CS340 Machine learning Bayesian statistics 1

Fundamental principle of Bayesian statistics

- In Bayesian stats, everything that is uncertain (e.g., $\theta)$ is modeled with a probability distribution.
- We incorporate everything that is known (e.g., D) is by conditioning on it, using Bayes rule to update our prior beliefs into posterior beliefs.

$$
p(\theta \mid D) \propto p(\theta) p(D \mid \theta)
$$

In praise of Bayes

- Bayesian methods are conceptually simple and elegant, and can handle small sample sizes (e.g., one-shot learning) and complex hierarchical models without overfitting.
- They provide a single mechanism for answering all questions of interest; there is no need to choose between different estimators, hypothesis testing procedures, etc.
- They avoid various pathologies associated with orthodox statistics.
- They often enjoy good frequentist properties.

Why isn't everyone a Bayesian?

- The need for a prior.
- Computational issues.

The need for a prior

- Bayes rule requires a prior, which is considered "subjective".
- However, we know learning without assumptions is impossible (no free lunch theorem).
- Often we actually have informative prior knowledge.
- If not, it is possible to create relatively "uninformative" priors to represent prior ignorance.
- We can also estimate our priors from data (empirical Bayes).
- We can use posterior predictive checks to test goodness of fit of both prior and likelihood.

Computational issues

- Computing the normalization constant requires integrating over all the parameters

$$
p(\theta \mid D)=\frac{p(\theta) p(D \mid \theta)}{\int p\left(\theta^{\prime}\right) p\left(D \mid \theta^{\prime}\right) d \theta^{\prime}}
$$

- Computing posterior expectations requires integrating over all the parameters

$$
E f(\Theta)=\int f(\theta) p(\theta \mid D) d \theta
$$

Approximate inference

- We can evaluate posterior expectations using Monte Carlo integration

$$
E f(\Theta)=\int f(\theta) p(\theta \mid D) d \theta \approx \frac{1}{N} \sum_{s=1}^{N} f\left(\theta^{s}\right) \quad \text { where } \theta^{s} \sim p(\theta \mid D)
$$

- Generating posterior samples can be tricky
- Importance sampling
- Particle filtering
- Markov chain Monte Carlo (MCMC)
- There are also deterministic approximation methods
- Laplace
- Variational Bayes
- Expectation Propagation

Conjugate priors

- For simplicity, we will mostly focus on a special kind of prior which has nice mathematical properties.
- A prior $p(\theta)$ is said to be conjugate to a likelihood $p(D \mid \theta)$ if the corresponding posterior $p(\theta \mid D)$ has the same functional form as $p(\theta)$.
- This means the prior family is closed under Bayesian updating.
- So we can recursively apply the rule to update our beliefs as data streams in (online learning).
- A natural conjugate prior means $p(\theta)$ has the same functional form as $p(D \mid \theta)$.

Example: coin tossing

- Consider the problem of estimating the probability of heads θ from a sequence of N coin tosses, $\mathrm{D}=$ $\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{N}}\right)$
- First we define the likelihood function, then the prior, then compute the posterior. We will also consider different ways to predict the future.

Binomial distribution

- Let $\mathrm{X}=$ number of heads in N trials.
- We write $X \sim \operatorname{Binom}(\theta, N)$.

$$
P(X=x \mid \theta, N)=\binom{N}{x} \theta^{x}(1-\theta)^{N-x}
$$

Bernoulli distribution

- Binomial distribution when $\mathrm{N}=1$ is called the Bernoulli distribution.
- We write $X \sim \operatorname{Ber}(\theta)$

$$
p(X)=\theta^{X}(1-\theta)^{1-X}
$$

- So $p(X=1)=\theta, p(X=0)=1-\theta$

Fitting a Bernoulli distribution

- Suppose we conduct $\mathrm{N}=100$ trials and get data $D=(1,0,1,1,0, \ldots)$ with N_{1} heads and N_{0} tails. What is θ ?
- A reasonable best guess is the value that maximizes the likelihood of the data

$$
\begin{aligned}
\hat{\theta}_{M L E} & =\underset{\theta}{\arg \max } L(\theta) \\
L(\theta) & =p(D \mid \theta)
\end{aligned}
$$

Bernoulli likelihood function

- The likelihood is

$$
\begin{aligned}
L(\theta) & =p(D \mid \theta)=\prod_{n=1} p\left(x_{n} \mid \theta\right) \\
& =\prod_{n} \theta^{I\left(x_{n}=1\right)}(1-\theta)^{I\left(x_{n}=0\right)} \\
& =\theta^{\sum_{n} I\left(x_{n}=1\right)}(1-\theta)^{\sum_{n} I\left(x_{n}=0\right)} \\
& =\theta^{N_{1}}(1-\theta)^{N_{0}}
\end{aligned}
$$

We say that N_{0} and N_{1} are sufficient statistics of D for θ

This is the same as the Binomial likelihood function, up to constant factors.

