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1 Introduction

Information theory is concerned with two main tasks. The first task is calleddata compression (source coding).
This is concerned with removing redundancy from data so it can be represented more compactly (either exactly, in
a lossless way, or approximately, in a lossy way). The secondtask iserror correction (channel coding), which
means encoding data in such a way that it is robust to errors when sent over a noisy channel, such as a telephone line.
It turns out that the amount by which you can compress data, and the amount of redundancy you need to add to a
message before transmission, are both closely related to how predictable the source of data is, i.e., to its probability
distribution. Hence there is a deep connection between information theory and statistics/ machine learning (indeed,
there is an excellent book on this topic [Mac03]). In this chapter, we introduce some of the key information-theoretic
measures of uncertainty and statistical dependence, such as entropy and mutual information.

2 Basic concepts

2.1 Data encoding

Suppose we want to encode some data, such as a text document. How much space (i.e., number of bits) does this take?
It depends on the encoding scheme which we use for words, and on how often each word occurs (on average).

Let us consider a simple example. Suppose we want to encode a “sentence” that consists of the 5 letters{a, b, c, d, e}.
We needdlog2 5e = 3 bits to represent each letter. A simple encoding scheme is asfollows:

a→000, b→001, c→010, d→011, e→100 (1)

So the string “abcd” gets encoded as
abcd→000, 001, 010, 011 (2)

It is clear that we need3N bits to encode a string of lengthN . (Note that to decode this, it is critical that we know
each codeword has length 3, since in practice we write the bitstring without the commas. We will discuss this more
below.)

Now suppose some letters are more common than others. In particular, suppose we have the distribution

p(a) = 0.25, p(b) = 0.25, p(c) = 0.2, p(d) = 0.15, p(e) = 0.15 (3)

Intuitively, we can use fewer bits by assigning short codewords, such as 00 and 10, to common letters such asa andb,
and long codewords, such as 011, to rare letters such ase. In particular, consider the following encoding scheme:

a→00, b→10, c→11, d→010, e→011 (4)
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Figure 1: An illustration of a prefix-free code.

This encoding scheme isprefix-free, which means that no codeword is a prefix of any other: see the tree in Figure 1.
Hence when we concatenate any sequence of codewords, we can uniquely decode the answer by repeatedly traversing
paths in the tree, e.g.

001011010→00, 10, 11, 010→abcd (5)

The average number of bits that are used by this encoding scheme is given by

0.25 ∗ 2 + 0.25 ∗ 2 + 0.2 ∗ 2 + 0.15 ∗ 3 + 0.15 ∗ 3 = 2.30 (6)

Since 2.3 is less than 3, we have produced a shorter code, which saves space (and transmission time). How low can we
go? Shannon proved that the expected number of bits needed toencode a message is lower bounded by theentropy
of the probability distribution governing the data. (This is called thesource coding theorem.) We discuss what we
mean by entropy below.

2.2 Huffman coding*

There is a very simple and elegant algorithm for generating optimal symbol codes. The idea is to assign code words to
symbols in the alphabet by building the binary tree up from the leaves. Start by simply taking the least two probable
symbols in the alphabet and assinging them the longest codeword, which differ by 0 or 1; then merge these two
symbols into a single symbol and repeat. Figure 2 gives an example.

In the example above, the Huffman code gives an expected number of bits of 2.30, whereas the entropy isH =
2.2855 bits (as we will see below). To achieve this lower bound requires that we give up the notion of using an integer
number of bits per symbol; this results in what is calledarithmetic coding. In practice this means we must encode
group of symbols at a time (since we can’t send fractional bits). See [Mac03] for details.

2.3 Entropy

Consider a discrete random variableX ∈ {1, . . . , K}. Suppose we observe the event thatX = k. We define the
information content of this event as

h(k) = log2 1/p(X = k) = − log2 p(X = k) (7)

The idea is that unlikely events (with low probability) convey more information. Theentropy of a distributionp is
defined as the average information content of a random variable X with distributionp:

H(X) = −
K
∑

k=1

p(X = k) log2 p(X = k) (8)
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Figure 2: An example of Huffman coding. Source: [Mac03] p99.

