
Mixture models

Kevin P. Murphy

Last updated November 24, 2006

* Denotes advanced sections that may be omitted on a first reading.

1 Introduction
Most of the density functions we have considered so far areunimodal, that is, they have at most one peak. However,
often we want to be able to represent densities with multiplemodes. A common way to do this is to create amixture
model, which is a convex combination of pdf’s:

p(x) =
K

∑

k=1

πkp(x|k) (1)

whereK is the (fixed) number of mixture component,π is a vector ofmixing weights, andp(x|k) are the densities
for each component. We consider some examples below.

2 Gaussian mixture models
Consider the dataset of height and weight in Figure 1. It is clear that there are two subpopulations in this data set,
and in this case they are easy to interpret: one represents males and the other females. Within each class orcluster,
the data is fairly well represented by a 2D Gaussian (as can beseen from the fitted ellipses), but to model the data as
a whole, we need to use amixture of Gaussians (MoG)or aGaussian mixture model (GMM). This is defined as
follows:

p(x|θ) =

K
∑

k=1

πkN (x|µk, Σk) (2)

whereθ = {πk, µk, Σk} are the parameters. Theπk are called themixing weights, and satisfy0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1. µk andΣk are the mean and covariance of mixture componentk. K is the number of components.
Note that the clusters do not always have an obvious meaning.For example, in Figure 2 we see a dataset which

seems to have two clusters. Discovering the number and shapeof clusters in data is an example ofunsupervised
learning. The programAutoclassuses a Bayesian approach to fit a GMM (which we will explain later), and has been
used to discover new kinds of stars.

A helpful way to think about GMMs is to imagine that each data point xn has an associatedlatent indicator
variable zn ∈ {1, . . . , K} that specifies which mixture component that data point came from. These are like the class
labels in a Bayesian classifier, except we assume the labels are hidden (since this is unsupervised learning). We can
write thecomplete data log likelihoodas

`c(θ) = log p(x1:N , z1:N |θ) (3)

= log
∏

n

p(zn|π)p(xn|zn, θ) (4)

wherep(zn = k|π) = πk is a multinomial, andp(xn|zn = k, θ) = N (xn|muk, Σk) is a Gaussian. This is illustrated
as a DGM in Figure 3.

1

55 60 65 70 75 80
80

100

120

140

160

180

200

220

240

260

280

height

w
ei

gh
t

red = female, blue=male

Figure 1: A scatterplot of height and weight of various men (blue crosses) and women (red circles). We superimpose two 2D
Gaussians, with the 2Σ ellipsoids representing the 95% confidence interval. Produced bybiometric_plot.m .

1 2 3 4 5 6
40

60

80

100

1 2 3 4 5 6
40

60

80

100

Figure 2: The Old Faithful data. Horizontal axis is duration of the erruption in minutes. Vertical axis is time until the next erruption
in minutes. (a) A single Gaussian. (b) A mixture of two Gaussians. Source: [Bis06] Figure 2.21.

The correspondingincomplete data log likelihoodis

`(θ) = log p(x1:N |θ) (5)

=
∑

n

log p(xn|θ) (6)

=
∑

n

log
∑

zn

p(xn, zn|θ) (7)

=
∑

n

log

K
∑

zn=1

π(zn)N (xn|zn, µ(zn), Σ(zn)) (8)

Note that this likelihood function has multiple modes. (In 1D, it hasK modes, but ifd > 1, it can have more thanK
modes [CPW03].) Hence finding the global maximum will be difficult. One can use gradient based methods, or the

2

xn

zn

N

µ Σ

π

Figure 3: A GMM represented as a GMM. Source: [Bis06] Figure 9.6.

0.5 0.3

0.2

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1

Figure 4: A mixture of 3 Gaussians in 2D. (a) We show the contours of constant probability and the mixing weights. (b) A contour
plot of the 2D density. (c) A 3D surface plot of the 2D density.Source: [Bis06] Figure 2.23.

EM algorithm , to find the MLE or an MAP estimate. However, both will get stuck in local minima. We discuss this
in more detail below.

