
State estimation in discrete graphical models

Kevin P. Murphy

Last updated November 16, 2006

* Denotes advanced sections that may be omitted on a first reading.

1 Introduction
Graphical models define joint probability distributions

p(X1:D|G, θ) (1)

whereG is the graph structure (either directed or undirected or both), andθ are the parameters. In Bayesian modeling,
we treat the parameters as random variables as well, but theyare in turn conditioned on fixedhyper parametersα:

p(X1:D, θ|G,α) (2)

Clearly this can be represented as in Equation 1 by appropriately redefiningX andθ. It will also be notationally
helpful to distinguish the hidden nodesX from the observed nodesY . Without loss of generality, we may assume
there is aYi node for everyXi node; we sometimes callYi the local evidencefor Xi. If Xi is not observed, thenYi
can be set to something non informative.

There are many quantities of interest we may be interested ininferring. Broadly speaking, they are as follows

1. State estimation: inferringp(X |y, θ,G).

2. Parameter estimation (learning): inferringp(θ|y,G).

3. Model selection (structure learning): inferringp(G|y).

In this chapter, we focus on the first problem. Furthermore, we restrict our attention to the case where theXi are
discrete random variables. (The observedyi’s may be continuous, however.)

The techniques we describe work equally well for directed and undirected models. A directed model

p(X1:D) =
∏

i

p(Xi|Xπi
) (3)

can always be written as an undirected model

p(X1:D) =
1

Z

∏

c

ψc(Xc) (4)

by settingZ = 1 and identifying the cliques of the undirected graph with thefamilies in the original DAG. We will
use examples of both kinds.

2 Kinds of probabilistic queries
There are several different flavors of state estimation, which we review below using the “water sprinkler” model in
Figure 2 as an example.

1



2.1 Marginals

Often we want to estimate one set of variables given information on another set, e.g.,

P (s = 1|w = 1) =
P (s = 1, w = 1)

P (w = 1)
(5)

=

∑

c,r P (s = 1, w = 1, R = r, C = c)
∑

c,r,s P (S = s, w = 1, R = r, C = c)
(6)

∝
∑

c,r

P (C = c)P (S = 1|C = c)P (R = r|C = c)P (W = 1|S = s,R = r) (7)

In general, computing marginalsp(xi) for some seti involvessum-product type computations

p(xi) =
1

Z

∑

x−i

∏

c

ψc(xc) (8)

2.2 MAP estimation

Alternatively, we can compute themost probable explanation (MPE)of the evidence

(s, r, c)∗ = argmax
s,r,c

P (S = s,R = r, C = c|w = 1) (9)

= argmax
s,r,c

P (C = c)P (S = 1|C = c)P (R = r|C = c)P (W = 1|S = s,R = r) (10)

which is the most likely setting ofall the hidden variables given the evidence. This is also (sometimes) called the
maximum a posteriori (MAP) estimate. In general, To compute the MAP estimate, we usemax-product computa-
tions

xMAP = arg max
x

∏

c

ψc(xc) (11)

The case where we max out over all but one of the variables results in themax marginals

pMM (xi) = arg max
x−i

∏

c

ψc(xc) (12)

2.3 Marginal MAP

Instead of computing the marginal probabilitiesP (S|W = 1) andP (R|W = 1), we may want to compute the
marginal MAP estimate of these nodes:

s∗ = arg max
s
P (S = s|W = 1) (13)

= arg max
s

∑

r,c

P (S = s,R = r, C = c|W = 1) (14)

= arg max
s

∑

r,c

P (C = c)P (S = 1|C = c)P (R = r|C = c)P (W = 1|S = s,R = r) (15)

and similarly forr∗. In general, this results in amax-sum-product formulation:

xMMAP
i = arg max

xi

∑

x−i

∏

c

ψc(xc) (16)

The MPE is when we max over all the (hidden) variables and is aneasier problem than the mixed max-sum-product
case.

2



Sprinkler?

Cloudy

Rain

WetGrass

Sprinkler ?

Cloudy

Rain

WetGrass

Sprinkler?

Cloudy

Rain

WetGrass

(a) (b) (c)

Figure 1: (a) observe W, query S. (b) observe W, query R. (c) Observe W and R, query S.

2.4 Sampling from the distribution

Sometimes we want to draw samples from the distribution, either the prior

x ∼ p(x) (17)

or the posterior
x ∼ p(x|y) (18)

Sampling from the prior for a DGM is straightforward: we can useancestral samplingto sample from root to leaves in
topological order. Sampling from the prior for a UGM is hard,because the potentials are not probability distributions,
so we need to take into accountZ. Sampling from the posterior for both DGMs and UGMs is also hard, again because
of the partition function. (For a DGM, the partition function of the posterior isp(y) =

∑

x p(x, y).) However, most
of the techniques that are used for computing marginals (sum-product algorithm) can be generalized to draw samples,
so the computational complexity is similar.

