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e Conjugate analysis of pu and o2
e Bayesian model selection
e Summarizing the posterior



Unknown mean and precision

The likelihood function is
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e The natural conjugate prior iIs normal gamma
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Gamma distribution

e Used for positive reals
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Posterior is also NG

e Just update the hyper-parameters
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Posterior marginals

e Variance
p()\|D) — Ga(MO‘nvﬁn)
e Mean 3,
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Student t distribution
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Student t distribution

 Approaches Gaussian asv — o
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Robustness of t distribution

Student t less affected
by outliers
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Posterior predictive distribution

« Also a t distribution (fatter tails than Gaussian due
to uncertainty in A)
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Uninformative prior

« It can be shown (see handout) that an uninformative prior
has the form

1
p(lu“a )‘) X X
« This can be emulated using the following hyper-parameters
kKo = 0
B 1
agp = —5
by = 0
e This prior.is improper (does not integrate to 1), but the
post(frior IS pr0|pae|pif n(z 1 9 )
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e Conjugate analysis of pu and o2
e Bayesian model selection
e Summarizing the posterior
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Bayesian model selection

e Suppose we have K possible models, each with
parameters 6,. The posterior over models is defined
using the marginal likelihood (“evidence”) p(D|M=l),
which Is the normalizing constant from the posterior
over parameters

p(M = i)p(D|M = i)

P = »(D)
DM =1) = /p(DIG,M — i)p(6] M = i)do
p(0|D, M =i) = p(D|0, M = i)p(0|M = i)

p(D|M = 1)
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Bayes factors

 To compare two models, use posterior odds

0. — p(M;|D) — p(D|M;)p(M;)
1) —
p(M;|D)  p(D|M;)p(M;)
Bayes factor Prior odds

 The Bayes factor BF(l,)) Is a Bayesian version of a
likelihood ratio test, that can be used to compare
models of different complexity

13



Marginal likelihood for Beta-Bernoulli

« Since we know p(8|D) = Be(a,’,a,)
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 Hence the marginal likelihood Is a ratio of
normalizing constants

p(D) = [ p(DIOp(E)as = T
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Example: is the Eurocoin biased?

Suppose we toss a coin N=250 times and observe
N,=141 heads and N,=109 tails.

Consider two hypotheses: H, that 6=0.5 and H, that
0 # 0.5. Actually, we can let H, be p(8) = U(0,1),
since p(6=0.5|H,) = 0 (pdf).

For Hy, marginal like

p(D
For H,, marginal like

P(D|Hy) = /OlP(D|9,H1)P(9|H1)d9 =

Ihood IS
Hy) = 0.5%
lhood IS

B(ay + N1, a9 + No)
B(ai, ap)

Hence the Bayes factor is

(D|H1) o B(CE1+N1,(X0—|—N0) 1

P
BF(1,0) = 3

(D‘Ho) B(Ozl,()é()) 0.5
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Bayes factor vs prior strength

e Let a,=a, range from O to 1000.

 The largest BF in favor of H1 (biased coin) is only
2.0, which is very weak evidence of bias.

BF(1,0) ,
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Bayesian Occam’s razor

 The use of the marginal likelihood p(D|M)
automatically penalizes overly complex models,
since they spread their probability mass very widely
(predict that everything Is possible), so the
probability of the actual data is small.

(D) M, Too simple, cannot predict D

\ M, Just right

Ms Too complex, can predict

\ i \ ‘\iverything
Dy "
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Bayesian Occam’s razor for biased coin

Blue line = p(D|

H,) = 0.5N

Red curve = p(D|H,) = [ p(D|6) Beta(6]1,1) d 6
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Bayesian Information Criterion (BIC)

If we make a Gaussian approximation to p(9|D)
(Laplace approximation), and approximate |H| ~

Nd, the log marginal likelihood becomes
1
logp(D) ~ logp(D|t1) — 5dlog N

Here dis the dimension/ number of free
parameters.

AIC (Akaike Info criterion) is defined as
logp(D) ~ logp(D|0nrr) — d

Can use penalized log-likelihood for model
selection instead of cross-validation.
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e Bayesian model selection
e Summarizing the posterior
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Summarizing the posterior

 |f p(9|D) Is too complex to plot, we can compute
various summary statistics, such as posterior
mean, mode and median

A

Omean = E[|D]
Oriap = argm@axp(H\D)
Omedian = t:p(0>1t/D)=0.5
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Bayesian credible intervals

e \We can represent our uncertainty using a posterior
credible interval

pl<0<ulD)>1-—«
 We set
{=F Ha/2),u=F1(1—-a/2)

/)
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e We see 47 heads out of 100 trials.

e Using a Beta(1,1) prior, what is the 95% credible
Interval for probability of heads?

S =47; N = 100; a = S+1; b = (N-S)+1; alpha = 0.05;
1 = betainv(alpha/2, a, b);
u = betainv(l-alpha/2, a, b);
CI = [1,u]
0.3749 0.5673
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Posterior sampling

 |f O1s high-dimensional, it is hard to visualize
p(8[D).

A common strategy Is to draw typical values
05 ~ p(6|D) and analyze the resulting samples.

 Eg we can generate fake data p(x5|06°) to see If it
looks like the real data (a simple kind of posterior
predictive check of model adequacy).

e See handout for some examples.
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