CS340 Machine learning Bayesian statistics 3

1

Outline

- Conjugate analysis of μ and σ^2
- Bayesian model selection
- Summarizing the posterior

Unknown mean and precision

• The likelihood function is

$$p(D|\mu,\lambda) = \frac{1}{(2\pi)^{n/2}}\lambda^{n/2}\exp\left(-\frac{\lambda}{2}\sum_{i=1}^{n}(x_i-\mu)^2\right)$$
$$= \frac{1}{(2\pi)^{n/2}}\lambda^{n/2}\exp\left(-\frac{\lambda}{2}\left[n(\mu-\overline{x})^2 + \sum_{i=1}^{n}(x_i-\overline{x})^2\right]\right)$$

• The natural conjugate prior is normal gamma

$$p(\mu, \lambda) = NG(\mu, \lambda | \mu_0, \kappa_0, \alpha_0, \beta_0)$$

$$\stackrel{\text{def}}{=} \mathcal{N}(\mu | \mu_0, (\kappa_0 \lambda)^{-1}) Ga(\lambda | \alpha_0, \text{rate} = \beta_0)$$

$$= \frac{1}{Z_{NG}} \lambda^{\alpha_0 - \frac{1}{2}} \exp\left(-\frac{\lambda}{2} \left[\kappa_0 (\mu - \mu_0)^2 + 2\beta_0\right]\right)$$

Gamma distribution

• Used for positive reals

$$Ga(x|\text{shape} = a, \text{rate} = b) = \frac{b^a}{\Gamma(a)}x^{a-1}e^{-xb}, \quad x, a, b > 0$$
 Bishop
 $Ga(x|\text{shape} = \alpha, \text{scale} = \beta) = \frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\beta}$ Matlab

Posterior is also NG

• Just update the hyper-parameters

$$p(\mu, \lambda | D) = NG(\mu, \lambda | \mu_n, \kappa_n, \alpha_n, \beta_n)$$

$$\mu_n = \frac{\kappa_0 \mu_0 + n\overline{x}}{\kappa_0 + n}$$

$$\kappa_n = \kappa_0 + n$$

$$\alpha_n = \alpha_0 + n/2$$

$$\beta_n = \beta_0 + \frac{1}{2} \sum_{i=1}^n (x_i - \overline{x})^2 + \frac{\kappa_0 n (\overline{x} - \mu_0)^2}{2(\kappa_0 + n)}$$

Posterior marginals

- Variance $p(\lambda|D) = Ga(\lambda|\alpha_n, \beta_n)$
- Mean $p(\mu|D) = T_{2\alpha_n}(\mu|\mu_n, \frac{\beta_n}{\alpha_n\kappa_n})$

Student t distribution

Student t distribution

- Approaches Gaussian as $\nu \to \infty$

$$t_{\nu}(x|\mu,\sigma^2) \propto \left[1+\frac{1}{\nu}(\frac{x-\mu}{\sigma})^2\right]^{-(\frac{\nu+1}{2})}$$

Robustness of t distribution

Posterior predictive distribution

• Also a t distribution (fatter tails than Gaussian due to uncertainty in λ)

$$p(x|D) = t_{2\alpha_n}(x|\mu_n, \frac{\beta_n(\kappa_n+1)}{\alpha_n\kappa_n})$$

Uninformative prior

 It can be shown (see handout) that an uninformative prior has the form

$$p(\mu,\lambda) \propto rac{1}{\lambda}$$

• This can be emulated using the following hyper-parameters

$$egin{array}{rcl} \kappa_0&=&0\ a_0&=&-rac{1}{2}\ b_0&=&0 \end{array}$$

- This prior is improper (does not integrate to 1), but the posterior is proper if $n \geq 1$

Outline

- Conjugate analysis of μ and σ^2
- Bayesian model selection
- Summarizing the posterior

Bayesian model selection

 Suppose we have K possible models, each with parameters θ_i. The posterior over models is defined using the marginal likelihood ("evidence") p(D|M=i), which is the normalizing constant from the posterior over parameters

$$p(M = i|D) = \frac{p(M = i)p(D|M = i)}{p(D)}$$

$$p(D|M = i) = \int p(D|\theta, M = i)p(\theta|M = i)d\theta$$

$$p(\theta|D, M = i) = \frac{p(D|\theta, M = i)p(\theta|M = i)}{p(D|M = i)}$$

Bayes factors

• To compare two models, use posterior odds

 The Bayes factor BF(i,j) is a Bayesian version of a likelihood ratio test, that can be used to compare models of different complexity