2.5 Predictive vs diagnostic reasoning in DGMs

Because of the directed/causal semantics of Bayes nets, it is possible to classify probabilsitic queries into several
kinds. One kind ispredictive reasoning: we observe a cause and want to predict its effects. For example, we may
want to know the probability the grass becomes wet if we see that it is cloudy: we just computep(w = 1|c = 1).
The most common kind isdiagnostic reasoning: we observe effects and want to estimate the cause. For example,
we observe the grass is wet and want to know if it was caused by the sprinkler or the rain. We can simply compare
P (S = 1|w = 1) vsP (R = 1|w = 1): see Figure 1.

Now suppose we observe that the grass is wetandit is raining. Intuitively, the probability the sprinkler is on should
be less than if we just observed the grass is wet, since the rain hasexplained awaythe evidence that the grass is wet.
In other words, we expect

P (S = 1|w = 1, r = 1) < P (S = 1|w = 1) (19)

This is indeed the case, as we show numerically below. Note that, a priori,S andR are independent (givenC), but
once we condition onW , they become dependent, because they compete to explain theevidence.

2.6 Computing the partition function

Since MRFs are undirected, there is no notion of predictive vs diagnostic reasoning, and no explaining away effect. It’s
simply inferring one variable given evidence on another. One task that is unique to MRFs is computing the partition
function. (For DGMs,Z = 1.) Not all inference algorithms are capable of computingZ. (For example it is not
automatically computed by Gibbs sampling, although there are work arounds [Chi95].)

Being able to computeZ is useful for model selection and for some gradient-based parameter learning algorithms,
which need to evaluate the objective function (likelihood)itself. Other learning algorithms just require derivatives of
Z, which turn out to be marginal probabilities.

3



C P(S=F) P(S=T) P(R=F) P(R=T)

Cloudy

Sprinkler Rain

WetGrass

F  F 1.0        0.0

T  F

F  T

T   T

0.1         0.9

0.1         0.9

0.01      0.99

S  R  P(W=F)  P(W=T)

P(C=F)  P(C=T)

0.5         0.5

F 0.5 0.5

T 0.9          0.1

C

F

T 0.2           0.8

0.8           0.2

Figure 2: Water sprinkler Bayes net with CPDs shown.

3 Brute force enumeration (naive inference)
If all the nodes are discrete, we can represent this joint explicitly by multiplying all the potentials together elementwise
(taking care to match dimensions) and representing the result as aK × · · ·×K = KD table, where there areD nodes
each withK states. Call thisT (x1, . . . , xD). The partition function is justZ =

∑

x1:D
T (x1:D), and the joint is

p(x1:D) = T (x1:D)/Z.
Of course, constructing the joint explicitly takesO(KD) time and space, which defeats one of the main advantages

of using graphical models. (The other advantage — namely that we need many fewer thanO(KD) parameters to
define the model — is not affected by how we represent the joint.) Later we will discuss more efficient techniques for
inference that exploit the graph structure.

3.1 DGM example

If all the CPDs are tables, as in Figure 2, we can multiply themaltogether to build the joint as a multidimensional
array, as in the code below.

% Water sprinkler Bayes net
% C
% / \
% v v
% S R
% \/
% v
% W

C = 1; S = 2; R = 3; W = 4;
false = 1; true = 2;

% Specify the conditional probability tables as cell arrays
% The left-most index toggles fastest, so entries are stored in this order:
% (1,1,1), (2,1,1), (1,2,1), (2,2,1), etc.

4



CPD{C} = reshape([0.5 0.5], 2, 1);
CPD{R} = reshape([0.8 0.2 0.2 0.8], 2, 2);
CPD{S} = reshape([0.5 0.9 0.5 0.1], 2, 2);
CPD{W} = reshape([1 0.1 0.1 0.01 0 0.9 0.9 0.99], 2, 2, 2);

% naive method
joint = zeros(2,2,2,2);
for c=1:2

for r=1:2
for s=1:2

for w=1:2
joint(c,s,r,w) = CPD{C}(c) * CPD{S}(c,s) * CPD{R}(c,r) * CPD{W}(s,r,w);

end
end

end
end

% vectorized method
joint2 = repmat(reshape(CPD{C}, [2 1 1 1]), [1 2 2 2]) .* ...

repmat(reshape(CPD{S}, [2 2 1 1]), [1 1 2 2]) .* ...
repmat(reshape(CPD{R}, [2 1 2 1]), [1 2 1 2]) .* ...
repmat(reshape(CPD{W}, [1 2 2 2]), [2 1 1 1]);

assert(approxeq(joint, joint2));

pSandW = sumv(joint(:,true,:,true), [C R]); % 0.2781
pW = sumv(joint(:,:,:,true), [C S R]); % 0.6471
pSgivenW = pSandW / pW; % 0.4298

pRandW = sumv(joint(:,:,true,true), [C S]); % 0.4581
pRgivenW = pRandW / pW; % 0.7079

% P(R=t|W=t) > P(S=t|W=t), so
% Rain more likely to cause the wet grass than the sprinkler

pSandRandW = sumv(joint(:,true,true,true), [C]); % 0.0891
pSgivenWR = pSandRandW / pRandW; % 0.1945

% P(S=t|W=t,R=t) << P(S=t|W=t)
% Sprinkler is less likely to be on if we know that
% it is raining, since the rain can "explain away" the fact
% that the grass is wet.

