CS340 Machine learning Bayesian statistics 3

Outline

- Conjugate analysis of μ and σ^{2}
- Bayesian model selection
- Summarizing the posterior

Unknown mean and precision

- The likelihood function is

$$
\begin{aligned}
p(D \mid \mu, \lambda) & =\frac{1}{(2 \pi)^{n / 2}} \lambda^{n / 2} \exp \left(-\frac{\lambda}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right) \\
& =\frac{1}{(2 \pi)^{n / 2}} \lambda^{n / 2} \exp \left(-\frac{\lambda}{2}\left[n(\mu-\bar{x})^{2}+\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]\right)
\end{aligned}
$$

- The natural conjugate prior is normal gamma

$$
\begin{aligned}
p(\mu, \lambda) & =N G\left(\mu, \lambda \mid \mu_{0}, \kappa_{0}, \alpha_{0}, \beta_{0}\right) \\
& \xlongequal{\text { def }} \mathcal{N}\left(\mu \mid \mu_{0},\left(\kappa_{0} \lambda\right)^{-1}\right) G a\left(\lambda \mid \alpha_{0}, \text { rate }=\beta_{0}\right) \\
& =\frac{1}{Z_{N G}} \lambda^{\alpha_{0}-\frac{1}{2}} \exp \left(-\frac{\lambda}{2}\left[\kappa_{0}\left(\mu-\mu_{0}\right)^{2}+2 \beta_{0}\right]\right)
\end{aligned}
$$

Gamma distribution

- Used for positive reals

$$
\begin{aligned}
& G a(x \mid \text { shape }=a, \text { rate }=b)=\frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-x b}, \quad x, a, b>0 \quad \text { Bishop } \\
& G a(x \mid \text { shape }=\alpha, \text { scale }=\beta) \quad=\frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x / \beta} \quad \text { Matlab }
\end{aligned}
$$

Gamma(shape=a,rate=b)

Posterior is also NG

- Just update the hyper-parameters

$$
\begin{aligned}
p(\mu, \lambda \mid D) & =N G\left(\mu, \lambda \mid \mu_{n}, \kappa_{n}, \alpha_{n}, \beta_{n}\right) \\
\mu_{n} & =\frac{\kappa_{0} \mu_{0}+n \bar{x}}{\kappa_{0}+n} \\
\kappa_{n} & =\kappa_{0}+n \\
\alpha_{n} & =\alpha_{0}+n / 2 \\
\beta_{n} & =\beta_{0}+\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\frac{\kappa_{0} n\left(\bar{x}-\mu_{0}\right)^{2}}{2\left(\kappa_{0}+n\right)}
\end{aligned}
$$

Posterior marginals

- Variance

$$
p(\lambda \mid D)=G a\left(\lambda \mid \alpha_{n}, \beta_{n}\right)
$$

- Mean

$$
p(\mu \mid D)=T_{2 \alpha_{n}}\left(\mu \mid \mu_{n}, \frac{\beta_{n}}{\alpha_{n} \kappa_{n}}\right)
$$

Student t distribution

Student t distribution

- Approaches Gaussian as $v \rightarrow \infty$

$$
t_{\nu}\left(x \mid \mu, \sigma^{2}\right) \propto\left[1+\frac{1}{\nu}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]^{-\left(\frac{\nu+1}{2}\right)}
$$

Robustness of t distribution

Student t less affected by outliers

(a)

Gaussian

Posterior predictive distribution

- Also a t distribution (fatter tails than Gaussian due to uncertainty in λ)

$$
p(x \mid D)=t_{2 \alpha_{n}}\left(x \mid \mu_{n}, \frac{\beta_{n}\left(\kappa_{n}+1\right)}{\alpha_{n} \kappa_{n}}\right)
$$

Uninformative prior

- It can be shown (see handout) that an uninformative prior has the form

$$
p(\mu, \lambda) \propto \frac{1}{\lambda}
$$

- This can be emulated using the following hyper-parameters

$$
\begin{aligned}
\kappa_{0} & =0 \\
a_{0} & =-\frac{1}{2} \\
b_{0} & =0
\end{aligned}
$$

- This prior is improper (does not integrate to 1), but the posterior is proper if $n \geq 1$

Outline

- Conjugate analysis of μ and σ^{2}
- Bayesian model selection
- Summarizing the posterior

Bayesian model selection

- Suppose we have K possible models, each with parameters θ_{i}. The posterior over models is defined using the marginal likelihood ("evidence") $p(\mathrm{D} \mid \mathrm{M}=\mathrm{i})$, which is the normalizing constant from the posterior over parameters

$$
\begin{aligned}
p(M=i \mid D) & =\frac{p(M=i) p(D \mid M=i)}{p(D)} \\
p(D \mid M=i) & =\int p(D \mid \theta, M=i) p(\theta \mid M=i) d \theta \\
p(\theta \mid D, M=i) & =\frac{p(D \mid \theta, M=i) p(\theta \mid M=i)}{p(D \mid M=i)}
\end{aligned}
$$

Bayes factors

- To compare two models, use posterior odds

$$
O_{i j}=\frac{p\left(M_{i} \mid D\right)}{p\left(M_{j} \mid D\right)}=\frac{p\left(D \mid M_{i}\right) p\left(M_{i}\right)}{p\left(D \mid M_{j}\right) p\left(M_{j}\right)}
$$

- The Bayes factor BF(i,j) is a Bayesian version of a likelihood ratio test, that can be used to compare models of different complexity