Figure 3: Some probability distributions onX ∈ {1, 2, 3, 4}. Left: a uniform distributionp(x = k) = 1/4. Right: a
degenerate distributionp(x) = 1 if x = 1 andp(x) = 0 if x ∈ {2, 3, 4}.

For example, ifX ∈ {1, . . . , 5} with distribution

p(a) = 0.25, p(b) = 0.25, p(c) = 0.2, p(d) = 0.15, p(e) = 0.15 (9)

we findH = 2.2855. For aK-ary random variable, the entropy if maximized ifp(x = k) = 1/K, i.e, the uniform
distribution. In this case,H(X) = log2 K. The entropy is minimized (H = 0) if p(x) = δ(x − x∗) for somex∗, i.e.,
for a deterministic distribution. See Figure 3.

For the special case of binary random variables,X ∈ {0, 1}, we can writep(X = 1) = θ andp(X = 0) = 1 − θ.
Hence the entropy becomes

H(X) = −[p(X = 1) log2 p(X = 1) + p(X = 0) log2 p(X = 0)] (10)

= −[θ log2 θ + (1 − θ) log2(1 − θ)] (11)

This is called the binary entropy function, and is also writtenH(θ), to emphasize that it is a function of the distribution
(parameter)θ, rather than the random variableX . We plot this in Figure 4. We see that the maximum value is
H(X) = 1 which occurs when the distribution is uniformθ = 0.5:

−[
1

2
log2

1

2
+ (1 − 1

2
) log2(1 − 1

2
)] = − log2

1

2
= 1 (12)
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Figure 4: Entropy of a Bernoulli random variable as a function of p(X = 1) = θ. The maximum entropy islog2 2 = 1.
Source:http://en.wikipedia.org/wiki/Information_entropy.

2.4 Joint entropy

The joint entropy of two random variablesX andY is defined as

H(X, Y ) = −
∑

x,y

p(x, y) log2 p(x, y) (13)

If X andY are independent, thenH(X, Y ) = H(X) + H(Y ). In general, one can show (see Section 2.7.3) that

H(X, Y ) ≤ H(X) + H(Y ) (14)

For example, consider choosing an integer from 1 to 8,n ∈ {1, . . . , 8}. Let X(n) be the event thatn is even, and
Y (n) be the event thatn is prime.

n 1 2 3 4 5 6 7 8
X 0 1 0 1 0 1 0 1
Y 0 1 1 0 1 0 1 0

Clearly p(X = 1) = p(X = 0) = 0.5, so H(X) = 1; similarly H(Y ) = 1. However, we will show that
H(X, Y ) < H(X) + H(Y ), since the events are not independent.

The joint probability distribution is
p(X, Y ) 0 1
0 1

8

3

8

1 3

8

1

8

so the joint entropy is given by

H(X, Y ) = −[
1

8
log2

1

8
+

3

8
log2

3

8
+

3

8
log2

3

8
+

1

8
log2

1

8
] = 1.8113 (15)

SoH(X, Y ) < H(X) + H(Y ).
What is the lower bound onH(X, Y )? Clearly

H(X, Y ) ≥ H(X) ≥ H(Y ) ≥ 0 (16)

whereH(X, Y ) = H(X) iff Y is a deterministic function ofX . Intuitively this says that combining two systems can
never reduce the overall uncertainty.
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2.5 Conditional entropy

Theconditional entropy of Y givenX is the expected uncertainty we have inY after seeingX :

H(Y |X)
def
=

∑

x

p(x)H(Y |X = x) (17)

= −
∑

x

p(x)
∑

y

p(y|x) log p(y|x) (18)

= −
∑

x,y

p(x, y) log p(y|x) (19)

= −
∑

x,y

p(x, y) log
p(x, y)

p(x)
(20)

= −
∑

x,y

p(x, y) log p(x, y) −
∑

x

p(x) log
1

p(x)
(21)

= H(X, Y ) − H(X) (22)

If X completely determinesY , thenH(Y |X) = 0. If X andY are independent, thenH(Y |X) = H(Y ). Since
H(X, Y ) ≤ H(Y ) + H(X), we have

H(Y |X) ≤ H(Y ) (23)

with equality iff X andY are independent. This shows that conditioning on data always decreases (or rather, never
increases) ones uncertainty,on average.