Having computed the joint, we can answer any probabilistic query we want. For example, we can compute

p(S = 2|W = 2) =
p(S = 2,W = 2)

p(W = 2)
(20)

=

∑

c,r p(C = c, R = r, S = 2,W = 2)
∑

c,r,s p(C = c, R = r, S = s,W = 2)
(21)

=
0.2781

0.6471
= 0.4298 (22)

(where 2 denotes true and 1 denotes false).
Similarly, we can compute

p(R = 2|W = 2) =
p(R = 2,W = 2)

p(W = 2)
(23)

=
0.4581

0.6471
= 0.7079 (24)

Since0.7079 = P (R = t|W = t) > P (S = t|W = t) = 0.4298, rain is more likely the cause of the wet grass than
the sprinkler. Finally, we can illustrate explaining away by showingP (S = t|W = t, R = t) = 0.1945 � P (S =
t|W = t) = 0.4298.

5



Figure 3: A simple MRF

3.2 UGM example

Now consider the MRF in Figure 3. All nodes are binary (have values 1 or 2). The model defines the following joint
distribution

p(X1:4) =
1

Z
ψ123(X1, X2, X3)ψ24(X2, X4) (25)

where the potentials are defined as follows
X1 X2 X3 Ψ123

1 1 1 1
2 1 1 2
1 2 1 3
2 2 1 4
1 1 2 5
2 1 2 6
1 2 2 7
2 2 2 8

X2 X4 Ψ24

1 1 0.5
2 1 1
1 2 1.5
2 2 2

Hence the unnormalized jointp′(x1:4) and the normalized jointp(x1:4) = p′(x1:4)/Z is given below, where
Z = 94.

6



0 2 4 6 8 10 12 14 16 18
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 4: The “flattened” joint distribution encoded by the MRF in Figure 3. This represents a distribution on a2×2×2×2 table.

X1 X2 X3 X4 p′(X1:4) p(X1:4)
1 1 1 1 1 × 0.5 = 0.5 0.0053
2 1 1 1 2 × 0.5 = 1 0.0106
1 2 1 1 3 × 1 = 3 0.0319
2 2 1 1 4 × 1 = 4 0.0426
1 1 2 1 5 × 0.5 = 2.5 0.0266
2 1 2 1 6 × 0.5 = 3 0.0319
1 2 2 1 7 × 1 = 7 0.0745
2 2 3 1 8 × 1 = 8 0.0851
1 1 1 2 1 × 1.5 = 1.5 0.0160
2 1 1 2 2 × 1.5 = 3 0.0319
1 2 1 2 3 × 2 = 6 0.0638
2 2 1 2 4 × 2 = 8 0.0851
1 1 2 2 5 × 1.5 = 7.5 0.0798
2 1 2 2 6 × 1.5 = 9 0.0957
1 2 2 2 7 × 2 = 14 0.1489
2 2 2 2 8 × 2 = 16 0.1702

The corresponding joint distribution is shown in Figure 4.
We could write code to multiply these tables together, but toavoid the need for all therepmat’s andreshape’s,

I have developed some Matlab code that automates these kindsof calculations. The classtabularPot represents
discrete potentials, and is basically an array in which eachdimension has a ’tag’ associated with it, representing the
’domain’ of the array, so that when we multiply two potentials together, the corresponding dimensions can be lined up.
The class has a constructor and various methods, which are illustrated below. We omit the implementation of these
functions since they involve a lot of uninteresting book keeping. (See [HD96] for some of the details.) However, we
illustrate how to use them below by constructing the joint asa 4 dimensional table.

% mrfJointDemo.m
%
% Constructor is pot = tabularPot(domain, sizes, T)
% domain = variables in the potential
% sizes = number of states for each variable
% T = table of numbers
f1 = tabularPot([1 2 3], [2 2 2], [1:8]);
f2 = tabularPot([2 4], [2 2], [0.5 1 1.5 2]);

% Combine potentials
J = tabularPot(1:4, [2 2 2 2]);
J = multiplyByPot(f, f1);
J = multiplyByPot(f, f2);

% Or more directly
J = multiplyPots(f1, f2)

7



% Convert object to array
unnormalizedJoint = J.T(:)’

% Normalize the array
[joint, Z] = normalize(unnormalizedJoint) % Z=94
bar(joint)

% alternative method of computing Z
m = marginalizePot(f, []);
Z = m.T; % m.T = 58

Given the joint, we can easily find the MAP assignments

x∗ ∈ arg max
x

p(x) (26)

We can also draw samples from the joint by treating it as a histogram withKD bins. Finally, we can compute any
marginal or conditional we want. For example, the code belowcomputes

p(x1|x4) =

∑

x2,x3
p(x1:4)

∑

x1,x2,x3
p(x1:4)

(27)

% mrfJointDemo2

% run mrfJointDemo first!

