
CS340 Machine learning
Naïve Bayes classifiers

Document classification

• Let Y ∈ {1,…,C} be the class label and x ∈ {0,1}d

• eg Y ∈ {spam, urgent, normal},

xi = I(word i is present in message)

• Bag of words model

Words = {john, mary, sex, money, send, meeting, unk}

“John sent money to Mary after the meeting about money”

[1, 1, 0, 2, 0, 1,3]

1 2 3 4 5 6 7

1 7 4 2 7 6 7 4

“john sent money mary after meeting about money”

[1, 1, 0, 1, 0, 1,1]

Stop word removal

Tokenization

Word counting

Thresholding (binarization)

Bayes rule for classifiers

p(y = c|x) =
p(x|y = c)p(y = c)∑
c′ p(x|y = c

′)p(y = c′)

Class prior
Class posterior

Class-conditional density

Normalization constant

Class conditional density p(x|y=c)

• What is the probability of generating a d-
dimensional feature vector for each class c?

• Let us assume we generate each feature
independently (naive Bayes assumption)

• E.g., prob of seeing “send” is assumed to be
independent of seeing “money” given that we know
this is a spam email

• Allows us to use 1 dimensional density models
p(xi|y). Can combine features of different types.

p(x|y = c) =
d∏

i=1

p(xi|y = c)

Count features (multivariate Poisson)

• Suppose Xi ∈ {0,1,2,…} counts the number of times

word i occurs.
• A suitable class-conditional density is

• The likelihood is

Xi|y = c ∼ Poi(λic)

p(x|y = c) ∝
d∏

i=1

e−λicλxiic

0 10 20 30
0

0.5

1
Poi(λ=0.100)

0 10 20 30
0

0.1

0.2

0.3

0.4
Poi(λ=1.000)

0 10 20 30
0

0.05

0.1

0.15

0.2
Poi(λ=10.000)

0 10 20 30
0

0.05

0.1
Poi(λ=20.000)

Count features (multinomial model)

• Let (X1,…Xd) | y=c, N ~ Mult(θc, N)

where N=∑i xi is the number of words in the
document (assumed independent of Y=c).

P (x1, . . . , xd|θc, N) =

(
N

x1 . . . xd

) d∏

i=1

θxiic

=
N !

x1!x2! . . . xd!

d∏

i=1

θxiic

= (
∑

i

xi)!
∏

i

θxiic
xi!

Xi’s no longer conditionally
independent since ∑i xi = N

We also require ∑i θi = 1.

Binary features (multivariate Bernoulli)

• Let Xi|y=c ~ Ber(θic) so p(Xi=1|y=c) = θic

p(x|y = c) =
d∏

i=1

θ
I(xi=1)
ic (1− θic)

I(xi=0)

Which class-conditional density?

• For document classification, the multinomial model
is found to work best. However, we will mostly
focus on the multivariate Bernoulli (binary features)
model, for simplicity.

• We can easily handle features of different types, eg
x1 ∈ {0,1}, x2 ∈ R, x3 ∈ R+, x4 ∈ {0,1,2,…}

• We can use mixtures of Gaussians/ Gammas/
Bernoullis etc. to get more accurate models (see
later).

Class prior

• Let (Y1,..,YC) ~ Mult(π, 1) be the class prior.

• Since ∑c Yc=1, only one bit can be on. This is
called a 1-of-C encoding. We can write Y=c
instead.

• e.g., p(spam)=0.7, p(urgent)=0.1,
p(normal)=0.2

C∑

c=1

πc = 1

P (y|π) =
C∏

c=1

πI(y=c)c = πy

P (y1, . . . , yC |π) =
C∏

c=1

πI(yc=1)c

Y=2 ≡ (Y1,Y2,Y3) = (0,1,0)

Class posterior

• Bayes rule

• Since numerator and denominator are very small
number, use logs to avoid underflow

• How compute the normalization constant?

p(y = c|x) =
p(y = c)p(x|y = c)

p(x)
=
πc
∏d
i=1 θ

I(xi=1)
ic (1− θic)

I(xi=0)

p(x)

log p(x) = log[
∑

c

p(y = c, x)] = log[
∑

c

πcfc]

log p(y = c, x) = log πc +

d∑

i=1

I(xi = 1) log θic + I(xi = 0) log(1− θic)− log p(x)