2.6 Mutual information

Themutual informatio n betweenX andY is how much our uncertainty aboutY decreases when we observeX (or
vice versa). It is defined as

I(X ; Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log
p(x, y)

p(x) p(y)
(24)

It can be shown (exercise: just plug in the definitions) that this is equivalent to the following:

I(X, Y ) = H(X) − H(X |Y ) (25)

= H(Y ) − H(Y |X) (26)

SubsitutingH(Y |X) = H(X, Y ) = H(X) yields

I(X, Y ) = H(X) + H(Y ) − H(X, Y ) (27)

Hence

H(X, Y ) = (H(X, Y ) − H(Y )) + (H(X, Y ) − H(X)) + (H(X) + H(Y ) − H(X, Y )) (28)

= H(X |Y ) + H(Y |X) + I(X, Y ) (29)

See Figure 5.
Mutual information measures dependence between random variables in the following sense:I(X, Y ) ≥ 0 with

equality iff X ⊥ Y . (The proof thatI(X, Y ) = 0 if X andY are independent is easy; the proof thatI(X, Y ) =
0 =⇒ X ⊥ Y is harder: see Section 2.7.3. ) IfY = X , then the mutual information is maximal, and equal
to H(X) ≤ log2 K. Mutual information is similar in spirit to acorrelation coefficient, but is much more general,
because correlation only captures linear dependencies. Thus two variables may have a correlation coefficient of 0,
even though they are (nonlinearly) related. However, theirmutual information will never be zero in this case. (We will
study correlation coefficients later in the context of linear regression.)
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Figure 5: The relationship between joint entropy, marginalentropy, conditional entropy and mutual information..
Source: [Mac03].

Let us continue with the example above concerning prime and even numbers. Recall thatH(X) = H(Y ) = 1.
The conditional distributionp(Y |X) is given by normalizing each row:

p(Y |X) 0 1
0 1

4

3

4

1 3

4

1

4

Hence the conditional entropy is

H(Y |X) = −[
1

8
log2

1

4
+

3

8
log2

3

4
+

3

8
log2

3

4
+

1

8
log2

1

4
] = 0.8113 (30)

and the mutual information is

I(X, Y ) = H(Y ) − H(Y |X) = 1 − 0.8113 = 0.1887 (31)

Note that it is sometimes useful to use theconditional mutual information , defined as

I(X ; Y |Z) = H(X |Z)− H(X |Y, Z) (32)

2.7 Relative entropy (KL divergence)

If X represents all possible (fixed-length) sentences in English, or all possible (fixed-sized) images, the true probability
distributionp(X) will be quite complicated. But the more accurate our model ofthis, call itq(X), the fewer the number
of bits we will need to encode data from this source. (Hence learning better models of data results in better codes.)
The quality of our approximation is captured in the notion ofKullback-Leibler (KL) divergence , also calledrelative
entropy.

The KL divergence is very important “distance” measure between two distributions,p and q. It is defined as
follows

D(p||q) def
=
∑

k

pk log
pk

qk

(33)

It is not strictly a distance, since it is asymmetric. The KL can be rewritten as

D(p||q) =
∑

k

pk log pk −
∑

k

pk log qk = −
∑

k

pk log qk − H(p) (34)

where
∑

k pk log qk is called thecross entropy. This makes it clear that the KL measures the extra number of bits we
would need to use to encodeX if we thought the distribution wasq but it was actuallyp.
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2.7.1 Minimizing KL divergence to the empirical distributi on is maximizing log likelihood

SinceD(p||q) measures the distance between the true distributionp and our approximationq, we would like to mini-
mize this. Letp be the empirical distribution of the dataD

p(x) =
1

N
I(x ∈ D) =

1

N

N
∑

n=1

δ(x − xn) (35)

which assigns mass1/N if x equals one of the training pointsxi, and 0 mass otherwise. Then the KL becomes

KL(p||q) =
∑

x∈D

1

N
log

1/N

q(x)
= − 1

N

∑

x∈D

log q(x) + const (36)