% find the MAP state
[junk, xMAP] = max(joint) % 16
xMAPbits = ind2subv(2*ones(1,4), xMAP) % 2,2,2,2

% sample from the distribution (with replacement)
S = 1000;
K = length(joint);
%samples = randsample(1:K, S, true, joint)
samples = sample_discrete(joint, 1, S);
h = hist(samples,1:K);
bar(normalize(h))

% compute cond14(x4, x1) = p(x1|x4)
J14 = marginalizePot(J, [1 4]);
cond14 = mk_stochastic(J14.T’); % satisfies sum_x1 cond14(x4,x1) = 1
sum(cond14,2) % column of 1s

4 Variable elimination
The variable elimination algorithm uses the principle of(non-serial) dynamic programming and can be much
more efficient than the naive approach of brute force enumeration. Dynamic programming is applicable whenever
the optimal solution to a problem can be divided into pieces that can be solved separately and then reused. A classic
example isDijkstra’s shortest path algorithm . Later we will see theforwards backwards algorithm, which is
closely related.

Consider the example model in Figure 5. This can either be interpreted as a directed graphical model (i.e., a
Bayesian network)

P (C,D, I,G, S, L, J,H) = P (C)P (D|C)P (I)P (G|I,D)P (S|I)P (L|G)P (J |L, S)P (H |G, J) (28)

or as an undirected graphical model (i.e., as an MRF)

P (C,D, I,G, S, L, J,H) = ψC(C)ψD(D,C)ψI(I)ψG(G, I,D)ψS(S, I)ψL(L,G)ψJ (J, L, S)ψH(H,G, J)(29)

where the potentials (factors) areψC(C) = p(C), ψD(D,C) = p(D|C), etc. (Since all the potentials are locally
normalied (sum to one), we findZ = 1. This is always the case when we convert from a Bayes net to an MRF.)

8



IntelligenceDifficulty

Grade

Letter

SAT

Job
Happy

Coherence

IntelligenceDifficulty

Grade

Letter

SAT

Job
Happy

Coherence

Figure 5: Left: The student Bayes net. Right: the equivalent Markov network. We add moralization arcs D-I, G-J and L-S. Note
that this graph is not triangulated. Source: [KF06].

Suppose we want to computeP (J), the marginal probability that a person will get a job. The key idea of variable
elimination is topush sum inside products, which is valid because of thedistributive law of sums and products.

P (J) =
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

P (C,D, I,G, S, L, J,H) (30)

=
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

ψC(C)ψD(D,C)ψI(I)ψG(G, I,D)ψS(S, I)ψL(L,G)ψJ (J, L, S)ψH(H,G, J)(31)

=
∑

L

∑

S

ψJ(J, L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψ(G, I,D)
∑

C

ψC(C)ψD(D,C)(32)

Now we work right to left (this is calledpeeling), as shown in Figure 6. At stepi, we create an intermediate factor
τi which gets combined with the original factors. We can think of each

∑
term as abucket containing all the factors

immediately to its right (in its immediate lexical scope); then theτi factors act asmessagesthat are sent from bucket
to bucket. Hence the variable eliminatio algorithm is also calledbucket elimination.

We explain these steps in more detail below.

• We first multiply together all factors that mentionC to createψ1(C,D), and store the result inC ’s bucket:

P (J) =
∑

L

∑

S

ψJ (J, L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψ(G, I,D)
∑

C

ψC(C)ψD(D,C)
︸ ︷︷ ︸

ψ1(C,D)

(40)

• Then we sum outC to makeτ1(D):

P (J) =
∑

L

∑

S

ψJ (J, L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψ(G, I,D)
∑

C

ψ1(C,D)

︸ ︷︷ ︸

τ1(D)

(41)

9



P (J) =
X

L

X

S

ψJ (J, L, S)
X

G

ψL(L,G)
X

H

ψH(H,G, J)
X

I

ψS(S, I)ψI (I)
X

D

ψ(G, I,D)
X

C

ψC(C)ψD(D,C)

| {z }

τ1(D)

(33)

=
X

L

X

S

ψJ (J, L, S)
X

G

ψL(L,G)
X

H

ψH(H,G, J)
X

I

ψS(S, I)ψI (I)
X

D

ψ(G, I,D)τ1(D)

| {z }

τ2(G,I)

(34)

