CS340: Machine Learning

REVIEW FOR FINAL

Kevin Murphy

Chain rule
See Alpaydin sec 3.7

$$
\begin{align*}
X_{i} \perp X_{\text {non }-\operatorname{desc}(i)} \mid X_{\pi_{i}} & \Rightarrow X_{i} \perp X_{\text {anc }}(i) \mid X_{\pi_{i}} \\
& \Rightarrow p\left(X_{1: d}\right)=\prod_{i} p\left(x_{i} \mid x_{\pi_{i}}\right)
\end{aligned} \begin{aligned}
P(C, S, R, W) & =P(C) P(S \mid C) P(R \mid S, C) P(W \mid S, R, C) \text { chain rule } \\
& =P(C) P(S \mid C) P(R \mid S, C) P(W \mid S, R, C) \text { since } S \perp R \mid C \text { (4) } \\
& =P(C) P(S \mid C) P(R \mid S, C) P(W \mid S, R, C) \text { since } W \perp C \mid S(\text { 8R } \\
& =P(C) P(S \mid C) P(R \mid C) P(W \mid S, R) \tag{6}
\end{align*}
$$

- Directed graphical models
- Undirected graphical models
- State estimation
- MCMC
- Gaussians
- Mixture models

ORDER MATTERS

(a)

- Consider $p\left(X_{i} \mid X_{\pi_{i}}\right)$. Let $U=X_{\pi_{i}}$.
- Tabular

$$
p\left(X_{i}=k \mid U=j\right)=\theta_{i j k}
$$

- Sigmoid / logistic

$$
p\left(X_{i}=1 \mid U=u\right)=\sigma\left(w_{i}^{T} u\right), \quad \sigma(z)=1 /\left(1+e^{-z}\right)
$$

- Noisy-or

$$
p\left(X_{i}=1 \mid U=u\right)=\prod_{j: u_{j}=1} q_{i j}
$$

- Linear Gaussian

$$
p\left(X_{i}=x \mid U=u\right)=\mathcal{N}\left(x \mid w_{i}^{T} u, \sigma_{i}^{2}\right)
$$

GRAPH MANIPULATION

arc reversal

node elimination

Converting a DGM to a UGM (MORALIZATION)

PLATES

$p(D \mid \theta)=\prod_{n=1}^{N} p\left(y_{n} \mid \theta_{y}\right) p\left(x_{n} \mid y_{n}, \theta_{x}\right)$
** EM FOR DGMs

- E step:

$$
\begin{equation*}
p\left(X_{i}^{n}, X_{\pi_{i}}^{n} \mid D_{n}, \theta^{o l d}\right) \tag{11}
\end{equation*}
$$

- M step:

$$
\begin{equation*}
\hat{\theta}_{i}=\arg \max _{\theta} \sum_{n}<\log p\left(X_{i}^{n} \mid X_{\pi_{i}}^{n}, \theta\right)> \tag{12}
\end{equation*}
$$

(1)

PARAMETER ESIMTATION FOR COMPLETE DATA
Factored prior + factored likelihood + complete data \Rightarrow factored posterior \Rightarrow problem decomposes into d separate problems eg for MLE

$$
\begin{equation*}
\hat{\theta}_{i}=\arg \max _{\theta} \sum_{n} \log p\left(X_{i}^{n} \mid X_{\pi_{i}}^{n}, \theta\right) \tag{8}
\end{equation*}
$$

eg for MAP

$$
\begin{equation*}
\hat{\theta}_{i}=\arg \max _{\theta} \log p(\theta)+\left[\sum_{n} \log p\left(X_{i}^{n} \mid X_{\pi_{i}}^{n}, \theta\right)\right] \tag{9}
\end{equation*}
$$

eg for Bayes

$$
\begin{equation*}
p\left(\theta_{i} \mid \mathcal{D}\right)=p\left(\theta_{i}\right) \prod_{n} p\left(X_{i}^{n} \mid X_{\pi_{i}}^{n}, \theta_{i}\right) \tag{10}
\end{equation*}
$$

MARKOV EQUIVALENCE/ PDAGs

13

OutLine

- Directed graphical models $\sqrt{ }$
- Undirected graphical models
- State estimation
- MCMC
- Gaussians
- Mixture models

HAMMERSLEY CLIFFORD THEOREM

$p\left(x_{1: 6}\right)=\frac{1}{Z} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{35}\left(x_{3}, x_{5}\right) \psi_{256}\left(x_{2}, x_{5}, x_{1}\right.$

$$
\begin{align*}
p(x, y) & =p(x) p(y \mid x) \tag{14}\\
& =\left[\frac{1}{Z} \prod_{<i j>} \psi_{i j}\left(x_{i}, x_{j}\right)\right]\left[\prod_{i} p\left(y_{i} \mid x_{i}\right)\right] \tag{15}\\
\psi_{i j}\left(x_{i}, x_{j}\right) & =\exp \left[J_{i j} x_{i} x_{j}\right]=\left(\begin{array}{cc}
e^{J_{i j}} & e^{-J_{i j}} \\
e^{-J_{i j}} & e^{J_{i j}}
\end{array}\right) \tag{16}
\end{align*}
$$

