60 = 0.530/60 = 0.5Cause present C = 124/60 = 0.436/60 = 0.6

• Chemical 2: $\Delta P = 0.1$, CP = 1

	Effect absent $E = 0$	Effect present $E = 1$
Cause absent $C = 0$	6/60 = 0.1	54/60 = 0.9
Cause present $C = 1$	0/60 = 0	60/60 = 1

Comparison with humans

Noisy-OR model

• Consider the case of a single cause and a single effect.

• Causal power is equivalent to the MLE for w_1 .

Bayesian model selection

- "Causal Power" estimates the strength of the C->E edge.
- "Causal support" estimates the probability that there is any kind of C->E link, integrating out the strength ζ_{\circ} ζ_{1}

 $\begin{array}{rcl}
\begin{array}{cccc}
B & B & \zeta \\
\hline
w_{0} & & & & \\
\hline
w_{0} & & & \\
\hline
& & & \\
\hline
& & \\
\end{array}$ causal support = $p(G_{1}|D)$ = $\frac{p(D|G_{1})}{p(D|G_{1}) + p(D|G_{2})} = \frac{1}{1 + BF(1,0)}$

Humans are Bayesian

Computing p(D|G0)

• The CPD is

$$\frac{P(E=0|C,\mathbf{w}) \quad P(E=1|C,\mathbf{w})}{1-w_0 \quad 1-(1-w_0)}$$

The evidence for G0 is

$$p(D|G_0) = \int_0^1 w_0^{N(e=1)} (1 - w_0)^{N(e=0)} Beta(w_0|a, b) dw_0$$
$$= \frac{B(a + N(e=1), b + N(e=0))}{B(a, b)}$$

• For a uniform prior, we get

$$p(D|G_0) = B(N(e=1)+1, N(e=0)+1)$$

Computing p(D|G1)

The CPD is

- There is no conjugate prior for this.
- So we will use Monte Carlo integration to compute

$$p(D|G_1) = \int \int p(D|w_0, w_1) p(w_0, w_1) dw_0 dw_1 = E[p(D|w_0, w_1)]$$

Monte Carlo integration

- Suppose we want to evaluate the integral $E[h(X)] = I = \int h(x)p(x)dx$
- In low dimensions, we can use numerical integration (eg. quadrature: in matlab, quad, dblquad, triplequad).
- In higher dimensions, a better approach is to sample S values x^s from p(x) and then use the law of large numbers

$$\hat{I} = \frac{1}{S} \sum_{s=1}^{S} h(x^s)$$

which has standard error

$$se = \sqrt{\frac{\hat{\sigma}^2}{S}}, \ \hat{\sigma}^2 = \frac{1}{S-1} \sum_{s=1}^{S} (h(x_s) - \hat{I})^2$$

12

Definite integrals

• We can evaluate a definite integral by sampling uniformly within the range

$$I = \int_{a}^{b} h(x) = (b-a) \int h(x)p(x)dx$$
$$p(x) = U(b-a) = \frac{1}{(b-a)}I(a < x < b)$$
$$I \approx \frac{1}{S}\sum_{s=1}^{S}h(x^{s})$$

• Thus the method can also be applied in nonstatistical settings.

Estimating π

• Area of circle is

$$I = \int_{-r}^{r} \int_{-r}^{r} I(x^2 + y^2 \le r^2) dx dy$$

So $\pi = I/r^2$. Let $h(x, y) = I(x^2 + y^2 \le r^2)$

$$I = (b_x - a_x)(b_y - a_y) \int \int h(x, y)p(x)p(y)dxdy$$

= $(2r)(2r) \int \int h(x, y)p(x)p(y)dxdy$
= $4r^2 \int \int h(x, y)p(x)p(y)dxdy$
 $\approx 4r^2 \frac{1}{S} \sum_s h(x^s, y^s)$

Estimating π

Matlab

r=2;
S=5000;
xs = unifrnd(-r,r,S,1);
ys = unifrnd(-r,r,S,1);
rs = xs.^2 + ys.^2;
inside = (rs <= r^2);
samples =
$$4*(r^2)*inside;$$

Ihat = mean(samples)
piHat = Ihat/(r^2)
se = sqrt(var(samples)/S)

$$\hat{\pi} = 3.1416, \ se = 0.09$$

Computing p(D|G1)

• If we use a uniform prior on w_0 , w_1 , we have

$$p(D|G_1) = \int_0^1 \int_0^1 p(D|w_0, w_1) dw_0 dw_1$$
$$= \frac{1}{S} \sum_{s=1}^S p(D|w_0^s, w_1^s, G_1)$$

where w_0^{s} , $w_1^{s} \sim U(0,1)$

Extensions

- It is easy to replace the noisy-OR model with others, e.g.,
- noisy AND-NOT: E will occur if B AND-NOT C. Use this if C is a preventive cause of E, rather than generative.

$$p(e = 1|c) = w_0(1 - w_1)^{I(c=1)}$$

• Use a Poisson model if C affects the rate of E.