=
X

L

X

S

ψJ (J, L, S)
X

G

ψL(L,G)
X

H

ψH(H,G, J)
X

I

ψS(S, I)ψI (I)τ2(G, I)

| {z }

τ3(G,S)

(35)

=
X

L

X

S

ψJ (J, L, S)
X

G

ψL(L,G)
X

H

ψH(H,G, J)

| {z }

τ4(G,J)

τ3(G, S) (36)

=
X

L

X

S

ψJ (J, L, S)
X

G

ψL(L,G)τ4(G, J)τ3(G, S)

| {z }

τ5(J,L,S)

(37)

=
X

L

X

S

ψJ (J, L, S)τ5(J, L, S)

| {z }

τ6(J,L)

(38)

=
X

L

τ6(J, L)

| {z }

τ7(J)

(39)

Figure 6: Eliminating variables from Figure 5 in the orderC, D, I, H,G, S, L.

• and multiply intoD’s bucket to makeψ2(G, I,D):

P (J) =
∑

L

∑

S

ψJ(J, L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψ(G, I,D)τ1(D)
︸ ︷︷ ︸

ψ2(G,I,D)

(42)

• Then we sum outD to makeτ2(G, I):

P (J) =
∑

L

∑

S

ψJ(J, L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψ2(G, I,D)

︸ ︷︷ ︸

τ2(G,I)

(43)

• and multiply intoI ’s bucket to makeψ3(G,S, I), etc.

• And so on.

4.1 Dealing with evidence

So far we have computed the unconditional distributionP (J). To compute conditional distributions, we take the ratios
of unconditionals e.g.

P (J |I = 1, H = 0) =
P (J, I = 1, H = 0)

P (I = 1, H = 0)
(44)

whereP (I = 1, H = 0) =
∑

j P (J = j, I = 1, H = 0) is the normalizing constant. The numerator is gotten by
running VE where we have evidence on nodesI andH . There are two methods.

In the first method, we instantiate observed variables to their observed values, by taking the appropriate “slices” of
the factors (only works for discrete observations):

10



P (J) =
X

D

X

C

ψD(D,C)
X

H

X

L

X

S

ψJ (J, L, S)
X

I

ψI(I)ψS (S, I)
X

G

ψG(G, I,D)ψL(L, )ψH(H,G, J)

| {z }

τ1(I,D,L,J,H)

(49)

=
X

D

X

C

ψD(D,C)
X

H

X

L

X

S

ψJ (J, L, S)
X

I

ψI(I)ψS (S, I)τ1(I,D,L, J,H)

| {z }

τ2(D,L,S,J,H)

(50)

=
X

D

X

C

ψD(D,C)
X

H

X

L

X

S

ψJ (J, L, S)τ2(D,L, S, J,H)

| {z }

τ3(D,L,J,H)

(51)

=
X

D

X

C

ψD(D,C)
X

H

X

L

τ3(D,L, J,H)

| {z }

τ4(D,J,H)

(52)

=
X

D

X

C

ψD(D,C)
X

H

τ4(D, J,H)

| {z }

τ5(D,J)

(53)

=
X

D

X

C

ψD(D,C)τ5(D, J)

| {z }

τ6(D,J)

(54)

=
X

D

τ6(D, J)

| {z }

τ7(J)

(55)

Figure 7: Eliminating variables from Figure 5 in the orderG, I, S, L, H,C, D.

P (J, I = 1, H = 0) = (45)
∑

L

∑

S

ψJ(J, L, S)
∑

G

ψL(L,G)ψH(H = 0, G, J)ψS(S, I)ψI(I = 1)
∑

D

ψ(G, I = 1, D)
∑

C

ψC(C)ψD(D,C)(46)

In the second method, we multiply in local evidence factorsφi(Xi) for each node.

P (J, I = 1, H = 0) = (47)
∑

L

∑

S

ψJ(J, L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)φH(H)
∑

I

ψS(S, I)ψI(I)φI(I)
∑

D

ψ(G, I,D)
∑

C

ψC(C)ψD(D,C)(48)

If Xi is observed to have valuex∗i , we setφi(Xi) = I(Xi = x∗i ). If yi is a noisy observaton ofXi, we setφx(Xi) =
p(yi|Xi) (sometimes calledsoft evidenceor virtual evidence).

4.2 Computational complexity

The time to answer any query is exponential in the size (number of terms) in the largest factor (table) that is encoun-
tered. The factors come from the original model, but new factors are created in the process of summing out. The order
in which we perform the summation (theelimination order ) can have a large impact on the size of the intermediate
factors. For example, consider the ordering in Figure 6: thelargest factor isτ5(J, L, S). Now consider the ordering in
Figure 7: now the largest factorτ1(I,D, L, J,H) or τ2(D,L, S, J,H).

