CS340 Machine learning Lecture 2

Classification and generalization error

Summary of last lecture

- Given training data $\mathrm{D}=\left\{\left(\mathrm{x}_{1} \cdot \mathrm{y}_{1}\right), \ldots,\left(\mathrm{x}_{\mathrm{N}}, \mathrm{y}_{\mathrm{N}}\right)\right\}$
- Choose right hypothesis class H

- Fit parameters θ of function given H and D

$$
f(x, \theta)=\operatorname{sgn}\left(\theta^{T} x\right)=\operatorname{sgn}\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)
$$

- Applications

Notation for inputs (covariates)

- Input is a d-dimensional feature vector $\mathbf{x} \in \mathcal{X}$
- We will frequently omit boldface notation \mathbf{x}
- Sometimes we assume each component (attribute) is a real-valued quantity, so $\mathcal{X}=R^{d}$
- In general, some components may be categorical (eg male, female) or ordinal (eg low, medium, high) or an integer (eg number of arrivals) etc
- We can also have structured inputs, like text documents, DNA sequences or web pages
- In statistics, they use p instead of d, and say "covariate" or "explanatory variable" instead of "input".

Notation for output (response/ target)

- The output is $y \in \mathcal{Y}$
- For classification problems with K mutually exclusive categorical classes, we have $\mathcal{Y}=\{1,2, \ldots, K\}$
- If $\mathrm{K}=2$, this is binary classification.
- We will consider ordinal classes later.
- Sometimes we will use a 1 -of-K binary encoding, e.g., for 3 classes, class $1=(1,0,0)$, class $2=$ $(0,1,0)$, class $3=(0,0,1)$. This allows us to represent non mutually exclusive classes.

Notation for training data

Design matrix

Design matrices

$$
N \gg d
$$

Tall \& skinny

$$
d \gg N
$$

Short \& fat

Notation for training data

- $N=$ number of training examples, $x_{n}=n$ 'th training input, for $n=1: N$. (Notation used by Bishop's book.)
- In statistics, more common to use $\mathrm{n}=$ number of training examples, $x_{i}=i$ 'th example, $i=1: n$.
- Hastie book uses $x_{i}, i=1: N$.

$\mathrm{H}=$ rectangles in the R^{d} plane

learn concept of "healthy levels" of cholestrol x_{1} and insulin x_{2} from positive and negative examples

True concept C (hidden)

Training data D

True concept C (hidden)

Training data D sampled from C

Learning = inferring hidden concept (function)

Too small

Just right

Empirical error

$$
\begin{gathered}
\text { (} \\
N_{e r r}=\sum_{n=1}^{N} I\left(\hat{y}\left(x_{n}\right) \neq y_{n}\right) \\
I(e)= \begin{cases}1 & \text { if } e \text { is is true } \\
0 & \text { if } e \text { is false }\end{cases}
\end{gathered}
$$

Empirical error

$$
\delta(x)= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

False positive

False negative

$$
\begin{aligned}
& N_{f n}=\sum_{n=1}^{N} I\left(\hat{y}\left(x_{n}\right)=0 \wedge y_{n}=1\right)
\end{aligned}
$$

Generalization error

We want to minimize the average error rate, where the test cases are assumed to be sampled from C

$$
\begin{aligned}
E[e r r] & =E_{x, y} I(\hat{y}(x) \neq y) \\
& =\int_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} I(\hat{y}(x) \neq y) p(x, y)
\end{aligned}
$$

But $p(x, y)$ (which defines C) is unknown

Empirical risk minimization

In ERM, we choose f so as to minimize the number of errors on the training set

$$
e \hat{r} r=\frac{1}{N} \sum_{n=1}^{N} I\left(\hat{y}\left(x_{n}\right) \neq y_{n}\right)
$$

We are approximating $p(x, y)$ by just a finite set of samples

$$
p(x, y)=\frac{1}{N} \sum_{n} I\left((x, y)=\left(x_{n}, y_{n}\right)\right)
$$

Version space

There may be many functions which have zero training error, ranging from the most specific hypothesis to the most general. Which one we pick depends on our prior knowledge.

CNF example of version space

- Let $\mathrm{H}=$ formula in conjuctive normal form eg

$$
f=\left(x_{1} \wedge \neg x_{3}\right) \vee\left(x_{2} \wedge x_{4} \wedge \neg x_{5}\right)
$$

- Suppose we have 3 variables and D is given by

- Then the most specific and general hyps are

$$
\begin{aligned}
& S=\left(x_{1} \wedge \neg x_{2} \wedge \neg x_{3}\right) \vee\left(x_{1} \wedge x_{2} \wedge \neg x_{3}\right) \vee\left(\neg x_{1} \wedge x_{2} \wedge \neg x_{3}\right) \\
& G=x_{1} \vee x_{2}
\end{aligned}
$$

Lower bound on achievable error rate

If the true concept (green blob) is a rectangle, we can fit it perfectly, and thus get 0 training error.
But if the truth is more complex, we will just choose the best-fitting rectangularapproximation (blue box) and so Nerr $\neq 0$

Overfitting in rectangle land

- We can always make the empirical error be 0 by putting a little rectangle around every +ve training example.
- But this may not lead to good generalization performance
- Hence we cannot use empirical error to select between models of different complexity

