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Classifiers

• A classifier is a function f that maps input feature vectors
x ∈ X to output class labels y ∈ {1, . . . , C}

• X is the feature space eg X = IRp or X = {0, 1}p (can mix
discrete and continuous features)

•We assume the class labels are unordered (categorical) and
mutually exclusive. (If we allow an input to belong to multiple
classes, this is called a multi-label problem.)

• Goal: to learn f from a labeled training set of N input-output
pairs, (xi, yi), i = 1 : N .

•We will focus our attention on probabilistic classifiers, i.e., methods
that return p(y|x).

• Alternative is to learn a discriminant function f (x) = ŷ(x) to
predict the most probable label.
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Generative vs discriminative classifiers

•Discriminative: directly learn the function that computes the class
posterior p(y|x). It discriminates between different classes given

the input.

• Generative: learn the class-conditional density p(x|y) for
each value of y, and learn the class priors p(y); then one can
apply Bayes rule to compute the posterior

p(y|x) =
p(x, y)

p(x)
=

p(x|y)p(y)

p(x)

where p(x) =
∑C

y′=1 p(y′|x).
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Generative classifiers

We usually use a plug-in approximation for simplicity

p(y = c|x,D) ≈ p(y = c|x, θ̂, π̂) =
p(x|y = c, θ̂c)p(y = c|π̂)

∑

c′ p(x|y = c′, θ̂c′)p(y = c′|π̂)

where D is the training data, π are the parameters of the class prior
p(y) and θ are the paramters of the class-conditional densities p(x|y).
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Class prior

• Class prior
p(y = c|π) = πc

•MLE

π̂c =

∑N
i=1 I(yi = c)

N
=

Nc

N
where Nc is the number of training examples that have class label c.

• Posterior mean (using Dirichlet prior)

π̂c =
Nc + 1

N + C
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Gaussian class-conditional densities

Suppose x ∈ IR2 representing the height and weight of adult Westerners
(in inches and pounds respectively), and y ∈ {1, 2} represents male or
female. A natural choice for the class-conditional density is a two-
dimensional Gaussian

p(x|y = c, θc) = N (x|µc, Σc)

where the mean and covariance matrix depend on the class c
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Naive Bayes assumption

Assume features are conditionally independent given class.

p(x|y = c, θc) =

p
∏

d=1

p(xd|y = c, θc) =

p
∏

d=1

N (xd|µcd, σcd)

This is equivalent to assuming that Σc is diagonal.
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Training
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Testing

p(y = m|x) =
p(x|y = m)p(y = m)

p(x|y = m)p(y = m) + p(x|y = f )p(y = f )

Let us assume p(y = m) = p(y = f ) = 0.5

p(y = m|x) =
p(x|y = m)

p(x|y = m) + p(x|y = f )

=
p(xh|y = m)p(xw|y = m)

p(xh|y = m)p(xw|y = m) + p(xh|y = f )p(xw|y = f )

=
N (xh; µmh, σmh) ×N (xh; µmw, σmw)

“ + N (xh; µfh, σfh) ×N (xh; µfw, σfw)

9



Testing
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Binary data

• Suppose we want to classify email into spam vs non-spam.

• A simple way to represent a text document (such as email) is as a
bag of words.

• Let xd = 1 if word d occurs in the document and xd = 0 otherwise.
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Parameter estimation

Class-conditional denstity becomes a product of Bernoullis

p(~x|Y = c, θ) =

p
∏

d=1

θ
xd
cd

(1 − θcd)
1−xd

MLE

θ̂cd =
Ncd

Nc

Posterior mean (with Beta(1,1) prior)

θ̂cd =
Ncd + 1

Nc + 2
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Fitted class conditional densities p(x = 1|y = c)
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Numerical issues

When computing

P (Y = c|~x) =
P (~x|Y = c)P (Y = c)

∑C
c′=1 P (~x|Y = c′)P (Y = c′)

you will oftne encounter numerical underflow since p(~x, y = c) is
very small.
Take logs

bc
def
= log[P (~x|Y = c)P (Y = c)]

log P (Y = c|~x) = bc − log

C
∑

c′=1

ebc′

but ebc will underflow!
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Log-sum-exp trick

log(e−120 + e−121) = log
(

e−120(e0 + e−1)
)

= log(e0 + e−1) − 120

In general

log
∑

c

ebc = log

[

(
∑

c

ebc)e−BeB

]

= log

[

(
∑

c

ebc−B)eB

]

=

[

log(
∑

c

ebc−B)

]

+ B

where B = maxc bc.
In matlab, use logsumexp.m.
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Softmax function

p(y = c|~x, θ, π) =
p(x|y = c)p(y = c)

∑

c′ p(x|y = c′)p(y = c′)

=
exp[log p(x|y = c) + log p(y = c)]

∑

c′ exp[log p(x|y = c′) + log p(y = c′)]

=
exp [log πc +

∑

d xd log θcd]
∑

c′ exp [log πc′ +
∑

d xd log θc′d]

Now define vectors

~x = [1, x1, . . . , x1p]

βc = [log πc, log θc1, . . . , log θcp]

Hence

p(y = c|~x, β) =
exp[βT

c ~x]
∑

c′ exp[βT
c′
~x]
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Logistic function

If y is binary

p(y = 1|x) =
eβT

1 x

eβT
1 x + eβT

2 x

=
1

1 + e(β2−β1)Tx

=
1

1 + ewTx

= σ(wTx)

where we have defined w = β2 − β1 and σ(·) is the logistic or sig-

moid function

σ(u) =
1

1 + e−u
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