2.1 Kernel density estimation

Given a sufficiently large number of mixture components, a GMM can be used to approximate any density. See
Figure 4 for an example. If we associate a single Gaussian with every datapoint, we get what is called akernel
density estimate (kde)or Parzen window estimate. This is anon parametric density estimator. This does not mean
it does not have parameters, rather it means that the number of parameters grows (linearly) with the number of data
points. Specifically, a kde model has the form

p(x|h) =
1

N

N
∑

n=1

1

hd
k(

x − xn

h
) (9)

wherek(u) is called akernel function and the parameterh is called thebandwidth. In the case that

k(u) = e−||u||2/2 (10)

we recover a GMM where each data point becomes a cluster with meanµn = xn, covarianceΣn = h2Id (so

|Σn|−
1
2 = 1/hd) and mixture weightπn = 1/N . In general we can use any kernel function providedk(u) ≥ 0 and

∫

k(u)du = 1.

3

h = 0.005

0 0.5 1
0

5

h = 0.07

0 0.5 1
0

5

h = 0.2

0 0.5 1
0

5

Figure 5: A nonparametric (Parzen) density estimator in 1D with a Gaussian kernel. The green curve is the true density, and the
blue curve is the approximation using different smoothing parametersh. Source: [Bis06] Figure 2.25.

x

p(x)

Figure 6: Illustration of how singularities can arise in the likleihood function of GMMs. Source: [Bis06] Figure 9.7.

h is called asmoothing parameter, and controls how smooth the resulting density is. See Figure 5 for an example.
It is common to pickh by cross validation.

Although nonparametric models are very flexible, and sometimes easy to fit (e.g., for kde, just memorize all the
data!), they take a a lot of memory and can be slow to use at testtime.

2.2 Reducing the number of parameters in a GMM

The number of parameters in a GMM isO(Kd2), since each covariance matrix hasO(d2) parameters. Although this
is constant with respect toN (since this is a parametric model), it may still be a lot of parameters to estimate ifd is
large. In particular, estimatingΣk can be a problem, since the empirical covariance matrix may not be positive definite.
One common restriction is to assume a diagonal matrix,Σk = diag(σ2

k1, . . . , σ
2
kd). Another even stronger restriction

is to assume a spherical matrix,Σk = σ2
kId. In general, we can useGaussian graphical modelsto represent each

component density using a number of parameters that is anywhere between 1 andO(d2), depending on the conditional
independence assumptions encoded in the graph. We can also impose priors onΣk and use MAP estimates, or the
posterior mean, instead of the MLE.

Orthogonal to the issue of how to representΣk within each cluster is how to represent the dependencies between
the parameters across clusters. A common assumption is thatall the lusters have the same “shape”, i.e.Σk is tied
across classes.

4

2.3 Singularities

There is a fundamental flaw in trying to maximize the likelihood function of a GMM. To understand the problem,
suppose for simplicity thatΣk = σ2

kI, and thatK = 2. It is possible to get an infinite likelihood by assigning one
of the centersµk, sayµj , to a single data point, sayxn, and lettingσj→0, and using the second Gaussian to fit the
remaining data points, since thenth term makes the following contribution to the likelihood:

N (xn|xn, σ2
kI) =

1

(2π)
1
2

1

σj
(11)

Hence we can drive this term to infinity by lettingσj→0. See Figure 6.
There are various heuristics which are used to avoid this situation, such as jumping to a random point in parameter

space ifdet Σk gets too small. A more principled solution is to find a MAP estimate by adding a prior to eachΣk. A
fully Bayesian approach also avoids the problem.

3 Mixture of multivariate Bernoullis

A mixture of Gaussians is appropriate if the data is real-valued,xn ∈ IRd. But what about binary data? For example,
consider clustering the binary images in Figure 7. In this case, we can replace the Gaussian densities with a product
of Bernoullis:

p(x|z = k, θ) =

K
∏

i=1

Be(xi|θki)

K
∏

i=1

xθki

i (1 − xi)
1−θki (12)

This can be represented as a DGM as shown in Figure 8. Note thatthis is the same structure as a naive Bayes classifier,
except that the class labelszn are hidden.