** Parameter estimation
Finding parameter estimates (eg MLEs) is hard because the likelihood does not decompose into separate problems, because of the global normalizing constant Z

$$
\begin{equation*}
p(x \mid \theta)=\frac{1}{Z(\theta)} \prod_{c \in C} \psi_{c}\left(x_{c} \mid \theta_{c}\right) \tag{17}
\end{equation*}
$$

Conditional independence

$A \perp B \mid C$ iff all nodes in A are separated from all nodes in B , after we remove all nodes in C

18

Outline

- Directed graphical models $\sqrt{ }$
- Undirected graphical models $\sqrt{ }$
- State estimation
- MCMC
- Gaussians
- Mixture models

1. State estimation: inferring $p(X \mid y, \theta, G)$.
2. Parameter estimation (learning): inferring $p(\theta \mid y, G)$.
3. Model selection (structure learning): inferring $p(G \mid y)$.

- sum-product

$$
\begin{equation*}
p\left(x_{i}\right)=\frac{1}{Z} \sum_{x_{-i}} \prod_{c} \psi_{c}\left(x_{c}\right) \tag{18}
\end{equation*}
$$

- max-product

$$
\begin{equation*}
x^{M A P}=\arg \max _{x} \prod_{c} \psi_{c}\left(x_{c}\right) \tag{19}
\end{equation*}
$$

- max-sum-product

$$
\begin{equation*}
x_{i}^{M M A P}=\arg \max _{x_{i}} \sum_{x_{-i}} \prod_{c} \psi_{c}\left(x_{c}\right) \tag{20}
\end{equation*}
$$

BRUTE FORCE

$$
\begin{equation*}
p\left(X_{1: 4}\right)=\frac{1}{Z} \psi_{123}\left(X_{1}, X_{2}, X_{3}\right) \psi_{24}\left(X_{2}, X_{4}\right) \tag{21}
\end{equation*}
$$

Build table and find marginals by enumeration.

VARIABLE ELIMINATION (DYNAMIC PROGRAMMING)

$$
\begin{aligned}
& P(J)=\sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \sum_{H} \psi_{H}(H, G, J) \sum_{I} \psi_{S}(S, I) \psi_{J}(I) \sum_{D} \psi_{\mathcal{C}}(G, I, D) \underbrace{\sum_{C} \psi_{C}(C) \psi_{D}(D, C)} \\
& =\sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \sum_{H} \psi_{H}(H, G, J) \sum_{I} \psi_{S}(S, I \psi_{T}(I) \underbrace{\left.\sum_{D} \psi_{\mathcal{L}} G, I, D\right)_{\tau_{I}(D)}}
\end{aligned}
$$

MAXIMAL CLIQUES IN INDUCED GRAPH
Largest maxclique is G, L, S, J so treewidth is 4-1=3. Other orders may produce larger treewidth.

Gibbs sampling for pairwise UGMs
Full conditional

$$
\begin{equation*}
p\left(X_{i}=\ell \mid x_{-i}\right) \propto \prod_{j \in N_{i}} \psi_{i j}\left(X_{i}=\ell, x_{j}\right) \tag{26}
\end{equation*}
$$

GIbBS SAMPLING FOR DGMS

Full conditional

$$
\begin{equation*}
p\left(X_{i}=\ell \mid x_{-i}\right) \propto p\left(X_{i}=\ell \mid P a\left(x_{i}\right)\right) \prod_{y_{j} \in c h\left(X_{i}\right)} p\left(y_{j} \mid P a\left(y_{j}\right)\right. \tag{25}
\end{equation*}
$$

Outline

- Directed graphical models $\sqrt{ }$
- Undirected graphical models $\sqrt{ }$
- State estimation $\sqrt{ }$
- MCMC
- Gaussians
- Mixture models

$$
\begin{equation*}
I=\int h(x) p(x) d x \approx \frac{1}{S} \sum_{s=1}^{S} h\left(x^{(s)}\right) \tag{27}
\end{equation*}
$$