Hence

q̂ = argmin
q

KL(p||q) = argmax
q

1

N

∑

n

log q(xn) (37)

In otherwords, the distribution that minimizes the KL to theempirical distribution is the maximum likelihood distri-
bution. In practice, instead of optimizing the functionq, we optimize its parametersθ:

θ̂ = argmax
θ

1

N

∑

n

log q(xn|θ) (38)

2.7.2 Mutual information as KL divergence

The KL can be used to compare a joint distribution with a factored distribution. This quantity is called themutual
information betweenX andY , and is defined as

I(X, Y )
def
= D(P (X, Y )||P (X)P (Y )) (39)

It is easy to show (exercise) that this gives the same resultsas before, namely

I(X, Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X) = H(X) + H(Y ) − H(X, Y ) (40)

2.7.3 KL is always non-negative *

KL satisfiesD(p||q) ≥ 0 with equality iff p = q. The fact thatD(p||q) = 0 if p = q is easy to see, since we have
terms of the formlog p(x)/q(x) = log 1 = 0. We will now show KL is always positive.

Recall that aconcavefunctionf is one which lies above any chord

f(λx1 + (1 − λ)x2) ≥ λf(x1) + (1 − λ)f(x2) (41)

where0 ≤ λ ≤ 1. Intuitively this an inverted bowl: see Figure 6. A functionf is convexif −f is concave (aU bowl).
Jensen’s inequalitystates that, for anyconcave functionf ,

E[f(X)] ≤ f(E[X ]) (42)

i.e.,
∑

x

p(x)f(x) ≤ f(
∑

x

p(x)) (43)

This can be proved by induction by settingλ = p(x = 1) and1 − λ =
∑K

x=2
p(x); the base case uses the definition

of concavity.
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Figure 6: An illustration of a concave function (log x).

To prove thatD(p||q) ≥ 0, let u(x) = p(x)/q(x) andf(u) = log 1/u be a convex function. Then

D(p||q) = E[f(q(x)/p(x))] (44)

≥ f

(

∑

x

p(x)
q(x)

p(x)

)

(45)

= log(
1

∑

x q(x)
) = 0 (46)

From this it follows that
I(X, Y ) = D(p(x, y)||p(x)p(y)) ≥ 0 (47)

and hence
H(X) + H(Y ) ≥ H(X, Y ) (48)

as claimed above.

2.7.4 Forward and reverse KL divergences *

If qk = 0 thenD(p||q) = ∞ unlesspk = 0 also. Hence to minimizeD(p||q), q should “cover”p. For example, if
p is the empirical distribution of the training set, thenq should not assign zero probability to anything in the training
set. When studying variational inference, it is more commonto optimizeD(q||p) with respect toq, since this is
computationally cheaper (by assumption we can take expectations wrtq but not wrtp). But to minimizeD(q||p), we
needqk = 0 wheneverpk = 0; henceq should be “under” one ofp’s modes. See Figures 7 and 8 for an illustration of
these differences, which will become important later in thebook.

Note that finding a distributionq to minimizeD(p||q) is hard, since it requires computing expectations wrtp,
which by assumption is a complex distribution (otherwise wewouldn’t need to approximate it). Findingq to minimize
the “reverse” KLD(q||p) is relatively straightforward, however.

2.8 Information theoretic quantities for continuous data *

If X is a continuous random variable with pdfp(x), we define thedifferential entropy as

h(X) = −
∫

S

p(x) log p(x)dx (49)

whereS is the support of the random variable. (We assume this integral exists.)
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D(q, p)
D(p, q)

Figure 7: Left: MinimizingD(q||p) picks one of the modes ofp. Right: minimizingD(p||q) tries to globally “cover”
p.

