CS340 Machine learning QMR

1

Quick Medical Reference

- Probabilistic expert system encoded as a DGM.
- Nodes are binary. Parameters hand-coded.

Inference in QMR

 Infer probability of each disease given observations on subset of symptoms

Complexity of inference

 The disease nodes become dependent in the posterior due to explaining away. Thus exact inference takes O(2^w) time, where w is (lower bounded by) the size of the largest clique of the moralized graph.

Complexity of inference

- The disease nodes become dependent in the posterior due to explaining away. Thus exact inference takes O(2^w) time, where w is (lower bounded by) the size of the largest clique of the moralized graph.
- For QMR, w ~ 151, so exact inference is intractable.

Barren nodes

• We can remove leaves with no evidence, since their CPDs sum to one: $\sum p(x_3|z_1,z_2,z_3) = 1$

This can reduce the size of the cliques in the moral graph.

Quickscore algorithm

- The quickscore algorithm exploits the special structure (noisy-OR: see later) of the symptom CPDs, but still takes O(2^p) time, where p = #positive findings. For QMR, p > 20.
- Many approximate methods have been developed for this model.
- In HW5, you will use exact inference on a small model.

Parameters of the QMR model

Parameter estimation

- Let $D = (X_{ij}, Z_{ik})_{i=1:n, j=1:d, k=1:K}$ be the training data.
- Let us assume no missing data.
- By global parameter independence, the posterior factorizes

$$p(\boldsymbol{\theta}, \boldsymbol{\pi} | D) \propto \prod_{k=1}^{K} p(\pi_k) p(D | \pi_k) \prod_{j=1}^{d} p(\boldsymbol{\theta}_j) p(D | \boldsymbol{\theta}_j)$$

Root CPDs in QMR

- CPDs = conditional probability distribution, P(node|parents)
- Root nodes have Bernoulli distribution, representing base rate of the disease.

$$p(Z_k = 1) = \pi_k$$

Likelihood

• Prior
$$p(D|\pi_k) = \prod_{i=1}^n \pi_k^{I(z_{ik}=1)} (1-\pi_k)^{I(z_{ik}=0)}$$

$$p(\pi_k) = Beta(\pi_k | a_k, b_k)$$

• Posterior

$$p(\boldsymbol{\pi}|D) = \prod_{k} Beta(\pi_{k}|a_{k} + N(Z_{k} = 1), b_{k} + N(Z_{k} = 0))$$
11

Leaf CPDs in QMR

- Let θ_i be the parameters of $p(X_i|pa(X_i))$.
- Representing p(X_j|pa(X_j)) as a table would need 2^{#parents} parameters. Instead we use a noisy-OR parameterization, which has #parents parameters. (Could also use logistic regression.)

Noisy-ORs

- If parent Z_k is on, it will turn on its child X_j .
- But with probability q_{kj}, the "wire" from Z_k to X_j may fail, and the on parent will be inhibited.
- We assume such failures occur independently.
- Deterministic OR corresponds to all q_{ki}=0.

$$p(X_j = 0 | Z_{\pi_j}) = \prod_{k \in \pi_j} q_{kj}^{I(Z_k = 1)} = \prod_{k \in \pi_j: Z_k = 1} q_{kj}$$

+ $+$	Z_1	Z_2	$P(X_j = 0 Z_1, Z_2)$	$P(X_j = 1 Z_1, Z_2)$
	0	0	1	0
	1	0	q_{1j}	$1-q_{1j}$
26	0	1	q_{2j}	$1-q_{2j}$
×.;	1	1	$q_{1j}q_{2j}$	$1 - q_{1j}q_{2j}$

Leak nodes

- Sometimes a child is on even if all its parents are off, since there may be some other "hidden" cause.
- To explain this, we assume every child has an extra "leak" or background parent that is always on. This will turn the child on unless it is inhibited w.p. q_{0i}.

$$p(X_j = 0 | Z_{\pi_j}) = q_{0j} \prod_{k \in \pi_j} q_{kj}^{I(Z_k = 1)}$$

B	Z_1	Z_2	$P(X_j = 0 Z_1, Z_2)$	$P(X_j = 1 Z_1, Z_2)$
1	0	0	q_{0j}	$1 - q_{0j}$
1	1	0	$q_{0j}q_{1j}$	$1-q_{0j}q_{1j}$
1	0	1	$q_{0j}q_{2j}$	$1-q_{0j}q_{2j}$
1	1	1	$q_{0j}q_{1j}q_{2j}$	$1 - q_{0j} q_{1j} q_{2j}$