Metropolis Hastings algorithm

1. Initialize X_{0} arbitrarily.
2. For $s=0,2, \ldots$
(a) Generate a proposed state $x^{\prime} \sim q\left(x^{\prime} \mid x_{s}\right)$
(b) Evaluate the acceptance propability

$$
\begin{align*}
\alpha & =\frac{\pi\left(x^{\prime}\right) q\left(x \mid x^{\prime}\right)}{\pi(x) q\left(x^{\prime} \mid x\right)}=\frac{\pi\left(x^{\prime}\right) / q\left(x^{\prime} \mid x\right)}{\pi(x) / q\left(x \mid x^{\prime}\right)} \tag{28}\\
r\left(x^{\prime} \mid x\right) & =\min \{1, \alpha\} \tag{29}
\end{align*}
$$

(c) Set

$$
X_{s+1}= \begin{cases}x^{\prime} & \text { with probability } r \tag{30}\\ x_{s} & \text { with probability } 1-r\end{cases}
$$

METROPOLIS ALGORITHM
Proposal $q\left(x^{\prime} \mid x\right)$ is symmetric, so

$$
\begin{align*}
\alpha & =\frac{\pi\left(x^{\prime}\right)}{\pi(x)} \tag{31}\\
r\left(x^{\prime} \mid x\right) & =\min \{1, \alpha\} \tag{32}
\end{align*}
$$

If $\pi\left(x^{\prime}\right)>\pi(x)$, we always accept, otherwise we may accept.

- Don't need to be able to compute Z, i.e. only need $p^{\prime}(x)=$ $p(x) / Z$.
- Statistical efficiency is (in principle!) independent of the dimension of x (does not suffer from the curse of dimensionality)
- Can use any mixture of heuristics as proposals (so long as it is possible to reach all states), so good way to combine different techniques into coherent framework.

GIBBS SAMPLING

Special case of MH which is useful when the full conditionals are easy to sample from (eg in many graphical models)

1. $x_{1}^{s+1} \sim p\left(x_{1} \mid x_{2}^{s}, \ldots, x_{D}^{s}\right)$
2. $x_{2}^{s+1} \sim p\left(x_{2} \mid x_{1}^{s+1}, x_{3}^{s}, \ldots, x_{D}^{s}\right)$
3. $x_{i}^{s+1} \sim p\left(x_{i} \mid x_{1: i-1}^{s+1}, x_{i+1: D}^{s}\right)$
4. $x_{D}^{s+1} \sim p\left(x_{D} \mid x_{1}^{s+1}, \ldots, x_{D-1}^{s+1}\right)$

If using Gaussian proposal, $q\left(x^{\prime} \mid x\right)=\mathcal{N}\left(x^{\prime} \mid x, \Sigma\right)$, must pick Σ carefully. Can use $\Sigma=k H$, where H is the Hessian of the log likelihood (computed at the MLE) and $k>1$ is a scale factor.

34

Gibis FOR 2D Gaussians
Alternately sample from $p\left(x_{1} \mid x_{2}\right)$ and $p\left(x_{2} \mid x_{1}\right)$

Good

- No need to design proposal
- Acceptance rate $\alpha=1$

Bad

- Can be slow since only updates one variable at a time (eg for Gaussians, axis parallel moves)

Similar to Metropolis except we gradually change the target distribution from smooth to peaky.
Let $\pi_{s}(x)=\pi(x)^{1 / T_{s}}$ be the target at step s, where T_{s} is the temperature. Let $\pi(x)=\exp (-E(x))$ be the target defined in terms of energy. Then

$$
\begin{align*}
\alpha & =\frac{\pi\left(x^{\prime}\right)^{1 / T_{s}}}{\pi(x)^{1 / T_{s}}} \tag{33}\\
& =\exp \left(\left(E\left(x^{\prime}\right)-E(x)\right) / T_{s}\right) \tag{34}
\end{align*}
$$

We can maximize the probability or minimize the energy by cooling T_{s}.
If $E_{S}\left(x^{\prime}\right)<E_{S}(x)$ then we always accept, otherwise we accept with a probability that depends on $E_{s}\left(x^{\prime}\right)-E_{S}(x)$: at large temperatures we are more willing to go up in energy, at small temperatures we will not go uphill.

Can only use the samples x^{s} once the chain has converged to its stationary distribution. How detect this? Use trace plots.

OUTLINE

- Directed graphical models $\sqrt{ }$
- Undirected graphical models $\sqrt{ }$
- State estimation $\sqrt{ }$
- MCMC $\sqrt{ }$
- Gaussians
- Mixture models

Read Alpaydin sec 5.1-5.4

$$
\begin{equation*}
\mathcal{N}(\vec{x} \mid \vec{\mu}, \Sigma) \stackrel{\text { def }}{=} \frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})\right] \tag{39}
\end{equation*}
$$

Σ (and hence Σ^{-1}) is a symmetric positive definite matrix i.e. for all vectors u

$$
\Delta=u^{T} \Sigma^{-1} u \geq 0
$$

If $u=x-\mu$, this is the Mahalanobis distance between x and μ.