Bernoulli log-likelihood

- We usually use the log-likelihood instead

$$
\begin{aligned}
\ell(\theta) & =\log p(D \mid \theta)=\sum_{n} \log p\left(x_{n} \mid \theta\right) \\
& =N_{1} \log \theta+N_{0} \log (1-\theta)
\end{aligned}
$$

- Note that the maxima are the same, since log is a monotonic function

$$
\arg \max L(\theta)=\arg \max \ell(\theta)
$$

Computing the Bernoulli MLE

- We maximize the log-likelihood

$$
\begin{aligned}
\ell(\theta) & =N_{1} \log \theta+N_{0} \log (1-\theta) \\
\frac{d \ell}{d \theta} & =\frac{N_{1}}{\theta}-\frac{N-N_{1}}{1-\theta} \\
& =0 \\
& \Rightarrow \\
\hat{\theta} & =\frac{N_{1}}{N} \quad \text { Empirical traciion of heads eg. 47/100 }
\end{aligned}
$$

Black swan paradox

- Suppose we have seen $N=3$ white swans. What is the probability that swan X_{N+1} is black?
- If we plug in the MLE, we predict black swans are impossible, since $N_{b}=N_{1}=0, N_{w}=N_{0}=3$

$$
\hat{\theta}_{M L E}=\frac{N_{b}}{N_{b}+N_{w}}=\frac{0}{N}, p\left(X=b \mid \hat{\theta}_{M L E}\right)=\hat{\theta}_{M L E}=0
$$

- However, this may just be due to sparse data.
- Below, we will see how Bayesian approaches work better in the small sample setting.

The beta-Bernoulli model

- Consider the probability of heads, given a sequence of N coin tosses, $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{N}}$.
- Likelihood

$$
p(D \mid \theta)=\prod_{n=1}^{N} \theta^{X_{n}}(1-\theta)^{1-X_{n}}=\theta^{N_{1}}(1-\theta)^{N_{0}}
$$

- Natural conjugate prior is the Beta distribution

$$
p(\theta)=B e\left(\theta \mid \alpha_{1}, \alpha_{0}\right) \propto \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{0}-1}
$$

- Posterior is also Beta, with updated counts

$$
p(\theta \mid D)=B e\left(\theta \mid \alpha_{1}+N_{1}, \alpha_{0}+N_{0}\right) \propto \theta^{\alpha_{1}-1+N_{1}}(1-\theta)^{\alpha_{0}-1+N_{0}}
$$

Just combine the exponents in θ and (1- θ) from the prior and likelihood

The beta distribution

- Beta distribution $p\left(\theta \mid \alpha_{1}, \alpha_{0}\right)=\frac{1}{B\left(\alpha_{1}, \alpha_{0}\right)} \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{0}-1}$
- The normalization constant is the beta function

$$
B\left(\alpha_{1}, \alpha_{0}\right)=\int_{0}^{1} \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{0}-1} d \theta=\frac{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}+\alpha_{0}\right)}
$$

$$
E[\theta]=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{0}}
$$

$a=2.00, b=3.00$

$a=1.00, b=1.00$

$a=8.00, b=4.00$

Updating a beta distribution

- Prior is Beta(2,2). Observe 1 head. Posterior is Beta(3,2), so mean shifts from $2 / 4$ to $3 / 5$.

- Prior is Beta(3,2). Observe 1 head. Posterior is Beta(4,2), so mean shifts from $3 / 5$ to $4 / 6$.