Figure 8: Blue: the true distributionp is a mixture of 2 Gaussians. Red: the approximating distribution q. Left: mini-
mizingD(p||q) leads to a broad distribution. Middle: minimizingD(q||p) picks the bottom mode; Right: minimizing
D(q||p) can also pick the top mode. Source: [Bis06] Fig 5.4.
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For example, supposeX ∼ U(0, a). Then

h(X) = −
∫ a

0

1

a
log

1

a
dx = log a (50)

Unlike the discrete case, differential entropy can be negative: if a < 1, we haveh(X) < 0.
As another example, supposeX ∼ N (0, σ2), so

p(x) = (1/
√

2πσ2) exp(−x2/2σ2) (51)

Hence the differential entropy is

h(X) = −
∫

∞

−∞

p(x) (52)

= −
∫

p(x)[− x2

2σ2
− log

√
2πσ2] (53)

=
EX2

2σ2
+

1

2
log 2πσ2 (54)

=
1

2
+

1

2
log 2πσ2 (55)

=
1

2
log e +

1

2
log 2πσ2 (56)

=
1

2
log 2πeσ2 (57)

= log(σ
√

2πe) (58)

If we use log basee, the units are called “nats”. If we use log base 2, the units are called bits. A list of dif-
ferential entropies for various univariate distributionscan be found athttp://en.wikipedia.org/wiki/
Differential_entropy. However, in general, for non-standard distributions, especially multivariate ones, the
most common approach is todiscretize (quantize)the data (we discuss techniques to do this later), and then use
discrete entropy. (See [LM04] for an interesting alternative that bypasses the density estimation step.)

2.9 Entropy rates of a stochastic process *

A stochastic processis an indexed sequence of random variablesp(X1, . . . , XD). A Markov chain is a simple
example. In this case,

p(X1, . . . , XD) = p(X1)
D
∏

i=2

p(Xi|Xi−1) (59)

Theentropy rate of a stochastic process{Xi} is a measure of its predictability, and is defined as

H(X ) = lim
D→∞

1

D
H(X1, . . . , XD) (60)

when the limit exists. For example, supposeX1, . . . , XD are iid. Then

H(X ) = lim
D→∞

1

D
H(X1, . . . , XD) =

DH(X1)

D
= H(X1) (61)

which is just the entropy rate per symbol.
An alternative definition of the entropy rate is

H ′(X ) = lim
D→∞

H(XD|X1, . . . , XD−1) (62)
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One can show that for a stationary stochastic process, the limits in both definitions exist and are equal, i.e.,H(X ) =
H ′(X ) (see [CT91]). For example, suppose{Xi} is a stationary Markov chain with stationary distributionπ and
transition matrixT . Then the entropy rate is

H(X ) = limH(XD|XD−1, . . . , XD) (63)

= limH(XD|XD−1) (64)

= H(X2|X1) (65)

=
∑

j

p(X1 = j)H(X2|X1 = j) (66)

=
∑

j

π(j)[−
∑

k

p(X2 = k|X1 = j) log p(X2 = k|X1 = j)] (67)

= −
∑

j

π(j)
∑

k

T (j, k) logT (j, k) (68)

For example, for a 2 state chain with transition matrix

T =

(

1 − α α
β 1 − β

)

(69)

and stationary distribution

π1 =
β

α + β
, π2 =

α

α + β
, (70)

we have that the entropy rate is

H(X ) =
β

α + β
H(α) +

α

α + β
H(β) (71)

whereH(α) is the binary entropy function.

3 Applications of information theory in machine learning

3.1 Model selection using minimum description length (MDL)

To losslessly send a message about an eventx with probabilityp(x) takesL(x) = − log2 p(x) bits. Suppose instead
of sending the raw data, you send a modelH and then send the residual errors (the parts of the data not predicted by
the model). This takesL(D, H) bits:

L(D, H) = − log p(H) − log p(D|H) (72)

The best model is the one with the overall shortest message. This is called theminimum description length (MDL)
principle, and is essentially the same asOccam’s razor. See Figure 9 for an illustration, and [RY00] for more details.

Note that MDL is essentially equivalent to MAP estimation (which is an approximation to full Bayesian inference),
since the MAP model is given by the one with maximum (log) posterior

log p(h|D) = log p(h) + log p(D|h) + const (73)

Since there is a 1:1 mapping between coding length and probabilities, choosing between the MDL approach and the
Bayesian approach it is mostly a question of convenience. For example, sometimes it is easier to think of the cost of
encoding a model than to define a prior on models. However, in the Bayesian approach one can perform Bayesian
model averaging, which, in terms of predictive accuracy, isalways better than (or at least as good as) picking the single
best model.
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#bits for data

#bits for model

#bits total

best model

Figure 9: An illustration of the MDL principle. We plot number of bits versus model complexity. The model for which
the total number of bits,L(D, H) is minimal, is assumed to have lowest generalization error.