2D Gaussians

$$
\begin{align*}
\Sigma & =\left(\begin{array}{cc}
\sigma_{X} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}
\end{array}\right) \tag{40}\\
\rho & =\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} \tag{41}
\end{align*}
$$

$$
\begin{gather*}
\mu_{M L}=\frac{1}{N} \sum_{i} \vec{x}_{i} \tag{42}\\
\Sigma_{M L}=\frac{1}{N} \sum_{i=1}^{N}\left(\vec{x}_{i}-\mu_{M L}\right)\left(\vec{x}_{i}-\mu_{M L}\right)^{T} \tag{43}
\end{gather*}
$$

$N, \sum_{i} \vec{x}_{i}$ and $\sum_{i} \vec{x}_{i} \vec{x}_{i}^{T}$ are called (minimal) sufficient statistics.

GaUSSIAN MIXTURE MODELS

Read Alpaydin ch 7!

$$
\begin{equation*}
p(x \mid \theta)=\sum_{k=1}^{K} p(z=k) p(x \mid z=k)=\sum_{k} \pi(k) \mathcal{N}\left(x \mid \mu_{k}, \Sigma_{k}\right) \tag{44}
\end{equation*}
$$

Mixture of Bernoullis
Just change the "class conditional density" $p(x \mid z=k)$

$$
\begin{equation*}
p(x \mid z=k, \theta)=\prod_{i=1}^{K} B e\left(x_{i} \mid \theta_{k i}\right)=\prod_{i=1}^{K} x_{i}^{\theta_{k i}}\left(1-x_{i}\right)^{1-\theta_{k i}} \tag{45}
\end{equation*}
$$

Useful for clustering binary data

Log likelihood

$$
\begin{equation*}
\ell(\theta)=\sum_{n} \log \sum_{z_{n}=1}^{K} \pi\left(z_{n}\right) \mathcal{N}\left(x_{n} \mid z_{n}, \mu\left(z_{n}\right), \Sigma\left(z_{n}\right)\right) \tag{46}
\end{equation*}
$$

Can use Newton's method or conjugate gradient descent, etc. Or can use EM. Both will get stuck in local maxima.

- E step:

$$
\begin{equation*}
p\left(z_{n}=k \mid x_{n}, \theta^{o l d}\right)=r_{n k}=\frac{\pi_{k} \mathcal{N}\left(x_{n} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(x_{n} \mid \mu_{j}, \Sigma_{j}\right)} \tag{47}
\end{equation*}
$$

The value $r_{n k}$ is called the responsibility of cluster k for data point n.

- M step:

$$
\begin{align*}
\theta^{\text {new }} & =\arg \max _{\theta} Q\left(\theta, \theta^{\text {old }}\right)=\arg \max _{\theta} E \sum_{n} \log p\left(x_{n}, z_{n} \mid \theta \nmid 48\right) \\
\pi_{k} & =\frac{1}{N} \sum_{n} r_{n k} \tag{49}\\
\mu_{k}^{n e w} & =\frac{\sum_{n} r_{n k} x_{n}}{\sum_{n} r_{n k}} \tag{50}\\
\Sigma_{k} & =\frac{\sum_{n} r_{n k}\left(x_{n}-\mu_{k}^{n e w}\right)\left(x_{n}-\mu_{k}^{n e w}\right)^{T}}{\sum_{n} r_{n k}} \tag{51}
\end{align*}
$$

Choosing K

- Cross validation

- MDL: pick K to minimize cost, which is number of bits required to encode model and data given model. By Shannon, we have

$$
\begin{equation*}
\operatorname{cost}(K) \approx-\log p(D \mid, \hat{\theta}, K)-\log p(\hat{\theta} \mid K) \tag{56}
\end{equation*}
$$

This is the number of bits required to specify the parameters $\hat{\theta}$, and the number of bits required to specify the residual errors.

- M step: just take average of all the points assigned to you

$$
\begin{equation*}
\mu_{k}^{n e w}=\frac{\sum_{n: z_{n}^{*}=k} x_{n}}{\sum_{n} z_{n}^{*}=k} \tag{55}
\end{equation*}
$$

GMM is a flat clustering. We can do hierarchical clustering by greedily merging clusters that are most similar.
Single link clustering:

$$
\begin{equation*}
D_{S L}\left(G_{i}, G_{j}\right)=\min _{x^{r} \in G_{i}, x^{s} \in G_{j}} D\left(x^{r}, x^{s}\right) \tag{57}
\end{equation*}
$$

where $D\left(x^{r}, x^{s}\right)$ is a distance measure between two feature vectors. Same as building a minimum spanning tree of the data. Order of merges produces a dendogram.

