CS340 Machine learning QMR

Quick Medical Reference

- Probabilistic expert system encoded as a DGM.
- Nodes are binary. Parameters hand-coded.

Inference in QMR

- Infer probability of each disease given observations on subset of symptoms

Complexity of inference

- The disease nodes become dependent in the posterior due to explaining away. Thus exact inference takes $\mathrm{O}\left(2^{w}\right)$ time, where w is (lower bounded by) the size of the largest clique of the moralized graph.

Moral graph

Complexity of inference

- The disease nodes become dependent in the posterior due to explaining away. Thus exact inference takes $\mathrm{O}\left(2^{w}\right)$ time, where w is (lower bounded by) the size of the largest clique of the moralized graph.
- For QMR, w ~ 151, so exact inference is intractable.

Barren nodes

- We can remove leaves with no evidence, since their CPDs sum to one: $\sum_{x_{3}} p\left(x_{3} \mid z_{1}, z_{2}, z_{3}\right)=1$

This can reduce the size of the cliques in the moral graph.

Quickscore algorithm

- The quickscore algorithm exploits the special structure (noisy-OR: see later) of the symptom CPDs, but still takes $O\left(2^{p}\right)$ time, where $p=$ \#positive findings. For QMR, p > 20.
- Many approximate methods have been developed for this model.
- In HW5, you will use exact inference on a small model.

Parameters of the QMR model

Parameter estimation

- Let $\mathrm{D}=\left(\mathrm{X}_{\mathrm{ij}}, Z_{\mathrm{ik}}\right)_{\mathrm{i}=1: \mathrm{n}, \mathrm{j}=1: \mathrm{d}, \mathrm{k}=1: \mathrm{K}}$ be the training data.
- Let us assume no missing data.
- By global parameter independence, the posterior factorizes
$p(\boldsymbol{\theta}, \boldsymbol{\pi} \mid D) \propto \prod_{k=1}^{K} p\left(\pi_{k}\right) p\left(D \mid \pi_{k}\right) \prod_{j=1}^{d} p\left(\boldsymbol{\theta}_{j}\right) p\left(D \mid \boldsymbol{\theta}_{j}\right)$

Root CPDs in QMR

- CPDs = conditional probability distribution, P(node|parents)
- Root nodes have Bernoulli distribution, representing base rate of the disease.
- Likelihood

$$
p\left(Z_{k}=1\right)=\pi_{k}
$$

- Prior $p\left(D \mid \pi_{k}\right)=\prod_{i=1}^{n} \pi_{k}^{I\left(z_{i k}=1\right)}\left(1-\pi_{k}\right)^{I\left(z_{i k}=0\right)}$

$$
p\left(\pi_{k}\right)=\operatorname{Beta}\left(\pi_{k} \mid a_{k}, b_{k}\right)
$$

- Posterior

$$
p(\boldsymbol{\pi} \mid D)=\prod_{k} \operatorname{Beta}\left(\pi_{k} \mid a_{k}+N\left(Z_{k}=1\right), b_{k}+N\left(Z_{k}=0\right)\right)
$$

Leaf CPDs in QMR

- Let θ_{j} be the parameters of $p\left(X_{j} \mid \mathrm{pa}\left(\mathrm{X}_{\mathrm{j}}\right)\right)$.
- Representing $\mathrm{p}\left(\mathrm{X}_{\mathrm{j}} \mid \mathrm{pa}\left(\mathrm{X}_{\mathrm{j}}\right)\right)$ as a table would need $2^{\# p a r e n t s}$ parameters. Instead we use a noisy-OR parameterization, which has \#parents parameters. (Could also use logistic regression.)

Noisy-ORs

- If parent Z_{k} is on, it will turn on its child X_{j}.
- But with probability q_{kj}, the "wire" from Z_{k} to X_{j} may fail, and the on parent will be inhibited.
- We assume such failures occur independently.
- Deterministic OR corresponds to all $\mathrm{q}_{\mathrm{kj}}=0$.

$$
p\left(X_{j}=0 \mid Z_{\pi_{j}}\right)=\prod_{k \in \pi_{j}} q_{k j}^{I\left(Z_{k}=1\right)}=\prod_{k \in \pi_{j}: Z_{k}=1} q_{k j}
$$

$z_{1} \quad t_{2}$
$\downarrow l$
x_{j}

Z_{1}	Z_{2}	$P\left(X_{j}=0 \mid Z_{1}, Z_{2}\right)$	$P\left(X_{j}=1 \mid Z_{1}, Z_{2}\right)$
0	0	1	0
1	0	$q_{1 j}$	$1-q_{1 j}$
0	1	$q_{2 j}$	$1-q_{2 j}$
1	1	$q_{1 j} q_{2 j}$	$1-q_{1 j} q_{2 j}$

Leak nodes

- Sometimes a child is on even if all its parents are off, since there may be some other "hidden" cause.
- To explain this, we assume every child has an extra "leak" or background parent that is always on. This will turn the child on unless it is inhibited w.p. $q_{0 j}$.