One can show (exericse) that the mean and covariance of this mixture distribution are given by

E[x] =
∑

k

πkµk (13)

Cov[x] =
∑

k

πk[Σk + µkµT
k] − E[x]E[x]T (14)

whereΣk = diag(θki(1 − θki)). Because the covariance matrix is no longer diagonal, the mixture distribution can
capture correlations between variables, unlike a single product of Bernoullis.

Note that this model, unlike the GMM, does not suffer from singularities, because the likelihood function is
bounded above, since0 ≤ p(xn|θk) ≤ 1.

After fitting this model (with EM) to the binary image data, the resulting parameter vectorsθk can be visualized
as gray scale images: see Figure 7(bottom left). If we fit the model using a single mixture component (i.e., a factored
distribution), we get a result which has blurred all the components together.

4 Fitting GMMs with EM
For GMMs, we saw that the log likelihood is

`(θ) =
∑

n

log
K

∑

zn=1

π(zn)N (xn|zn, µ(zn), Σ(zn)) (15)

This is a difficult function to optimize, because the log is outside the sum.
A further problem is that the model is notidentifiable, which means there are many latent settings which have the

same likelihood. Specifically, in a mixture model withK components, then for each setting of the parameterθ, there
areK!− 1 other parameter settings (sayθ′) that have the same likelihood,p(X |θ) = p(X |θ′). This is called thelabel
switching problem. For example, in Figure 1, we might label the male class asZ = 1 and the female asZ = 2, or
vice versa. Of course, not all of these settings are maxima. In 1D, for Gaussians, there areK modes in the likelihood,
although in higher dimensions, there may be more [CPW03].

5

Figure 7: Illustration of the Bernoulli mixture model. Top: 3 kinds ofbinary digits. Each image is a28× 28 binary image, derived
by thresholding the gray scale MNIST digits at 0.5. Bottom: the 3 cluster centers that are learned. Source: [Bis06] Figure 9.10.

Figure 8: Mixture of Bernoullis as a DGM.

One can find a local optimum of`(θ) using a gradient based technique, such as conjugate gradient ascent. However,
this requires setting a step size parameter, and enforcing the constraints that

∑

k πk = 1 and thatΣk are positive
definite. There is an alternative algorithm calledExpectation Maximization (EM) that is often preferred for finding
MLE or MAP estimates of mixture models, because of its simplicity.

The key insight behind EM is this: if we knew the values of the latent variableszn, then optimizing the (complete
data) likelihood wrtθ would be easy: we would simply esimateµk andΣk applying the standard closed-form formula
to all the data assigned to clusterk. Since we don’t know thezn, let’s estimate them, and use theirfilled in values
as substitutes for the real values. More precisely, we will optimize theexpected complete data log likelihood instead
of the actual complete data log likelihood. Since the estimates ofzn depend on the parametersθ, we need to re-
estimate them after each update toθ. This algorithm can be shown to monotonically increase a lower bound on the log
likelihood, and hence it will converge.

In more detail, the EM algorithm is as follows.

1. Initializeθ.

6

2. Repeat until̀ (θ) stops changing

(a) E step: computep(zn|xn, θold) for each casen.

(b) M step: compute
θnew = argmax

θ
Q(θ, θold) (16)

whereauxiliary function Q is the expected complete data log likelihood:

Q(θ, θold) =
∑

z

p(z|x, θold) log p(x, z|θ) (17)

=
∑

z1:N

p(z1:N |x1:N , θold)[
∑

n

log p(xn, zn|θ)] (18)

=
∑

n

∑

zn

p(zn|xn, θold) log p(xn, zn|θ) (19)

(c) Compute the log likelihood
`(θ) = log

∑

n

∑

zn

p(zn, xn|θ) (20)

Because EM will only find a local minimum, good initialization is important. But how to do this is problem
dependent. A general strategy is to trymultiple restarts at random locations.

We now explain how to implement these steps for GMMs. We usually initialize by assigning eachµk to one of the
data points chosen at random, and settingΣk to be a small fraction of the global covariance.

