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CLASSIFIERS

e A classifier is a function f that maps input feature vectors
r € X to output class labels y € {1,...,C}

e X is the feature space eg X = R or X = {0, 1}’ (can mix
discrete and continuous features)
e We assume the class labels are unordered (categorical) and

mutually exclusive. (If we allow an input to belong to multiple
classes, this is called a multi-label problem.)

e Goal: to learn f from a labeled training set of IV input-output
pairs, (x;,1y;), 1 =1:N.

e We will focus our attention on probabilistic classifiers, i.e., methods
that return p(y|x).

e Alternative is to learn a discriminant function f(x) = y(x) to
predict the most probable label.



(GENERATIVE VS DISCRIMINATIVE CLASSIFIERS

e Discriminative: directly learn the function that computes the class
posterior p(y|x). It discriminates between different classes given
the input.

e Generative: learn the class-conditional density p(z|y) for
each value of y, and learn the class priors p(y); then one can
apply Bayes rule to compute the posterior

p(z,y)  plzly)p(y)

p(x) p(x)

plylr) =

where p(x) = 32 p(y/|).



(FENERATIVE CLASSIFIERS

We usually use a plug-in approximation for simplicity

A x|y = c,é = c|T
ply =clx, D) =~ ply =clx,0,7) = p(zly /C)Ap@ | >/ -
> op(xly =, 0.)ply = d|m)

where D is the training data, m are the parameters of the class prior
p(y) and 6 are the paramters of the class-conditional densities p(x|y).




CLASS PRIOR

e Class prior
ply = c|m) = 7
o MLE

N
L _ iz ilyi=co _ Ne
‘ N N
where N is the number of training examples that have class label c.

e Posterior mean (using Dirichlet prior)
. Ne+1
Te —
N+C




(FAUSSIAN CLASS-CONDITIONAL DENSITIES

Suppose = € IR? representing the height and weight of adult Westerners
(in inches and pounds respectively), and y € {1,2} represents male or
female. A natural choice for the class-conditional density is a two-
dimensional Gaussian

p(xly = c,0c) = N(z|pe, Xe)

where the mean and covariance matrix depend on the class ¢
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NAIVE BAYES ASSUMPTION

Assume features are conditionally independent given class.

p p
plaly =c,0:) = || p(zaly = c.6c) = | [ N(@altiea, oca)
d=1

d=1
This is equivalent to assuming that >.. is diagonal.
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TRAINING
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TESTING

p(zly = m)ply = m)
rly =m)ply = m) +pzly = flply = f)
Let us assume p(y =m) =p(y = f) = 0.5
p(zly = m)
p(zly = m) + plzly = f)
_ p(xply = m)p(zwly = m)

p@zM@zp(

ply =m|z) =

p(zply = m)p(rwly = m) +plaply = Hplrwly = f)
— N (xp; o, omn) X N(Zp; i, 0mw)

S N@p;ppns o pn) X N(@h; 1w 0 )




TESTING

h

height male height female
0.4 0.4
0.2 i i : ‘ 0.2 |iiiih
0 0
55 60 65 70 75 55 60 65 70 75
weight male weight female
0.4 0.4
0.2 Jiiii : { 0.2 1||it
0 0

100 150 200 250 100 150 200 250

w

11 =71.66, 0 = 3.13
1 =65.07, 0 = 3.19

= 175.62, o = 32.40
= 129.69, o = 18.67

p(y = m|z)

72
60
63

180
100
155

10



BINARY DATA

e Suppose we want to classify email into spam vs non-spam.

e A simple way to represent a text document (such as email) is as a
bag of words.

o Let x; =1 if word d occurs in the document and x; = 0 otherwise.
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PARAMETER ESTIMATION

Class-conditional denstity becomes a product of Bernoullis

p
p(EY =c,0) = [ [ 074(1 — 69)' "
d=1
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FITTED CLASS CONDITIONAL DENSITIES p(x = 1|y = ¢)
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NUMERICAL ISSUES

When computing

B PZ|Y =c¢)P(Y =c¢)

G P@EY =)PY =)

you will oftne encounter numerical underflow since p(Z,y = ¢) is

very small.
Take logs

be L 10g[P(Z]Y = ¢)P(Y = ¢)

C
log P(Y = ¢|Z) = b, — log Z el
=1

but e’ will underflow!
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LOG-SUM-EXP TRICK

log(e ™12 + e7121) = log (6_120(60 + 6_1)) = log(e” + e 1) — 120

In general

10gZebC = log (Z ebc)e_B b
C

= log Z be—B

= |log Z be= + B

where B = max, b..
In matlab, use logsumexp.m.
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SOFTMAX FUNCTION

p(zly = c)ply = ¢)
Do ply=d)ply =)
expllog p(z|y = ¢) +logp(y = ¢)]

p(y =c|z,0,7) =

- Yuexpllogp(zly = ) +logp(y = )]
exp [log me + > g2 41l0g0,.4]
Y asexpllogmy+ > 1x4logb ]

Now define vectors
r=1,21,...,21p
Be = |logme,logOc1, ..., log Ocp
Hence
explBL 7]

Zc’ €XP [ﬁg;f]

ply = c|7,8) =
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LOGISTIC FUNCTION

If 1 is binary
ik

eﬁlTx + 652%
1

1+ €<ﬂ2—ﬂ1)T:C
1

1+ ew'a

= o(w! z)

ply=1lz) =

where we have defined w = (59 — 1 and o(-) is the logistic or sig-

moid function 1

T lqeu

o(u)
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