CS340 Machine learning Causality

Does C cause E?

- Consider the case of a single cause and a single effect.
- The data can be summarized as a contingency table.

$$
\begin{array}{c|cc}
& \text { Effect absent } E=0 & \text { Effect present } E=1 \\
\hline \text { Cause absent } C=0 & N(E=0, C=0) & N(C=0, E=1) \\
\text { Cause present } C=1 & N(E=0, C=1) & N(C=1, E=1)
\end{array}
$$

Which chemical causes the effect?

- Chemical 1 is injected into 60 mice, of which 36 show an effect; c1 is not injected into another 60 mice, of which 30 show an effect

	Effect absent $E=0$	Effect present $E=1$
Cause absent $C=0$	$30 / 60=0.5$	$30 / 60=0.5$
Cause present $C=1$	$24 / 60=0.4$	$36 / 60=0.6$

- Chemical 2 is injected into 60 mice, of which 60 show an effect; c2 is not injected into another 60 mice, of which 54 show an effect

	Effect absent $E=0$	Effect present $E=1$
Cause absent $C=0$	$6 / 60=0.1$	$54 / 60=0.9$
Cause present $C=1$	$0 / 60=0$	$60 / 60=1$

Measures of causal strength

- A χ^{2} score or mutual information yields a measure of statistical dependency between C and E , but is symmetric, so cannot tell us about causality.
- We will see how a simple Bayesian model can capture people's intuitive notions of causality better than rival approaches.
- In psychology, 2 measures of causal strength are popular:
- Delta P: $\Delta P=p(e=1 \mid c=1)-p(e=1 \mid c=0)$
- Causal power: $C P=\frac{\Delta P}{1-p(e=1 \mid c=0)}$
- Intuitively, CP discounts cases in which the effect is already present (so masking any possible effect of C)

$\Delta \mathrm{P}$ vs CP

- Chemical 1: $\Delta \mathrm{P}=0.1, \mathrm{CP}=0.2$

	Effect absent $E=0$	Effect present $E=1$
Cause absent $C=0$	$30 / 60=0.5$	$30 / 60=0.5$
Cause present $C=1$	$24 / 60=0.4$	$36 / 60=0.6$

- Chemical 2: $\Delta \mathrm{P}=0.1, \mathrm{CP}=1$

	Effect absent $E=0$	Effect present $E=1$
Cause absent $C=0$	$6 / 60=0.1$	$54 / 60=0.9$
Cause present $C=1$	$0 / 60=0$	$60 / 60=1$

Comparison with humans

Noisy-OR model

- Consider the case of a single cause and a single effect.

$$
\begin{aligned}
& \beta< \\
& w_{0} \perp L_{1} \\
& \text { E }
\end{aligned}
$$

- Causal power is equivalent to the MLE for w_{1}.

Bayesian model selection

- "Causal Power" estimates the strength of the C->E edge.
- "Causal support" estimates the probability that there is any kind of C->E link, integrating out the strength

$$
\begin{array}{cc}
G_{0} & B_{1}^{G_{1}} C \\
w_{0} \downarrow & w_{0} \downarrow w_{1} \\
E & \sigma_{1}
\end{array}
$$

causal support $=p\left(G_{1} \mid D\right)$

$$
=\frac{p\left(D \mid G_{1}\right)}{p\left(D \mid G_{1}\right)+p\left(D \mid G_{2}\right)}=\frac{1}{1+B F(1,0)}
$$

Humans are Bayesian

Computing p(D|G0)

- The CPD is

$$
\begin{array}{cc}
P(E=0 \mid C, \mathbf{w}) & P(E=1 \mid C, \mathbf{w}) \\
\hline 1-w_{0} & 1-\left(1-w_{0}\right)
\end{array}
$$

- The evidence for G0 is

$$
\begin{aligned}
p\left(D \mid G_{0}\right) & =\int_{0}^{1} w_{0}^{N(e=1)}\left(1-w_{0}\right)^{N(e=0)} \operatorname{Bet} a\left(w_{0} \mid a, b\right) d w_{0} \\
& =\frac{B(a+N(e=1), b+N(e=0))}{B(a, b)}
\end{aligned}
$$

- For a uniform prior, we get

$$
p\left(D \mid G_{0}\right)=B(N(e=1)+1, N(e=0)+1)
$$

Computing p(D|G1)