The E step is to compute

p(zn = k|xn, θold) = rnk =
πkN (xn|µk, Σk)

∑

j πjN (xn|µj , Σj)
(21)

The valuernk is called theresponsibility of clusterk for data pointn.
The M step involves maximizing the expected complete data log likelihood:

Q(θ, θold) = E
∑

n

log p(xn, zn|θ) (22)

= E
∑

n

log
∏

k

πkN (xn|µk, Σk)I(zn=k) (23)

= E
∑

n

∑

k

I(zn = k) log[πkN (xn|µk, Σk)] (24)

=
∑

n

p(zn|xn, θold)
∑

k

I(zn = k) log[πkN (xn|µk, Σk)] (25)

=
∑

n

∑

k

rnk log[πkN (xn|µk, Σk)] (26)

=
∑

n

∑

k

rnk log πk +
∑

n

∑

k

rnk logN (xn|µk, Σk)] (27)

= J(π) + J(µk, Σk) (28)

This can be optimized wrtπ andµk, Σk separately. For theπ term, we need to add a Lagrange multiplier to ensure
∑

k πk = 1. Hence we solve
∂

∂πi
[
∑

n

∑

k

rnk log πk + λ(1 −
∑

k

πk)] = 0 (29)

to find

πk =
1

N

∑

n

rnk (30)

7

This makes sense: it is just the (weighted) number of points assigned to clusterk.
For theµk, Σk term, let us expand out the Gaussian:

N (~x|~µ, Σ)
def
=

1

(2π)p/2|Σ|1/2
exp[− 1

2 (~x − ~µ)T Σ−1(~x − ~µ)] (31)

Hence dropping constant terms we have

J(µk, Σk) = − 1
2

∑

n

∑

k

rnk log |Σk| + (xn − µk)T Σ−1(xn − µk) (32)

This is just a weighted version of the standard problem of estimating a MVN. Taking derivatives in the usual way
results in the following

µnew
k =

∑

n rnkxn
∑

n rnk
(33)

Σk =

∑

n rnk(xn − µnew
k)(xn − µnew

k)T

∑

n rnk
(34)

An example of the algorithm in action is shown in Figure 9. We start withµ1 = (−1, 1), Σ1 = I1, µ2 = (1,−1),
Σ2 = I1. We color code points such that blue points come from cluster1 and red points from cluster 2. More precisely,
we set the color to

color(n) = rn1blue+ rn2red (35)

so ambiguous points appear purple. After 20 iterations, thealgorithm has converged on a good clustering. (The data
wasstandardized, by removing the mean and dividing by the standard deviation, before processing. This often helps
convergence.)

5 The K means algorithm
The K-means algorithm is a variant of the EM algorithm for GMMs. It assumes that all the clusters have the same
fixed spherical covariance matrix,Σk = I, which is not updated. Also, in the E step, K-means uses ahard assign-
ment, which means it assigns each data pointzn to the nearest cluster centreµk, rather than computing a weighted
combination of points. This can be seen as a delta function approximation to the posterior (in the context of HMMs,
this is calledViterbi training):

p(zn|xn, θ) ≈ δ(zn − z∗n) (36)

wherez∗n is the cluster thanzn is assigned to (at the current iteration):

z∗n = arg max
k

p(k|xn, θ) (37)

= arg max
k

exp(− 1
2 ||xn − µk||2) (38)

= arg min
k

||xn − µk||2 (39)

Thus the E step just requires finding the Euclidean distance betweenN data points andK cluster centers, which
takesO(NKD) time. This is faster than using full covariance matrices, where the E step takesO(NKD2) time.
Furthermore, since we are just picking a nearest neighbor, various data structures, such askd-trees, can be used to
speed this up in high dimensions [Moo98]. In addition, one can use the triangle inequality to avoid some redundant
computations [Elk03].

The K-means algorithm is faster than EM for GMMs with full covariance matrices, but its results tend to be not as
good, since it cannot model the shape of the clusters (hence it does not learn a distance metric). Also, it is not robust
to ambiguous points that are equidistant between clusters,because it uses hard assignment. (Probabalistic inferencein
the E step would softly assign such ambiguous points to multiple clusters.)

Although k-means is implemented in the Matlab statistics toolbox (function namekmeans), it is a very simple
algorithm, so it is instructive to look at the source code. Below is my “bare bones” implementation. (Thesqdist
function is from Tom Minka’s toolbox.)