We can determine the size of the largest factor graphically,without worrying about the actual numerical values
of the factors. When we eliminate a variableXi, we connect it to all variables that share a factor withXi (to reflect
new factorτi). Such edges are calledfill-in edges. For example, Figure 8 shows the fill-in edges introduced when
we eliminate in the orderC,D, I, . . .. The first two steps do not introduce any fill-ins, but when we eliminateI, we

11



IntelligenceDifficulty

Grade

Letter

SAT

Job
Happy

Coherence

IntelligenceDifficulty

Grade

Letter

SAT

Job
Happy

Coherence

IntelligenceDifficulty

Grade

Letter

SAT

Job
Happy

Coherence

IntelligenceDifficulty

Grade

Letter

SAT

Job
Happy

Coherence

Figure 8: Fill in edges. When we eliminateI (bottom right), we connectG andS. From [KF06].

IntelligenceDifficulty

Grade

Letter

SAT

Job
Happy

Coherence

IntelligenceDifficulty

Grade

Letter

SAT

Job
Happy

Coherence

Figure 9: Maximal cliques. Source [KF06].

connectG andS, since they co-occur in factorτ3(G,S):

τ3(G,S) =
∑

I

ψS(S, I)ψI(I)τ2(G, I) (56)

Let IG,≺ be the (undirected) graph induced by applying variable elimination toG using ordering≺. The factors
generated by VE correspond tocliques in IG,≺ and vice versa. For example, with ordering(C,D, I,H,G, S, L), the
maximal cliques, shown in Figure 9, are

{C,D}, {D, I,G}, {G,L, S, J}, {G, J,H}, {G, I, S} (57)

Let us define theinduced width of a graph given elimination ordering≺, denoteWG,≺, as the size of the largest
factor (induced clique) minus 1. Then it is easy to show

Theorem 1 The complexity of VarElim with ordering≺ is O(DKWG,≺+1), where we assume allD nodes haveK
possible states each.

12



Note that if the graph is chordal (triangulated), then variable elimination not introduce any extra fill-in egdes, and
WG,≺ = WG.

We define thetree width of a graph as the minimal induced width:

WG = min
≺

max
i

|τi| − 1 (58)

What is the order that produces this minimal tree width? Unfortunately, one can show

Theorem 2 Finding an elimination ordering≺ which minimizesWG,≺ is NP-hard.

A standard approach to finding≺ is greedy search. Themin-fill heuristic says: choose as the next node to eliminate
the one that introduces the least number of fill-in edges (breaking ties randomly). Themin-weight heuristic says:
choose as the next node to eliminate the one that introduces the factor of smallest weight, where the weight of a factor
is the size of its state space (product of the cardinalities of all variables within it).

5 Belief propagation *
If the graph is a tree or a chain (so there are no undirected cycles), one can use adynamic programming algorithm
calledbelief propagation (BP) to perform exact inference. For a chain in which all (hidden)nodes are discrete, BP
inference takesO(DK2) time, whereD is the number of nodes andK is the number of states. This algorithm is also
called theforwards backwards algorithm. (The max-product version is called theViterbi algorithm .) For a chain
in which all nodes are Gaussian, inference takesO(D(2K)3) time, where all (vector valued) nodes have sizeK. (The
cubic terms arises because we have to invert matrices of size2K × 2K.) This algorithm is also called theKalman
filter/ RTS smoother algorithm (RTS = Rauch Tung Streibel). We will discuss thesealgorithms later.

If the graph is not a tree (so it has loops), but all nodes are discrete or Gaussian, one can still run the BP algorithm;
this is calledloopy belief propagation. Although it often works well, it is not guaranteed to work (e.g., it may
oscillate); see [YFW01] for details.

6 Junction tree algorithm *
If the graph is decomposable, then it is possible to convert it into ajunction tree (jtree) , also called ajoin tree, whose
nodes correspond to cliques in the triangulated graph. If all nodes are discrete or Gaussian, one can then perform BP
on the jtree. (Some modifications are required to handle the fact that the variables in the tree correspond to sets of
variables in the original model.) If all hidden nodes are discrete, then the jtree algorithm takesO(DKw+1) time, where
w is the treewidth of the graph. If all hidden nodes are Gaussian, then the jtree algorithm takesO(D(K(w + 1))3)
time. See [CDLS99, Jor06, KF06] for details.

If the graph is not decomposable, it can always be made so by triangulating it, but the resulting treewidthw may be
so large that inference becomes intractable. For example, for a100 × 100 grid, we havew = 100, so inference takes
O(2100) time for binary nodes. In cases where the treewidth is too large, one must resort to approximate inference
techniques. The other situation in which approximate inference is necessary is when not all the nodes are discrete or
Gaussian (e.g., in hierarchical Bayesian models). We discuss some approximation methods below.