- The CPD is

B	C	$P(E=0 \mid C, \mathbf{w})$	$P(E=1 \mid C, \mathbf{w})$
1	0	$1-w_{0}$	$1-\left(1-w_{0}\right)$
1	1	$\left(1-w_{0}\right)\left(1-w_{1}\right)$	$1-\left(1-w_{0}\right)\left(1-w_{1}\right)$

- There is no conjugate prior for this.
- So we will use Monte Carlo integration to compute

$$
p\left(D \mid G_{1}\right)=\iint p\left(D \mid w_{0}, w_{1}\right) p\left(w_{0}, w_{1}\right) d w_{0} d w_{1}=E\left[p\left(D \mid w_{0}, w_{1}\right)\right]
$$

Monte Carlo integration

- Suppose we want to evaluate the integral

$$
E[h(X)]=I=\int h(x) p(x) d x
$$

- In low dimensions, we can use numerical integration (eg. quadrature: in matlab, quad, dblquad, triplequad).
- In higher dimensions, a better approach is to sample S values x^{s} from $p(x)$ and then use the law of large numbers

$$
\hat{I}=\frac{1}{S} \sum_{s=1}^{S} h\left(x^{s}\right)
$$

which has standard error

$$
s e=\sqrt{\frac{\hat{\sigma}^{2}}{S}}, \quad \hat{\sigma}^{2}=\frac{1}{S-1} \sum_{s=1}^{S}\left(h\left(x_{s}\right)-\hat{I}\right)^{2}
$$

Definite integrals

- We can evaluate a definite integral by sampling uniformly within the range

$$
\begin{aligned}
I=\int_{a}^{b} h(x) & =(b-a) \int h(x) p(x) d x \\
p(x) & =U(b-a)=\frac{1}{(b-a)} I(a<x<b) \\
I & \approx \frac{1}{S} \sum_{s=1}^{S} h\left(x^{s}\right)
\end{aligned}
$$

- Thus the method can also be applied in nonstatistical settings.

Estimating π

- Area of circle is

$$
I=\int_{-r}^{r} \int_{-r}^{r} I\left(x^{2}+y^{2} \leq r^{2}\right) d x d y
$$

SO $\pi=\mathbf{I} / \mathbf{r}^{2}$. Let $\quad h(x, y)=I\left(x^{2}+y^{2} \leq r^{2}\right)$

$$
\begin{aligned}
I & =\left(b_{x}-a_{x}\right)\left(b_{y}-a_{y}\right) \iint h(x, y) p(x) p(y) d x d y \\
& =(2 r)(2 r) \iint h(x, y) p(x) p(y) d x d y \\
& =4 r^{2} \iint h(x, y) p(x) p(y) d x d y \\
& \approx 4 r^{2} \frac{1}{S} \sum_{s} h\left(x^{s}, y^{s}\right)
\end{aligned}
$$

Estimating π

- Matlab

$$
\begin{aligned}
& \text { r=2; } \\
& \text { S=5000; } \\
& \text { xs = unifrnd(-r,r,S,1); } \\
& \text { ys = unifrnd(-r,r,S,1); } \\
& \text { rs = xs.^2 + ys.^2; } \\
& \text { inside = (rs <= r^2); } \\
& \text { samples = 4*(} \left.r^{\wedge} 2\right) \text { *inside; } \\
& \text { Ihat }=\text { mean (samples) } \\
& \text { piHat = Ihat/(r^2) } \\
& \text { se }=\text { sqrt(var(samples)/S) } \\
& \hat{\pi}=3.1416, \text { se }=0.09
\end{aligned}
$$

Computing p(D|G1)

- If we use a uniform prior on $\mathrm{w}_{0}, \mathrm{w}_{1}$, we have

$$
\begin{aligned}
p\left(D \mid G_{1}\right) & =\int_{0}^{1} \int_{0}^{1} p\left(D \mid w_{0}, w_{1}\right) d w_{0} d w_{1} \\
& =\frac{1}{S} \sum_{s=1}^{S} p\left(D \mid w_{0}^{s}, w_{1}^{s}, G_{1}\right)
\end{aligned}
$$

where $\mathrm{w}_{0}{ }^{\mathrm{s}}, \mathrm{w}_{1} \mathrm{~s} \sim \mathrm{U}(0,1)$

Extensions

- It is easy to replace the noisy-OR model with others, e.g.,
- noisy AND-NOT: E will occur if B AND-NOT C. Use this if C is a preventive cause of E, rather than generative.

$$
p(e=1 \mid c)=w_{0}\left(1-w_{1}\right)^{I(c=1)}
$$

- Use a Poisson model if C affects the rate of E.