Marginal likelihood for Beta-Bernoulli

• Since we know $p(\theta|D) = Be(\alpha_1', \alpha_0')$

$$p(\theta|D) = \frac{p(\theta)p(D|\theta)}{p(D)} \\ = \frac{1}{p(D)} \left[\frac{1}{B(\alpha_1, \alpha_0)} \theta^{\alpha_1 - 1} (1 - \theta)^{\alpha_0 - 1} \right] \left[\theta^{N_1} (1 - \theta)^{N_0} \right] \\ = \frac{\theta^{\alpha'_1 - 1} (1 - \theta)^{\alpha'_0 - 1}}{B(\alpha'_1, \alpha'_0)}$$

 Hence the marginal likelihood is a ratio of normalizing constants

$$p(D) = \int p(D|\theta)p(\theta)d\theta = \frac{B(\alpha'_1, \alpha'_0)}{B(\alpha_1, \alpha_0)}$$

Example: is the Eurocoin biased?

- Suppose we toss a coin N=250 times and observe N₁=141 heads and N₀=109 tails.
- Consider two hypotheses: H_0 that $\theta=0.5$ and H_1 that $\theta \neq 0.5$. Actually, we can let H_1 be $p(\theta) = U(0,1)$, since $p(\theta=0.5|H_1) = 0$ (pdf).
- For H₀, marginal likelihood is

 $p(D|H_0) = 0.5^N$

• For H₁, marginal likelihood is

$$P(D|H_1) = \int_0^1 P(D|\theta, H_1) P(\theta|H_1) d\theta = \frac{B(\alpha_1 + N_1, \alpha_0 + N_0)}{B(\alpha_1, \alpha_0)}$$

• Hence the Bayes factor is

$$BF(1,0) = \frac{P(D|H_1)}{P(D|H_0)} = \frac{B(\alpha_1 + N_1, \alpha_0 + N_0)}{B(\alpha_1, \alpha_0)} \frac{1}{0.5^N}$$

15

Bayes factor vs prior strength

- Let $\alpha_1 = \alpha_0$ range from 0 to 1000.
- The largest BF in favor of H1 (biased coin) is only 2.0, which is very weak evidence of bias.

Bayesian Occam's razor

 The use of the marginal likelihood p(D|M) automatically penalizes overly complex models, since they spread their probability mass very widely (predict that everything is possible), so the probability of the actual data is small.

Bayesian Occam's razor for biased coin

Blue line = $p(D|H_0) = 0.5^N$ Red curve = $p(D|H_1) = \int p(D|\theta) Beta(\theta|1,1) d \theta$

Bayesian Information Criterion (BIC)

- If we make a Gaussian approximation to p($\theta|D)$ (Laplace approximation), and approximate $|H|\approx$

N^d, the log marginal likelihood becomes

 $\log p(D) \approx \log p(D|\theta_{ML}) - \frac{1}{2}d\log N$

- Here d is the dimension/ number of free parameters.
- AIC (Akaike Info criterion) is defined as

 $\log p(D) \approx \log p(D|\theta_{ML}) - d$

• Can use penalized log-likelihood for model selection instead of cross-validation.

Outline

- Conjugate analysis of μ and σ^2
- Bayesian model selection
- Summarizing the posterior

Summarizing the posterior

 If p(θ|D) is too complex to plot, we can compute various summary statistics, such as posterior mean, mode and median

$$\hat{\theta}_{mean} = E[\theta|\mathcal{D}]$$

 $\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta|\mathcal{D})$
 $\hat{\theta}_{median} = t : p(\theta > t|\mathcal{D}) = 0.5$

Bayesian credible intervals

 We can represent our uncertainty using a posterior credible interval

$$p(\ell \le \theta \le u|D) \ge 1 - \alpha$$

• We set

$$\ell = F^{-1}(\alpha/2), u = F^{-1}(1 - \alpha/2)$$

Example

- We see 47 heads out of 100 trials.
- Using a Beta(1,1) prior, what is the 95% credible interval for probability of heads?

```
S = 47; N = 100; a = S+1; b = (N-S)+1; alpha = 0.05;
l = betainv(alpha/2, a, b);
u = betainv(1-alpha/2, a, b);
CI = [1,u]
0.3749 0.5673
```

Posterior sampling

- If θ is high-dimensional, it is hard to visualize p(θ|D).
- A common strategy is to draw typical values $\theta^{s} \sim p(\theta|D)$ and analyze the resulting samples.
- Eg we can generate fake data p(x^s|θ^s) to see if it looks like the real data (a simple kind of posterior predictive check of model adequacy).
- See handout for some examples.