7 Gibbs sampling
One general purpose technique for sampling from distributions (discrete or continuous or mixed) which are hard to
normalize is MCMC. (MRFs can be hard to normalize since computingZ takesO(Kw) time, wherew is the treewidth
of the graph. DGMs are hard to normalize when there is evidence, since computingp(y) =

∑

x p(x, y) also takes
O(Kw) time.) Although one can use Metropolis Hastings, it is usually simpler and more efficient to use Gibbs
sampling. Gibbs sampling for graphical models is particularly simple because the full conditionalsp(xi|x−i) only
depend on the state of the nodes ini’s Markov blanket, wherex−i are all the other nodes exceptxi.

Gibbs sampling can be applied to DGMs or UGMs. For simplicity, we consider a pairwise MRF. LetNi be the

13



Figure 10: The Markov blanket of the central dark node in a 2D grid MRF areits nearest neighbors (shaded).

neighbors (Markov blanket) of nodei, andFi = Ni∪{i} be the family of nodei (node and its neighbors). Then

p(Xi = `|x−i) =
p(xi = `, x−i)

∑

`′ p(Xi = `′, x−i)
(59)

=
(1/Z)[

∏

j∈Ni
ψij(Xi = `, xj)][

∏

<jk>:j,k 6∈Fi
ψjk(xj , xk)]

(1/Z)
∑

`′ [
∏

j∈Ni
ψij(Xi = `′, xj)][

∏

<j,k>:j,k 6∈Fi
ψjk(xj , xk)]

(60)

=

∏

j∈Ni
ψij(Xi = `, xj)

∑

`′

∏

j∈Ni
ψij(Xi = `′, xj)

(61)

The notation
∏

<jk>:j,k 6∈Fi
means a product over all edgesj − k where neitherj nork is inFi. See Figure 10.

In the special case of an Ising model, whereψ(xi, xj) = eJxixj , this simplifies to

p(Xi = +1|x−i) =

∏

j∈Ni
ψij(Xi = +1, xj)

∏

j∈Ni
ψij(Xi = +1, xj) +

∏

j∈Ni
ψij(Xi = −1, xj)

(62)

=
exp[J

∑

j∈Ni
xj ]

exp[J
∑

j∈Ni
xj ] + exp[−J

∑

j∈Ni
xj ]

(63)

=
exp[Jwi]

exp[Jwi] + exp[−Jwi]
(64)

= σ(2Jwi) (65)

wherewi =
∑

j∈Ni
xj andσ(u) = 1/(1 + e−u) is the sigmoid function.

When we combine an Ising prior with a local evidence term (as in the image denoising example), the full condi-
tional becomes

p(Xi = +1|x−i, y) =
exp[Jwi]φi(+1, yi)

exp[Jwi]φi(+1, yi) + exp[−Jwi]φi(−1, yi)
(66)

For the case of a Gaussian observation model,φi(xi, yi) = N (yi|xi, σ).
Thus implementing Gibbs sampling on a 2D lattice is particularly easy: the code below is all that is needed to

produce the image denoising example in Figure??. (Note that a pixel at location(i, j) in aD ×D grid corresponds
to a linear index ofi+ (D − 1) × j.)

% gibbsDemoDenoising
% Denoising of letter A using Gibbs sampling
% with an Ising Prior and a Gaussian likelihood
% Based on code originally written by Brani Vidakovic

seed = 3;
randn(’state’,seed)
rand (’state’,seed)

sigma = 2; % noise level

% input matrix consisting of letter A. The body of letter
% A is made of 1’s while the background is made of -1’s.
img = imread(’lettera.bmp’);

14



[M,N] = size(img);
img = double(img);
m = mean(img(:));
img2 = +1*(img>m) + -1*(img<m); % -1 or +1
y = img2 + sigma*randn(size(img2)); %y = noise signal

% observation model
offState = 1; onState = 2;
mus = zeros(1,2);
mus(offState) = -1; mus(onState) = +1;
sigmas = [sigma sigma];
Npixels = M*N;
localEvidence = zeros(Npixels, 2);
for k=1:2

localEvidence(:,k) = normpdf(y(:), mus(k), sigmas(k));
end

[junk, guess] = max(localEvidence, [], 2); % start with best local guess
X = ones(M, N);
X(find(guess==offState)) = -1;
X(find(guess==onState)) = +1;
Xinit = X;

doPrint = 0;

figure;
imagesc(y);colormap gray; axis square; axis off
title(sprintf(’sigma=%2.1f’, sigma))
fname = sprintf(’figures/gibbsDemoDenoisingOrigS%2.1f.eps’, sigma);
if doPrint, print(gcf, ’-depsc’, fname); end

figure;
imagesc(Xinit);colormap gray; axis square; axis off
title(’initial guess’)
fname = sprintf(’figures/gibbsDemoDenoisingInitS%2.1f.eps’, sigma);
if doPrint, print(gcf, ’-depsc’, fname); end