Figure 10: An illustration of active learning. Left: current information state, with A, B, C and D unlabeled. Right:
possible “true” state, where the positives are “sandwiched” between negative examples.

3.2 Active learning

Consider the problem of learning a classifier. Suppose some of the data points are labeled, but others are unlabeled.
(This is an example ofsemi-supervised learning.) Now suppose we are allowed to ask for the labels of one or more
points. (This is calledactive learning.) Which points should we query?

Consider the example in Figure 10(left). Suppose we can choose to get the label for points A,B,C or D. Intuitively,
it seems likely that A is positive (since itsnearest neighborsare positive) and that C is negative. We might imagine
there is a “dividing line” (separating hyper-plane) between the positive and negative points, in which case B would be
positive and D negative. In this case, we don’t need to ask formore labels, we have correctly learned the “concept”.

But what if the true situation is more like Figure 10(right),where the positives are “sandwiched” between the
negatives? If this kind of hypothesis is also in our hypothesis class (i.e., we entertain the possibility that the data could
be separated into +-, or could be sandwiched -+-), then we will be very uncertain about the labels ofB, since our
prediction will be a mixture of these two hypotheses. Hence the entropy of our prediction atB will be higher than at
any other point:

H(p(y|x = B,D)) ≥ H(p(y|x′,D)), x′ ∈ {A, C, D} (74)

wherep(y|x = B,D) is the probability distribution over labels at locationB given the training dataD. (Arguably we
are equally uncertain aboutD’s label.) Hence a reasonable heuristic is to query the points whose entropy is highest.

3.3 Feature selection

In many classification and regression problems, where the goal is to computep(y|x), the inputx1:p may be a high
dimensional vector. Not all of the components (dimensions)of x may be relevant for predictingy. Feature selection is
the task of finding the relevant components. This results in asimpler model that may be easier to understand and may
even perform better than using allp features.
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There are two main approaches to feature selection (see [GE03] for a good review):filter methods preprocess the
featuresxi and then build a classifier using thek relevant features,p(y|x1:k); wrapper methods try all subsetsp(y|xs)
and pick the subset that performs the best. It is clear that filter methods are much more comptuationally efficient,
since they only have to train the classifier once. A common measure of relevance is mutual information: we compute
I(Xi, Y ) for each featureXi and keep thek features with highest mutual information.

For example, referring to Figure 10, each input can be described by its horizontal and vertical coordinate; call these
components 1 and 2. It seems clear that the vertical coordinate is irrelevant for predicting the class labelY . Hence we
would expect to findI(X1, Y ) � I(X2, Y ).

As another example, consider a naive Bayes classifier withC classes and binary features,xi ∈ {0, 1}. Let
πc = p(y = c), θic = p(xi = 1|y = c) and

θi = p(xi = 1) =
∑

c

p(xi = 1|y = c)p(y = c) =
∑

c

θicπc (75)

The mutual information between featurei and the class label is given by

Ii =

1
∑

x=0

C
∑

c=1

p(Xi = x, y = c) log
p(Xi = x|y = c)p(y = c)

p(Xi = x)p(y = c)
(76)

=

1
∑

x=0

∑

c

p(Xi = x|y = c)p(y = c) log
p(Xi = x|y = c)

p(Xi = x)
(77)

=
∑

c

p(Xi = 1|y = c)p(y = c) log
p(Xi = 1|y = c)

p(Xi = 1)
+ (78)

∑

c

p(Xi = 0|y = c)p(y = c) log
p(Xi = 0|y = c)

p(Xi = 0)
(79)

=
∑

c

[

θicπc log
θic

θi

+ (1 − θic)πc log
1 − θic

1 − θi

]

(80)

This can be used to select relevant features before fitting the naive Bayes model.
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