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Does C cause E?

• Consider the case of a single cause and a single 
effect.

• The data can be summarized as a contingency 
table.

Effect absent E = 0 Effect present E = 1
Cause absent C = 0 N(E = 0, C = 0) N(C = 0, E = 1)
Cause present C = 1 N(E = 0, C = 1) N(C = 1, E = 1)
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Which chemical causes the effect?

• Chemical 1 is injected into 60 mice, of which 36 
show an effect; c1 is not injected into another 60 
mice, of which 30 show an effect

• Chemical 2 is injected into 60 mice, of which 60 
show an effect; c2 is not injected into another 60 
mice, of which 54 show an effect

Effect absent E = 0 Effect present E = 1
Cause absent C = 0 30/60 = 0.5 30/60 = 0.5
Cause present C = 1 24/60 = 0.4 36/60 = 0.6

Effect absent E = 0 Effect present E = 1
Cause absent C = 0 6/60 = 0.1 54/60 = 0.9
Cause present C = 1 0/60 = 0 60/60 = 1
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Measures of causal strength

• A χ2 score or mutual information yields a measure 
of statistical dependency between C and E, but is 
symmetric, so cannot tell us about causality.

• We will see how a simple Bayesian model can 
capture people’s intuitive notions of causality better 
than rival approaches.

• In psychology, 2 measures of causal strength are 
popular:

• Delta P:
• Causal power:
• Intuitively, CP discounts cases in which the effect is 

already present (so masking any possible effect of 
C)

∆P = p(e = 1|c = 1)− p(e = 1|c = 0)

CP =
∆P

1− p(e = 1|c = 0)
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∆ P vs CP
• Chemical 1: ∆ P = 0.1, CP = 0.2

• Chemical 2: ∆ P = 0.1, CP = 1

Effect absent E = 0 Effect present E = 1
Cause absent C = 0 30/60 = 0.5 30/60 = 0.5
Cause present C = 1 24/60 = 0.4 36/60 = 0.6

Effect absent E = 0 Effect present E = 1
Cause absent C = 0 6/60 = 0.1 54/60 = 0.9
Cause present C = 1 0/60 = 0 60/60 = 1
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Comparison with humans
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Noisy-OR model

• Consider the case of a single cause and a single 
effect.

• Causal power is equivalent to the MLE for w1. 

B C P (E = 0|C,w) P (E = 1|C,w)
1 0 1− w0 1− (1− w0)
1 1 (1− w0)(1− w1) 1− (1− w0)(1− w1)
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Bayesian model selection

• “Causal Power” estimates the strength of the C->E 
edge.

• “Causal support” estimates the probability that 
there is any kind of C->E link, integrating out the 
strength

causal support = p(G1|D)

=
p(D|G1)

p(D|G1) + p(D|G2)
=

1

1 +BF (1, 0)
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Humans are Bayesian

Bayes

MLE

Heuristic
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Computing p(D|G0)

• The CPD is

• The evidence for G0 is

• For a uniform prior, we get

P (E = 0|C,w) P (E = 1|C,w)
1− w0 1− (1− w0)

p(D|G0) =

∫ 1

0

w
N(e=1)
0 (1− w0)

N(e=0)Beta(w0|a, b)dw0

=
B(a+N(e = 1), b+N(e = 0))

B(a, b)

p(D|G0) = B(N(e = 1) + 1, N(e = 0) + 1)
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Computing p(D|G1)

• The CPD is

• There is no conjugate prior for this.
• So we will use  Monte Carlo integration to compute

B C P (E = 0|C,w) P (E = 1|C,w)
1 0 1− w0 1− (1− w0)
1 1 (1− w0)(1− w1) 1− (1− w0)(1− w1)

p(D|G1) =

∫ ∫
p(D|w0, w1)p(w0, w1)dw0dw1 = E[p(D|w0, w1)]
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Monte Carlo integration

• Suppose we want to evaluate the integral

• In low dimensions, we can use numerical 
integration (eg. quadrature: in matlab, quad, 
dblquad, triplequad).

• In higher dimensions, a better approach is to 
sample S values xs from p(x) and then use the law 
of large numbers 

which has standard error

E[h(X)] = I =

∫
h(x)p(x)dx

Î =
1

S

S∑

s=1

h(xs)

se =

√
σ̂2

S
, σ̂2 =

1

S − 1

S∑

s=1

(h(xs)− Î)
2
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Definite integrals

• We can evaluate a definite integral by sampling 
uniformly within the range

• Thus the method can also be applied in non-
statistical settings.

I =

∫ b

a

h(x) = (b− a)

∫
h(x)p(x)dx

p(x) = U(b− a) =
1

(b− a)
I(a < x < b)

I ≈
1

S

S∑

s=1

h(xs)
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Estimating π
• Area of circle is

so π = I/r2. Let 

I =

∫ r

−r

∫ r

−r

I(x2 + y2 ≤ r2)dxdy

h(x, y) = I(x2 + y2 ≤ r2)

I = (bx − ax)(by − ay)

∫ ∫
h(x, y)p(x)p(y)dxdy

= (2r)(2r)

∫ ∫
h(x, y)p(x)p(y)dxdy

= 4r2
∫ ∫

h(x, y)p(x)p(y)dxdy

≈ 4r2
1

S

∑

s

h(xs, ys)
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Estimating π
• Matlab

r=2;

S=5000;

xs = unifrnd(-r,r,S,1);

ys = unifrnd(-r,r,S,1);

rs = xs.^2 + ys.^2;

inside = (rs <= r^2);

samples = 4*(r^2)*inside;

Ihat = mean(samples)

piHat = Ihat/(r^2)

se = sqrt(var(samples)/S)

π̂ = 3.1416, se = 0.09
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Computing p(D|G1)

• If we use a uniform prior on w0, w1, we have

where w0
s, w1

s ~ U(0,1)

p(D|G1) =

∫ 1

0

∫ 1

0

p(D|w0, w1)dw0dw1

=
1

S

S∑

s=1

p(D|ws0, w
s
1, G1)
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Extensions

• It is easy to replace the noisy-OR model with 
others, e.g.,

• noisy AND-NOT: E will occur if B AND-NOT C. Use 
this if C is a preventive cause of E, rather than 
generative.

• Use a Poisson model if C affects the rate of E.

p(e = 1|c) = w0(1− w1)
I(c=1)