Marginal likelihood for Beta-Bernoulli

- Since we know p($\theta \mid \mathrm{D})=\operatorname{Be}\left(\alpha_{1}{ }^{\prime}, \alpha_{0}{ }^{\prime}\right)$

$$
\begin{aligned}
p(\theta \mid D) & =\frac{p(\theta) p(D \mid \theta)}{p(D)} \\
& =\frac{1}{p(D)}\left[\frac{1}{B\left(\alpha_{1}, \alpha_{0}\right)} \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{0}-1}\right]\left[\theta^{N_{1}}(1-\theta)^{N_{0}}\right] \\
& =\frac{\theta^{\alpha_{1}^{\prime}-1}(1-\theta)^{\alpha_{0}^{\prime}-1}}{B\left(\alpha_{1}^{\prime}, \alpha_{0}^{\prime}\right)}
\end{aligned}
$$

- Hence the marginal likelihood is a ratio of normalizing constants

$$
p(D)=\int p(D \mid \theta) p(\theta) d \theta=\frac{B\left(\alpha_{1}^{\prime}, \alpha_{0}^{\prime}\right)}{B\left(\alpha_{1}, \alpha_{0}\right)}
$$

Example: is the Eurocoin biased?

- Suppose we toss a coin $\mathrm{N}=250$ times and observe $N_{1}=141$ heads and $N_{0}=109$ tails.
- Consider two hypotheses: H_{0} that $\theta=0.5$ and H_{1} that $\theta \neq 0.5$. Actually, we can let H_{1} be $\mathrm{p}(\theta)=\mathrm{U}(0,1)$, since $p\left(\theta=0.5 \mid \mathrm{H}_{1}\right)=0(\mathrm{pdf})$.
- For H_{0}, marginal likelihood is

$$
p\left(D \mid H_{0}\right)=0.5^{N}
$$

- For H_{1}, marginal likelihood is

$$
P\left(D \mid H_{1}\right)=\int_{0}^{1} P\left(D \mid \theta, H_{1}\right) P\left(\theta \mid H_{1}\right) d \theta=\frac{B\left(\alpha_{1}+N_{1}, \alpha_{0}+N_{0}\right)}{B\left(\alpha_{1}, \alpha_{0}\right)}
$$

- Hence the Bayes factor is

$$
B F(1,0)=\frac{P\left(D \mid H_{1}\right)}{P\left(D \mid H_{0}\right)}=\frac{B\left(\alpha_{1}+N_{1}, \alpha_{0}+N_{0}\right)}{B\left(\alpha_{1}, \alpha_{0}\right)} \frac{1}{0.5^{N}}
$$

Bayes factor vs prior strength

- Let $\alpha_{1}=\alpha_{0}$ range from 0 to 1000.
- The largest BF in favor of H1 (biased coin) is only 2.0, which is very weak evidence of bias.

Bayesian Occam's razor

- The use of the marginal likelihood $p(\mathrm{D} \mid \mathrm{M})$ automatically penalizes overly complex models, since they spread their probability mass very widely (predict that everything is possible), so the probability of the actual data is small.

Bayesian Occam's razor for biased coin

Blue line $=p\left(D \mid H_{0}\right)=0.5^{\mathrm{N}}$
Red curve $=p\left(D \mid H_{1}\right)=\int p(D \mid \theta) \operatorname{Beta}(\theta \mid 1,1) d \theta$
If we have already observed 4 heads, it is much more likely to observe a $5^{\text {th }}$ head than a tail, since θ gets updated sequentially.

Bayesian Information Criterion (BIC)

- If we make a Gaussian approximation to $p(\theta \mid D)$ (Laplace approximation), and approximate $|\mathrm{H}| \approx$ N^{d}, the log marginal likelihood becomes

$$
\log p(D) \approx \log p\left(D \mid \theta_{M L}\right)-\frac{1}{2} d \log N
$$

- Here d is the dimension/ number of free parameters.
- AIC (Akaike Info criterion) is defined as

$$
\log p(D) \approx \log p\left(D \mid \theta_{M L}\right)-d
$$

- Can use penalized log-likelihood for model selection instead of cross-validation.

Outline

- Conjugate analysis of μ and σ^{2}
- Bayesian model selection
- Summarizing the posterior

Summarizing the posterior

- If $p(\theta \mid D)$ is too complex to plot, we can compute various summary statistics, such as posterior mean, mode and median

$$
\begin{aligned}
\hat{\theta}_{\text {mean }} & =E[\theta \mid \mathcal{D}] \\
\hat{\theta}_{M A P} & =\arg \max _{\theta} p(\theta \mid \mathcal{D}) \\
\hat{\theta}_{\text {median }} & =t: p(\theta>t \mid \mathcal{D})=0.5
\end{aligned}
$$

Bayesian credible intervals

- We can represent our uncertainty using a posterior credible interval

$$
p(\ell \leq \theta \leq u \mid D) \geq 1-\alpha
$$

- We set

$$
\ell=F^{-1}(\alpha / 2), u=F^{-1}(1-\alpha / 2)
$$

Example

- We see 47 heads out of 100 trials.
- Using a Beta(1,1) prior, what is the 95% credible interval for probability of heads?

```
S = 47; N = 100; a = S+1; b = (N-S)+1; alpha = 0.05;
l = betainv(alpha/2, a, b);
u = betainv(1-alpha/2, a, b);
CI = [l,u]
    0.3749 0.5673
```


Posterior sampling

- If θ is high-dimensional, it is hard to visualize $p(\theta \mid D)$.
- A common strategy is to draw typical values $\theta^{s} \sim p(\theta \mid D)$ and analyze the resulting samples.
- Eg we can generate fake data $p\left(x^{s} \mid \theta^{s}\right)$ to see if it looks like the real data (a simple kind of posterior predictive check of model adequacy).
- See handout for some examples.