Setting the hyper-parameters

- The prior hyper-parameters α_{1}, α_{0} can be interpreted as pseudo counts.
- The effective sample size (strength) of the prior is $\alpha_{1}+\alpha_{0}$.
- The prior mean is $\alpha_{1} /\left(\alpha_{1}+\alpha_{0}\right)$.
- If our prior belief is p (heads) $=0.3$, and we think this belief is equivalent to about 10 data points, we just solve

$$
\alpha_{1}+\alpha_{0}=10, \frac{\alpha_{1}}{\alpha_{1}+\alpha_{0}}=0.3
$$

Point estimation

- The posterior $p(\theta \mid \mathrm{D})$ is our belief state.
- To convert it to a single best guess (point estimate), we pick the value that minimizes some loss function, e.g., MSE -> posterior mean, 0/1 loss -> posterior mode

$$
\hat{\theta}=\arg \min _{\theta^{\prime}} \int L\left(\theta^{\prime}, \theta\right) p(\theta \mid D) d \theta
$$

- There is no need to choose between different estimators. The bias/ variance tradeoff is irrelevant.

Posterior mean

- Let $\mathrm{N}=\mathrm{N}_{1}+\mathrm{N}_{0}$ be the amount of data, and $M=\alpha_{0}+\alpha_{1}$ be the amount of virtual data.
The posterior mean is a convex combination of prior mean α_{1} / M and MLE $\mathrm{N}_{1} / \mathrm{N}$

$$
\begin{aligned}
E\left[\theta \mid \alpha_{1}, \alpha_{0}, N_{1}, N_{0}\right] & =\frac{\alpha_{1}+N_{1}}{\alpha_{1}+N_{1}+\alpha_{0}+N_{0}}=\frac{\alpha_{1}+N_{1}}{N+M} \\
& =\frac{M}{N+M} \frac{\alpha_{1}}{M}+\frac{N}{N+M} \frac{N_{1}}{N} \\
& =w \frac{\alpha_{1}}{M}+(1-w) \frac{N_{1}}{N}
\end{aligned}
$$

$w=M /(N+M)$ is the strength of the prior relative to the total amount of data
We shrink our estimate away from the MLE towards the prior (a form of regularization).

MAP estimation

- It is often easier to compute the posterior mode (optimization) than the posterior mean (integration).
- This is called maximum a posteriori estimation.

$$
\hat{\theta}_{M A P}=\arg \max _{\theta} p(\theta \mid D)
$$

- This is equivalent to penalized likelihood estimation.

$$
\hat{\theta}_{M A P}=\arg \max _{\theta} \log p(D \mid \theta)+\log p(\theta)
$$

- For the beta distribution,

$$
M A P=\frac{\alpha_{1}-1}{\alpha_{1}+\alpha_{0}-2}
$$

Posterior predictive distribution

- We integrate out our uncertainty about θ when predicting the future (hedge our bets)

$$
p(X \mid D)=\int p(X \mid \theta) p(\theta \mid D) d \theta
$$

- If the posterior becomes peaked

$$
p(\theta \mid D) \rightarrow \delta(\theta-\hat{\theta})
$$

we get the plug-in principle.

$$
p(x \mid D)=\int p(x \mid \theta) \delta(\theta-\hat{\theta}) d \theta=p(x \mid \hat{\theta})
$$

Posterior predictive distribution

- Let $\alpha_{i}{ }^{\prime}=$ updated hyper-parameters.
- In this case, the posterior predictive is equivalent to plugging in the posterior mean parameters

$$
\begin{aligned}
p(X=1 \mid D) & =\int_{0}^{1} p(X=1 \mid \theta) p(\theta \mid D) d \theta \\
& =\int_{0}^{1} \theta \operatorname{Beta}\left(\theta \mid \alpha_{1}^{\prime}, \alpha_{0}^{\prime}\right) d \theta=E[\theta]=\frac{\alpha_{1}^{\prime}}{\alpha_{0}^{\prime}+\alpha_{1}^{\prime}}
\end{aligned}
$$

- If $\alpha_{0}=\alpha_{1}=1$, we get Laplace's rule of succession (add one smoothing)

$$
p\left(X=1 \mid N_{1}, N_{0}\right)=\frac{N_{1}+1}{N_{1}+N_{0}+2}
$$

Solution to black swan paradox

- If we use a $\operatorname{Beta}(1,1)$ prior, the posterior predictive is

$$
p\left(X=1 \mid N_{1}, N_{0}\right)=\frac{N_{1}+1}{N_{1}+N_{0}+2}
$$

so we will never predict black swans are impossible.

- However, as we see more and more white swans, we will come to believe that black swans are pretty rare.