Alternative parameterization

- q_{kj} = prob k fails to cause j.
- Let $w_{kj} = 1 q_{kj} = prob k$ causes j. Then

$$p(X_j = 1 | Z_{\pi_j}) = 1 - \prod_{k \in \pi_j} q_{kj}^{I(Z_k = 1)}$$
$$= 1 - \prod_{k \in \pi_j} (1 - w_{kj})^{I(Z_k = 1)}$$

Parameter estimation for noisy-ORs

• Consider the case of a single cause and a single effect.

BC
$$P(E=0|C, \mathbf{w})$$
 $P(E=1|C, \mathbf{w})$ 10 $1-w_0$ $1-(1-w_0)$ 11 $(1-w_0)(1-w_1)$ $1-(1-w_0)(1-w_1)$

• We want to estimate w from a contingency table of counts.

	Effect absent $E = 0$	Effect present $E = 1$
Cause absent $C = 0$	N(E=0, C=0)	N(C=0, E=1)
Cause present $C = 1$	N(E=0, C=1)	N(C=1, E=1)

Maximum likelihood estimation

- Let p(e|c) be the empirical probabilities (derived from the counts N(e,c)).
- Let p(e|c,w) be the model-predicted probabilities.
- The MLE is gotten by finding the w that minimizes the KL divergence

$$\mathbf{w} = \arg\min_{\mathbf{w}} KL(p(e|c)||p(e|c,\mathbf{w}))$$

• Hence we require

$$p(e = 1 | c = 1, \mathbf{w}) = p(e = 1 | c = 1)$$

$$p(e = 1 | c = 0, \mathbf{w}) = p(e = 1 | c = 0)$$

"Structure and strength in causal induction", Griffiths and Tenenbaum, Cognitive Psychology, 51:334-384, 2005

MLE for w0

Recall

$$p(e = 1|c, \mathbf{w}) = 1 - (1 - w_0)(1 - w_1)^{I(c=1)}$$

• Set

$$w_0 = p(e=1|c=0) = \frac{N(e=1,c=0)}{N(e=1,c=0) + N(e=0,c=0)}$$

• Then

$$p(e = 1 | c = 0, \mathbf{w}) = 1 - (1 - w_0)$$

= 1 - (1 - p(e = 1 | c = 0)) = p(e = 1 | c = 0)

MLE for w1

Recall

$$p(e = 1|c, \mathbf{w}) = 1 - (1 - w_0)(1 - w_1)^{I(c=1)}$$

• Set

$$w_1 = \frac{p(e=1|c=1) - p(e=1|c=0)}{1 - p(e=1|c=0)}$$
 "causal power"

• Then

$$p(e = 1 | c = 1, \mathbf{w}) = 1 - (1 - w_0)(1 - w_1)$$

= $p(e = 1 | c = 1)$

Derivation left as homework exercise

Bayesian parameter estimation

- Since $0 \le w_j \le 1$, a suitable prior is

$$p(\mathbf{w}) = Beta(w_0|a_0, b_0)Beta(w_1|a_1, b_1)$$

• Likelihood

$$\frac{C | P(E=0|C, \mathbf{w}) - P(E=1|C, \mathbf{w})}{0 | \theta_{00} = 1 - w_0} - \theta_{01} = 1 - (1 - w_0)} \\
\frac{P(D|\mathbf{w}) = \prod_{i=1}^{n} \prod_{e=0}^{1} \prod_{e=0}^{1} \prod_{e=0}^{1} \theta_{ec}^{I(c_i=c))I(e_i=e)} \\
= \prod_{e=0}^{1} \prod_{e=0}^{1} \prod_{e=0}^{1} \theta_{ec}^{N(e,c)}$$

Not conjugate ☺

Gridding

We can compute p(w₀,w₁|D) by gridding up the space.

- This is only tractable for 2 parameters.
- In general, need to use Monte Carlo or variational methods.