Log-sum-exp trick

• Define

• In Matlab, use Minka’s function

log(e−120 + e−121) = log
(
e−120(e0 + e−1)

)
= log(e0 + e−1)− 120

S = logsumexp(b)

log p(x) = log[
∑

c

πcfc]

bc = log πc + log fc

log p(x) = log
∑

c

ebc = log

[

(
∑

c

ebc)e−BeB

]

= log

[

(
∑

c

ebc−B)eB

]

=

[

log(
∑

c

ebc−B)

]

+B

B = max
c
bc

logjoint = log(prior) + counts * log(theta) + (1-counts) * log(1-theta);
logpost = logjoint – logsumexp(logjoint)

Missing features

• Suppose the value of x1 is unknown
• We can simply drop the term p(x1|y=c).

• This is a big advantage of generative classifiers
(which specify p(x|y=c)) over discriminative
classifiers (that learn p(y=c|x) directly).

p(y = c|x2:d) ∝ p(y = c, x2:d)

=

∫
p(y = c, x1, x2:d)dx1

= p(y = c)[

∫
p(x1|y = c)dx1]

d∏

i=2

p(xi|y = c)

= p(y = c)

d∏

i=2

p(xi|y = c)

Parameter estimation

• So far we have assumed that the parameters of
p(x|y=c) and p(y=c) are known.

• To estimate p(y=c), we can use MLE or MAP or
fully Bayesian estimation of a multinomial, eg

• We can then use the plug-in approximation

or the posterior predictive

π̂MAP
c =

Nc + αc − 1∑
c′(Nc + αc′ − 1)

p(y|D) ≈
∏

c

π̂I(y=c)c

p(y|D) =
∏

c

πI(y=c)c

Posterior predictive for a multinomial

• Recall that, for the Dirichlet-multinomial model, the
posterior predictive is equivalent to plugging in the
posterior mean parameters, since

p(y = c|D) =

∫
p(y = c|πc)p(πc|D)dπc

=

∫
πcDir(π|α

′

c1, . . . , α
′

cK)dπc

= πc =
Nc + αc
N + α

MLE for Bernoulli features

• We will assume the params for p(x|y=c) are
independent for each class.

• Since we treat each feature separately, we just
count how many times word j occurred in
documents of class c, and divide by the number of
documents of class c

• We can easily add priors to regularize this.

θ̂jc =

∑
i:yi=c

∑
w∈i I(w = j)∑
i:yi=c

1
=
Njc

Nc

Sum over documents i which belong to class c

Sum over words w in document i

Class conditional densities

• At test time, we can either use a plug-in
approximation

or the exact posterior predictive

p(x|y = c,D) ≈
∏

j

θ̂
I(xj=1)
jc (1− θ̂jc)

I(xj=0)

p(x|y = c,D) =
∏

j

θ
I(xj=1)

jc (1− θjc)
I(xj=0)

Naïve Bayes with real-valued features

• If Xj ∈ R, we can use Gaussian class conditional

densities Xj|y=c ~ N(µjc, σjc)

p(x|y = c) =
d∏

j=1

1
√
2πσ2jc

exp(−
1

2σ2jc
(xj − µjc)

2)

Plug-in approximation

• We can compute MLEs for each feature j and class
c separately

• Then we can use a plug-in approximation
p(y = c|x1:d, D) ∝ p(y = c|D)

d∏

j=1

p(xj |y = c,D)

≈ p(y = c|π̂)
d∏

j=1

p(xj |y = c, θ̂jc)

= π̂c
∏

j

N (xj |µ̂jc, σ̂
2
jc)

θ̂jc = (µ̂jc, σ̂
2
jc)

µ̂jc =
1

nc

∑

i:yi=c

xij = xjc

σ̂2jc =
1

nc

∑

i:yi=c

(xij − xjc)
2

Fully Bayesian solution

• If we use conjugate priors, it is simple to derive a
fully Bayesian solution: we just update the hyper-
parameters for each feature j and class c, and then
use the predictive distribution, which is a student T

p(y = c|x1:d,D) ∝ p(y = c|D)
d∏

j=1

p(xj |y = c,D)

= πc
∏

j

t2αjcn

(
xj |µjcn,

βjcn(κjcn + 1)

αjcnκjcn

)

