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Outline

• Conjugate analysis of µ and σ2

• Bayesian model selection
• Summarizing the posterior
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Unknown mean and precision

• The likelihood function is

• The natural conjugate prior is normal gamma

p(D|µ, λ) =
1

(2π)n/2
λn/2 exp

(

−
λ

2

n∑

i=1

(xi − µ)2

)

=
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(2π)n/2
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2
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n∑
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p(µ, λ) = NG(µ, λ|µ0, κ0, α0, β0)
def
= N (µ|µ0, (κ0λ)

−1)Ga(λ|α0, rate = β0)

=
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ZNG
λα0−

1
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−
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Gamma distribution

• Used for positive reals

Ga(x|shape = a, rate = b) =
ba

Γ(a)
xa−1e−xb, x, a, b > 0

Ga(x|shape = α, scale = β) =
1

βαΓ(α)
xα−1e−x/β Matlab

Bishop
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Posterior is also NG

• Just update the hyper-parameters

p(µ, λ|D) = NG(µ, λ|µn, κn, αn, βn)

µn =
κ0µ0 + nx

κ0 + n
κn = κ0 + n

αn = α0 + n/2

βn = β0 +
1
2

n∑

i=1

(xi − x)2 +
κ0n(x− µ0)

2

2(κ0 + n)

Derivation of this result not on exam
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Posterior marginals

• Variance

• Mean

Student t distribution

Derivation of this result not on exam

p(λ|D) = Ga(λ|αn, βn)

p(µ|D) = T2αn(µ|µn,
βn
αnκn

)
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Student t distribution

• Approaches Gaussian as ν →∞

tν(x|µ, σ
2) ∝

[
1 +

1

ν
(
x− µ

σ
)2
]−( ν+1

2
)
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Robustness of t distribution

Student t less affected
by outliers

Gaussian
Bishop 2.16
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Posterior predictive distribution

• Also a t distribution (fatter tails than Gaussian due 
to uncertainty in λ)

Derivation of this result not on exam

p(x|D) = t2αn(x|µn,
βn(κn + 1)

αnκn
)
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Uninformative prior

• It can be shown (see handout) that an uninformative prior 
has the form

• This can be emulated using the following hyper-parameters

• This prior is improper (does not integrate to 1), but the 
posterior is proper if n ≥ 1

Derivation of this result not on exam

p(µ, λ) ∝
1

λ

κ0 = 0

a0 = −
1

2
b0 = 0
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Outline

• Conjugate analysis of µ and σ2

• Bayesian model selection
• Summarizing the posterior



12

Bayesian model selection

• Suppose we have K possible models, each with 
parameters θi. The posterior over models is defined 
using the marginal likelihood (“evidence”) p(D|M=i), 
which is the normalizing constant from the posterior 
over parameters

p(M = i|D) =
p(M = i)p(D|M = i)

p(D)

p(D|M = i) =

∫
p(D|θ,M = i)p(θ|M = i)dθ

p(θ|D,M = i) =
p(D|θ,M = i)p(θ|M = i)

p(D|M = i)
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Bayes factors

• To compare two models, use posterior odds

• The Bayes factor BF(i,j) is a Bayesian version of a 
likelihood ratio test, that can be used to compare 
models of different complexity

Oij =
p(Mi|D)

p(Mj |D)
=
p(D|Mi)p(Mi)

p(D|Mj)p(Mj)

Prior oddsBayes factor
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Marginal likelihood for Beta-Bernoulli

• Since we know p(θ|D) = Be(α1’,α0’)

• Hence the marginal likelihood is a ratio of 
normalizing constants

p(θ|D) =
p(θ)p(D|θ)

p(D)

=
1

p(D)

[
1

B(α1, α0)
θα1−1(1− θ)α0−1

] [
θN1(1− θ)N0

]

=
θα

′

1−1(1− θ)α
′

0−1

B(α′1, α
′

0)

p(D) =

∫
p(D|θ)p(θ)dθ =

B(α′1, α
′

0)

B(α1, α0)



15

Example: is the Eurocoin biased?

• Suppose we toss a coin N=250 times and observe 
N1=141 heads and N0=109 tails.

• Consider two hypotheses: H0 that θ=0.5 and H1 that 
θ ≠ 0.5. Actually, we can let H1 be p(θ) = U(0,1), 
since p(θ=0.5|H1) = 0 (pdf).

• For H0, marginal likelihood is

• For H1, marginal likelihood is

• Hence the Bayes factor is

p(D|H0) = 0.5
N

P (D|H1) =

∫ 1

0

P (D|θ,H1)P (θ|H1)dθ =
B(α1 +N1, α0 +N0)

B(α1, α0)

BF (1, 0) =
P (D|H1)

P (D|H0)
=
B(α1 +N1, α0 +N0)

B(α1, α0)

1

0.5N
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Bayes factor vs prior strength

• Let α1=α0 range from 0 to 1000.
• The largest BF in favor of H1 (biased coin) is only 

2.0, which is very weak evidence of bias.

α

BF(1,0)



17

Bayesian Occam’s razor

• The use of the marginal likelihood p(D|M) 
automatically penalizes overly complex models, 
since they spread their probability mass very widely 
(predict that everything is possible), so the 
probability of the actual data is small.

Bishop 3.13

Too simple, cannot predict D

Too complex, can predict
everything

Just right
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Bayesian Occam’s razor for biased coin

0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 5
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num heads

Marginal likelihood of biased coin

1.000

Red curve = p(D|H1) = ∫ p(D|θ) Beta(θ|1,1) d θ

If we observe 2 or 3 heads out of 5,
the simpler model is more likely

Blue line = p(D|H0) = 0.5N

If we have already observed 4 heads,
it is much more likely to observe a 5th head
than a tail, since θ gets updated sequentially.
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Bayesian Information Criterion (BIC)

• If we make a Gaussian approximation to p(θ|D) 
(Laplace approximation), and approximate |H| ≈

Nd, the log marginal likelihood becomes

• Here  d is the dimension/ number of free 
parameters.

• AIC (Akaike Info criterion) is defined as

• Can use penalized log-likelihood for model 
selection instead of cross-validation.

log p(D) ≈ log p(D|θML)−
1

2
d logN

log p(D) ≈ log p(D|θML)− d
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Summarizing the posterior

• If p(θ|D) is too complex to plot, we can compute 
various summary statistics, such as posterior 
mean, mode and median

θ̂mean = E[θ|D]

θ̂MAP = argmax
θ

p(θ|D)

θ̂median = t : p(θ > t|D) = 0.5
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Bayesian credible intervals

• We can represent our uncertainty using a posterior 
credible interval

• We set 
p(ℓ ≤ θ ≤ u|D) ≥ 1− α

ℓ = F−1(α/2), u = F−1(1− α/2)
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Example

• We see 47 heads out of 100 trials.

• Using a Beta(1,1) prior, what is the 95% credible 
interval for probability of heads?

S = 47; N = 100; a = S+1; b = (N-S)+1; alpha = 0.05;

l = betainv(alpha/2, a, b);

u = betainv(1-alpha/2, a, b);

CI = [l,u]

0.3749 0.5673
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Posterior sampling

• If θ is high-dimensional, it is hard to visualize 
p(θ|D).

• A common strategy is to draw typical values
θs ∼ p(θ|D) and analyze the resulting samples.

• Eg we can generate fake data p(xs|θs) to see if it 
looks like the real data (a simple kind of posterior 
predictive check of model adequacy).

• See handout for some examples.