8

(a)−2 0 2

−2

0

2

(b)−2 0 2

−2

0

2

(c)

L = 1

−2 0 2

−2

0

2

(d)

L = 2

−2 0 2

−2

0

2

(e)

L = 5

−2 0 2

−2

0

2

(f)

L = 20

−2 0 2

−2

0

2

Figure 9: Illustration of the EM for a GMM applied to the Old Faithful data. Source: [Bis06] Figure 9.8.

function mu = kmeans(data, K, maxIter, thresh)

[N D] = size(data);
% initialization by picking random pixels
% mu(k,:) = k’th center
perm = randperm(N);
mu = data(perm(1:K),:);

converged = 0;
iter = 1;
while ˜converged & (iter < maxIter)

newmu = zeros(K,D);
% dist(i,k) = squared distance from pixel i to center k
dist = sqdist(data’, mu’);
[junk, assign] = min(dist,[],2);
for k=1:K

newmu(k,:) = mean(data(assign==k,:), 1);
end
delta = abs(newmu(:) - mu(:));
if max(delta./abs(mu(:))) < thresh

converged = 1;
end
mu = newmu;
iter = iter + 1

end

if ˜converged
error(sprintf(’did not converge within %d iterations’, ma xIter))

end

%%%%%%%%%%

function m = sqdist(p, q, A)
% SQDIST Squared Euclidean or Mahalanobis distance.

9

% SQDIST(p,q) returns m(i,j) = (p(:,i) - q(:,j))’*(p(:,i) - q(:,j)).
% SQDIST(p,q,A) returns m(i,j) = (p(:,i) - q(:,j))’*A*(p(:,i) - q(:,j)).

% From Tom Minka’s lightspeed toolbox

[d, pn] = size(p);
[d, qn] = size(q);

if nargin == 2
pmag = sum(p . * p, 1);
qmag = sum(q . * q, 1);
m = repmat(qmag, pn, 1) + repmat(pmag’, 1, qn) - 2 * p’ * q;
%m = ones(pn,1)*qmag + pmag’*ones(1,qn) - 2*p’*q;

else
if isempty(A) | isempty(p)

error(’sqdist: empty matrices’);
end
Ap = A* p;
Aq = A* q;
pmag = sum(p . * Ap, 1);
qmag = sum(q . * Aq, 1);
m = repmat(qmag, pn, 1) + repmat(pmag’, 1, qn) - 2 * p’ * Aq;

end

TheK centersµk learned by K-means are often called acodebook. This can then be used for discretizing data.
This is calledvector quantization (VQ). The idea is that each new data pointx is replaced by its nearestprototype
µk. The result is a set ofN discrete symbols. This can take much less space to store thanthe original data, and
is therefore an example oflossy data compression. For example, consider the image in Figure 10(a). This is a
N = 512 × 512 = 262, 144 pixel image, and each pixel is represented by three 8-bit numbers (each ranging from
0 to 255) that represent the green, red and blue intensity values for that pixel. The straightforward representation of
this image therefore takes about24N = 6, 291, 456 bits. We applied vector quantization to this usingK = 5, 10, 15
codewords using the code below.

% vqDemo

% Learn code book on small image (for speed)
A = double(imread(’mandrill-small.tiff’));
figure; imshow(uint8(round(A)));
[nrows ncols ncolors] = size(A);
% data(i,:) = rgb value for pixel i
data = reshape(A, [nrows * ncols ncolors]);
maxIter = 100; % usually converges long before 100 iterations!
thresh = 1e-2;
K = 15;
mu = kmeansKPM(data, K, maxIter, thresh);

% Apply codebook to quantize large image
B = double(imread(’mandrill-large.tiff’));
imshow(uint8(round(B)));
[nrows ncols ncolors] = size(B);
data = reshape(B, [nrows * ncols ncolors]);
[N D] = size(data);
dist = sqdist(data’, mu’);
[junk, assign] = min(dist,[],2);
qdata = zeros(size(data));
for k=1:K

ndx = find(assign==k);
Nassign = length(ndx);
qdata(ndx, :) = repmat(mu(k,:), Nassign, 1);

end
Qimg = reshape(qdata, [nrows ncols ncolors]);
figure; imshow(uint8(round(Qimg)));
title(sprintf(’K=%d’,K))

The results are shown in Figure 10. We needdlog2 Ke bits to represnt each pixel (to specify which codebook entry
to use), plus24K bits to represent theµk themselves, totalling24K + N log2 K. If K = 5, the total space is 608,800
bits, which is about 10 times smaller. Greater compression could be achieved if we modelled spatial correlation
between the pixels, e.g., if we encoded 5x5 blocks (as used byJPEG). For more information machine learning and
data compression, see [Mac03].