$$
\begin{aligned}
& p\left(X_{j}=0 \mid Z_{\pi_{j}}\right)=q_{0 j} \prod_{k \in \pi_{j}} q_{k j}^{I\left(Z_{k}=1\right)} \\
& \begin{array}{ccc|cc}
B & Z_{1} & Z_{2} & P\left(X_{j}=0 \mid Z_{1}, Z_{2}\right) & P\left(X_{j}=1 \mid Z_{1}, Z_{2}\right) \\
\hline 1 & 0 & 0 & q_{0 j} & 1-q_{0 j} \\
1 & 1 & 0 & q_{0 j} q_{1 j} & 1-q_{0 j} q_{1 j} \\
1 & 0 & 1 & q_{0 j} q_{2 j} & 1-q_{0 j} q_{2 j} \\
1 & 1 & 1 & q_{0 j} q_{1 j} q_{2 j} & 1-q_{0 j} q_{1 j} q_{2 j}
\end{array}
\end{aligned}
$$

Alternative parameterization

- $q_{k j}=$ prob k fails to cause j.
- Let $w_{k j}=1-q_{k j}=$ prob k causes j. Then

$$
\begin{aligned}
p\left(X_{j}=1 \mid Z_{\pi_{j}}\right) & =1-\prod_{k \in \pi_{j}} q_{k j}^{I\left(Z_{k}=1\right)} \\
& =1-\prod_{k \in \pi_{j}}\left(1-w_{k j}\right)^{I\left(Z_{k}=1\right)}
\end{aligned}
$$

Parameter estimation for noisy-ORs

- Consider the case of a single cause and a single effect.

- We want to estimate w from a contingency table of counts.

	Effect absent $E=0$	Effect present $E=1$
Cause absent $C=0$	$N(E=0, C=0)$	$N(C=0, E=1)$
Cause present $C=1$	$N(E=0, C=1)$	$N(C=1, E=1)$

Maximum likelihood estimation

- Let $\mathrm{p}(\mathrm{e} \mid \mathrm{c})$ be the empirical probabilities (derived from the counts $N(e, c)$).
- Let $p(e \mid c, w)$ be the model-predicted probabilities.
- The MLE is gotten by finding the w that minimizes the KL divergence

$$
\mathbf{w}=\arg \min _{\mathbf{W}} K L(p(e \mid c) \| p(e \mid c, \mathbf{w}))
$$

- Hence we require

$$
\begin{aligned}
p(e=1 \mid c=1, \mathbf{w}) & =p(e=1 \mid c=1) \\
p(e=1 \mid c=0, \mathbf{w}) & =p(e=1 \mid c=0)
\end{aligned}
$$

"Structure and strength in causal induction", Griffiths and Tenenbaum, Cognitive Psychology, 51:334-384, 2005

MLE for wo

- Recall

$$
p(e=1 \mid c, \mathbf{w})=1-\left(1-w_{0}\right)\left(1-w_{1}\right)^{I(c=1)}
$$

- Set

$$
w_{0}=p(e=1 \mid c=0)=\frac{N(e=1, c=0)}{N(e=1, c=0)+N(e=0, c=0)}
$$

- Then

$$
\begin{aligned}
p(e=1 \mid c=0, \mathbf{w}) & =1-\left(1-w_{0}\right) \\
& =1-(1-p(e=1 \mid c=0))=p(e=1 \mid c=0)
\end{aligned}
$$

MLE for w1

- Recall

$$
p(e=1 \mid c, \mathbf{w})=1-\left(1-w_{0}\right)\left(1-w_{1}\right)^{I(c=1)}
$$

- Set

$$
w_{1}=\frac{p(e=1 \mid c=1)-p(e=1 \mid c=0)}{1-p(e=1 \mid c=0)} \quad \text { "causal power" }
$$

- Then

$$
\begin{aligned}
p(e=1 \mid c=1, \mathbf{w}) & =1-\left(1-w_{0}\right)\left(1-w_{1}\right) \\
& =p(e=1 \mid c=1)
\end{aligned}
$$

Derivation left as homework exercise

Bayesian parameter estimation

- Since $0 \leq w_{j} \leq 1$, a suitable prior is

$$
p(\mathbf{w})=\operatorname{Beta}\left(w_{0} \mid a_{0}, b_{0}\right) \operatorname{Beta}\left(w_{1} \mid a_{1}, b_{1}\right)
$$

- Likelihood

$$
\begin{array}{r|cc}
C & P(E=0 \mid C, \mathbf{w}) & P(E=1 \mid C, \mathbf{w}) \\
\hline 0 & \theta_{00}=1-w_{0} & \theta_{01}=1-\left(1-w_{0}\right) \\
1 & \theta_{10}=\left(1-w_{0}\right)\left(1-w_{1}\right) & \theta_{11}=1-\left(1-w_{0}\right)\left(1-w_{1}\right) \\
p(D \mid \mathbf{w})=\prod_{i=1}^{n} \prod_{e=0}^{1} \prod_{c=0}^{1} \theta_{e c}^{\left.I\left(c_{i}=c\right)\right) I\left(e_{i}=e\right)} \\
=\prod_{e=0}^{1} \prod_{c=0}^{1} \theta_{e c}^{N(e, c)}
\end{array}
$$

- Not conjugate ${ }^{2}$

Gridding

- We can compute $\mathrm{p}\left(\mathrm{w}_{0}, \mathrm{w}_{1} \mid \mathrm{D}\right)$ by gridding up the space.

$p(w)$

r(D/W)

$p(w / 0)$
- This is only tractable for 2 parameters.
- In general, need to use Monte Carlo or variational methods.