fig = figure; clf
pause

J = 1;
avgX = zeros(M,N);
X = Xinit;
maxIter = 100000;
for iter =1:maxIter

% select a pixel at random
ix = ceil( N * rand(1) ); iy = ceil( M * rand(1) );
pos = iy + M*(ix-1);
neighborhood = pos + [-1,1,-M,M];
neighborhood(find([iy==1,iy==M,ix==1,ix==N])) = [];
% compute local conditional
wi = sum( X(neighborhood) );
p1 = exp(J*wi) * localEvidence(pos,onState);
p0 = exp(-J*wi) * localEvidence(pos,offState);
prob = p1/(p0+p1);
if rand < prob
X(pos) = +1;

else
X(pos) = -1;

end
avgX = avgX+X;
% plotting
if rem(iter,10000) == 0,
figure(fig);
imagesc(X); axis(’square’); colormap gray; axis off;
title(sprintf(’sample %d’, iter));
drawnow

end
if doPrint % iter==10000 | iter==50000 | iter==100000
figure;
imagesc(X);colormap gray; axis square; axis off
title(sprintf(’sample %d’, iter))
fname = sprintf(’figures/gibbsDemoDenoisingIter%dJ%3.2fS%2.1f.eps’, iter, J, sigma);
print(gcf, ’-depsc’, fname);

end
end

15



Figure 11: A taxonomy of different methods for approximate inference.P is the true distribution,Q is an approximate distribution,
KL(P ||Q) is the KL-divergence from truth to approximation, andKL(Q||P ) is the KL-divergence from approximation to truth.
EM = expectation maximization. ICM = iterative conditionalmodes. VarBayes = variational Bayes. EP = expectation propagation.
BP = belief propagation. ADF = assumed density filtering. BK =Boyen-Koller algorithm.

figure;
imagesc(avgX);colormap gray; axis square; axis off
title(sprintf(’posterior mean after %d samples’, iter))
fname = sprintf(’figures/gibbsDemoDenoisingMean%dJ%3.2fS%2.1f.eps’, iter, J, sigma);
if doPrint, print(gcf, ’-depsc’, fname); end

8 Approximate inference *
We saw above that exact inference using the variable elimination algorithm takesO(Kw) time, whereK is the number
of discrete states per node andw is the treewidth of the graph. Is there a better algorithm that does not take exponential
time? In general, no, because of the following theorem.

Theorem 3 Exact inference in discrete graphical models is NP-hard.

Proof (sketch): Just show that 3-SAT is equivalent to inference in a deterministic Bayes net.

16



A large variety of approximate inference algorithms have been developed and this is a very active research area. A
few methods have formal guarantees on solution quality1 , but most are just heuristics whose quality is hard to assess.
We list a few examples below and provide a bigger picture in Figure 11.

8.1 Loopy belief propagation

As mentioned above, one can always run BP on a graph even if it has loops. However, it may not always work well,
or even converge. LBP is an example ofvariational inference. Themean field is another example. See [YFW01] for
a discussion.

8.2 Graph cuts

In general, it is NP-hard to compute the minimal energy (mostprobable) state in an Ising model, but it can be solved ex-
actly in polynomial time in the ferromagnetic case, i.e., ifJij > 0, using linear programming orgrapchuts [BVZ01].
For the multi-state case (Potts models/ associative Markovnetworks ), one can get good approximate answers using
similar techniques.

8.3 MCMC

What if we want to draw samples instead of computing the MAP state? This is strictly harder than finding the MAP
state, e.g., it is #P-hard, even in the ferromagnetic case. The reason is that it is acounting problem: to compute
probabilities (or samples), we have to knowZ =

∑

x p
′(x, y), which requires summing over allx. Whereas finding

the MAP state just means a single best statex. Despite the #P-hardness, we can use MCMC to get appproximate
answers.

References
[BVZ01] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts.IEEE

Trans. on Pattern Analysis and Machine Intelligence, 23(11), 2001.
[CDLS99] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter.Probabilistic Networks and Expert

Systems. Springer, 1999.
[Chi95] S. Chib. Marginal likelihood from the Gibbs output.J. of the Am. Stat. Assoc., 90:1313–1321, 1995.
[DL93] P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief networks is NP-hard.

Artificial Intelligence, 60:141–153, 1993.
[HD96] C. Huang and A. Darwiche. Inference in belief networks: A procedural guide.Intl. J. Approx. Reasoning,

15(3):225–263, 1996.
[Jor06] M. I. Jordan.An Introduction to Probabilistic Graphical Models. 2006. In preparation.
[KF06] D. Koller and N. Friedman.Bayesian networks and beyond. 2006. To appear.

[YFW01] J. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief propagation and its generalizations. InIntl.
Joint Conf. on AI, 2001.

1One can also show it is NP-hard to approximate inference to within any fixed constant, either additive or multiplicative [DL93]. So any formal
guarantees must come with additional assumptions.

17