When using Euclidean distance, as above, these centers are averages of the data points. For spaces in which such

10

K=5

(a) (b)
K=10 K=15

(c) (d)

Figure 10: A color image compressed using vector quantization with a codebook of sizeK. (a) Original. (b)K = 5. (c) K = 10.
(d) K = 15. Best viewed in colour. Produced byvqDemo.m.

averaging does not make sense, it is possible to replace the Euclidean distance measure by some other measure of
similarity/ distance,V (xn, µk), so the E step becomes

z∗n = argmin
k

V (xn, µk) (40)

In the M step, we search over allNk points assigned to clusterk to find the one with minimum distance to all the
others, and that is chosen as the prototypeµk. This algorithm is called theK-medoidsalgorithm.

6 EM variants
It is straightforward to modify EM to find MAP estimates instead of MLEs. Simply modify the M step to optimize

EZ log p(Z, x|θ) + log p(θ) (41)

Thep(θ) term acts like aregularizer.
In the derivation of the M step for the GMM model, the new estimate ofΣk relies on the newµk, but not vice

versa, so we can solve them in sequence. If we have parametersthat are mutually dependent, we can either optimize
them jointly, or optimize them iteratively, one at a time; the latter is calledexpectation conditional maximization
(ECM) .

Sometimes we cannot find the maximum ofQ in closed form. In such cases, we may perform a partial maximiza-
tion, i.e., we findθnew st Q(θnew, θold) > Q(θold, θold). This is called thegeneralized EM (GEM) algorithm.

When we have a lot of data (N is large), computingp(zn|xn, θ) for all n can be slow. In addition, it may be
unncessary, since this estimate is likely to be poor if the parameters are bad (as they are initially). Hence we may take

11

amini batch of data, and just sum up over the casen in each batch. A batch size ofb = 10 is common. This allows us
to update the parameters more frequently. This version is called incremental EM. The special case ofb = 1 is called
stochastic EM, since we are approximatingE log p(x, Z|θ) by drawing a single data point.

In many models, computingp(zn|xn, θ) is intractable, because there are too many hidden variables, or their pos-
terior is hard to compute. One approach is to use sampling to approximatep(zn|xn, θ). This version is calledMonte
Carlo EM (not to be confused with stochastic EM!).

7 Estimating the number of mixture components
How do we chooseK, the number of mixture components? Maximum likelihood willalways favor the largest possible
value ofK, since that gives the greatest number of parameters and maximizes the ability to fit the data. But this may
result in overfitting. A simple alternative is to usecross validation, i.e., to find the value ofK that maximizes the
log likleihood of a validation set. Alternatively, we couldtry to find theK that maximizes some kind ofpenalized
likelihood function . One example is theBayesian information criterion (BIC) score, defined as

BIC(θ) = log p(D|θ̂ML) − d

2
log N (42)

whered is the “dimensionality” of the model, andN is the number of data cases. For simple models,d is the number of
free parameters, but computingd for latent variable models is more difficult, since the parameters are not independent.
A similar objective function is theAkaike information criterion (AIC) , defined as

AIC(θ) = log p(D|θ̂ML) − d (43)

Arguably the most conceptually elegant approach is to useBayesian model selection, in which we compute the
posterior overK:

p(K = k|D) ∝ p(K = k)p(D|K = k) (44)

= p(K = k)

[
∫

p(D, θ|K = k)dθ

]

(45)

Unfortunately, computing the marginal likelihood term inside the brackets can be computationally expensive. How-
ever, one can use fast deterministic approximations, such asvariational Bayes[Bis06].

The Bayesian approach offers an even more appealing strategy, which is to allow an “infinite” (i.e., unbounded)
number of components, since in most applications we don’t really believe there is a “true” number of clusters. By
integrating over the parameters, such an infinite model willnot overfit. As the data set gets larger and more hetero-
geneous, the number of components grows automatically. This can be modelled usingDirichlet process mixture
models[Ras00], which is an example of anon-parametric Bayesian model.

8 Hierarchical clustering
GMMs can be used to perform clustering, but the clustering is“flat”. Often we want to learn hierarchical clusters. The
most popular approach is to useagglomerative clustering, which we will describe below.

Agglomerative clustering starts withN groups, each initially containing one training instance, merging similar
groups to form larger groups, until there is a single group. This takesO(N2) time. At each iteration of an agglomera-
tive algorithm, we choose the two closest groups to merge.

In single link clustering, the distance between two groups is defined as the distance between the two closest
members of each group:

DSL(Gi, Gj) = min
xr∈Gi,xs∈Gj

D(xr , xs) (46)

whereD(xr, xs) is a distance measure between two feature vectors, such as Euclidean distance or thecity block
distance

Dcb(x
r, xs) =

d
∑

i=1

|xr
i − xs

i | (47)

12

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1

2

3

4

5 6

3 4 6 1 2 5

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Figure 11: An example of single link clustering. Figure generated using agglomDemo.m .

In complete link clustering, the distance between two groups is defined as the distance between the two most distant
pairs:

DCL(Gi, Gj) = max
xr∈Gi,xs∈Gj

D(xr , xs) (48)

Another option isaverage link clustering, which measures the average distance between all pairs.
The order in which groups are merged can be represented as adendrogram. For example, in Figure 11, we see an

example of single link clustering (using Euclidan distance) applied to a 2D dataset. Initially each group contains one
item. The closest groups are1, 2 and3, 4 (both distance 1 apart), which get merged at step 1. At the next iteration,
the1, 2 group gets merged with the5 group (distance

√
2 = 1.41). Then the3, 4 group merges with6 (distance 2).

The order of these events is shown in the tree on the right. Onecan then “cut” the tree at any height to get a desired
number of groups. (Note that the tree built using single linkclustering is theminimal spanning treeof the data.)

In Matlab, you can perform agglomerative lustering using the statistics toolbox using thelinkage command
(which defaults to single link). For example, you can reproduce Figure 11 using the code below.

% agglomDemo

X = [1 3;
1 4;
5 2;
5 1;
2 2;
7 2];

figure;clf
axis on
grid on
N = size(X,1);
for i=1:N

hold on
h=text(X(i,1)-0.1, X(i,2), sprintf(’%d’, i));
set(h,’fontsize’,15,’color’,’r’)

end
axis([0 8 0 5])

Y= pdist(X); % Euclidean distance
Z = linkage(Y); % single link
dendrogram(Z)

Note that agglomerative clustering is an algorithm, not a model, whereas GMM is a model, not an algorithm.
Model based clusteringhas many advantages: the objective function (likelihood) is clearly defined (and can can be
optimized via various algorithms, such as EM, gradient ascent); the model can be easily combined with other proba-

13

bilistic models, such as PCA; one can compute the predictivedistribution and do model comparison, etc. Surprisingly,
there has been very little work on probabilistic hierarchical clustering models (but see [HG05] for a recent Bayesian
approach).

References
[Bis06] C. Bishop.Pattern recognition and machine learning. Springer, 2006.

[CPW03] M. Carreira-Perpinan and C. Williams. An isotropicgaussian mixture can have more modes than compo-
nents. Technical Report EDI-INF-RR-0185, School of Informatics, U. Edinburgh, 2003.

[Elk03] C. Elkan. Using the triangle inequality to accelerate k-means. InIntl. Conf. on Machine Learning, 2003.
[HG05] K. Heller and Z. Ghahramani. Bayesian Hierarchical Clustering. InIntl. Conf. on Machine Learning, 2005.

[Mac03] D. MacKay.Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.
[Moo98] Andrew W. Moore. Very fast EM-based mixture model clustering using multiresolution kd-trees. InNIPS-

11, 1998.
[Ras00] C. Rasmussen. The infinite gaussian mixture model. In NIPS, 2000.

14

