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OUTLINE

• Directed graphical models

• Undirected graphical models

• State estimation

• MCMC

• Gaussians

• Mixture models
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CHAIN RULE

See Alpaydin sec 3.7

Xi ⊥ Xnon−desc(i)|Xπi ⇒ Xi ⊥ Xanc(i)|Xπi (1)

⇒ p(X1:d) =
∏

i

p(xi|xπi) (2)
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P (C, S,R,W ) = P (C)P (S|C)P (R|S,C)P (W |S,R,C) chain rule (3)
= P (C)P (S|C)P (R|��S,C)P (W |S,R,C) since S ⊥ R|C (4)
= P (C)P (S|C)P (R|��S,C)P (W |S,R, �

��C) since W ⊥ C|S,R(5)
= P (C)P (S|C)P (R|C)P (W |S,R) (6)
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ORDER MATTERS
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CPDS

• Consider p(Xi|Xπi). Let U = Xπi.

• Tabular
p(Xi = k|U = j) = θijk

• Sigmoid / logistic

p(Xi = 1|U = u) = σ(wTi u), σ(z) = 1/(1 + e−z)

• Noisy-or
p(Xi = 1|U = u) =

∏

j:uj=1

qij

• Linear Gaussian

p(Xi = x|U = u) = N (x|wTi u, σ2
i )

5

BAYES BALL/ D-SEPARATION
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GRAPH MANIPULATION

arc reversal

node elimination

H

17 parameters
59 parameters
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CONVERTING A DGM TO A UGM (MORALIZATION)
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PLATES

p(D|θ) =

N
∏

n=1

p(yn|θy)p(xn|yn, θx) (7)
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PARAMETER ESIMTATION FOR COMPLETE DATA

Factored prior + factored likelihood + complete data ⇒ factored
posterior ⇒ problem decomposes into d separate problems
eg for MLE

θ̂i = arg max
θ

∑

n

log p(Xn
i |Xn

πi, θ) (8)

eg for MAP

θ̂i = arg max
θ

log p(θ) + [
∑

n

log p(Xn
i |Xn

πi, θ)] (9)

eg for Bayes

p(θi|D) = p(θi)
∏

n

p(Xn
i |Xn

πi, θi) (10)
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** EM FOR DGMS

• E step:
p(Xn

i , X
n
πi|Dn, θ

old) (11)

• M step:
θ̂i = arg max

θ

∑

n

< log p(Xn
i |Xn

πi, θ) > (12)

11

MARKOV EQUIVALENCE/ PDAGS
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PERFECT INTERVENTIONS
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** INTERVENTION EQUIVALENCE
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OUTLINE

• Directed graphical models
√

• Undirected graphical models

• State estimation

• MCMC

• Gaussians

• Mixture models

15

HAMMERSLEY CLIFFORD THEOREM

p(x1:6) =
1

Z
ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)ψ35(x3, x5)ψ256(x2, x5, x6

(13)
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ISING MODEL

p(x, y) = p(x)p(y|x) (14)

=





1

Z

∏

<ij>

ψij(xi, xj)









∏

i

p(yi|xi)



 (15)

ψij(xi, xj) = exp[Jijxixj] =

(

eJij e−Jij
e−Jij eJij

)

(16)
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CONDITIONAL INDEPENDENCE

A ⊥ B|C iff all nodes in A are separated from all nodes in B,
after we remove all nodes in C
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** PARAMETER ESTIMATION

Finding parameter estimates (eg MLEs) is hard because the
likelihood does not decompose into separate problems, be-
cause of the global normalizing constant Z

p(x|θ) =
1

Z(θ)

∏

c∈C
ψc(xc|θc) (17)
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OUTLINE

• Directed graphical models
√

• Undirected graphical models
√

• State estimation

• MCMC

• Gaussians

• Mixture models
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KINDS OF INFERENCE

1. State estimation: inferring p(X|y, θ,G).

2. Parameter estimation (learning): inferring p(θ|y,G).

3. Model selection (structure learning): inferring p(G|y).
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KINDS OF STATE ESTIMATION

• sum-product

p(xi) =
1

Z

∑

x−i

∏

c

ψc(xc) (18)

• max-product
xMAP = arg max

x

∏

c

ψc(xc) (19)

• max-sum-product

xMMAP
i = arg max

xi

∑

x−i

∏

c

ψc(xc) (20)
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BRUTE FORCE

p(X1:4) =
1

Z
ψ123(X1, X2, X3)ψ24(X2, X4) (21)

Build table and find marginals by enumeration.
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VARIABLE ELIMINATION (DYNAMIC PROGRAMMING)
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P (J) =
X

L

X

S

ψJ (J, L, S)
X

G

ψL(L,G)
X

H

ψH(H,G, J)
X

I

ψS(S, I)ψI (I)
X

D

ψ(G, I,D)
X

C

ψC(C)ψD(D,C)

| {z }

τ1(D)

(22)

=
X

L

X

S

ψJ (J, L, S)
X

G

ψL(L,G)
X

H

ψH(H,G, J)
X

I

ψS(S, I)ψI (I)
X

D

ψ(G, I,D)τ1(D)

| {z }

τ2(G,I)

(23)

. . . (24)
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MAXIMAL CLIQUES IN INDUCED GRAPH

Largest maxclique is G,L, S, J so treewidth is 4-1=3. Other
orders may produce larger treewidth.
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GIBBS SAMPLING FOR DGMS

Full conditional

p(Xi = `|x−i) ∝ p(Xi = `|Pa(xi))
∏

yj∈ch(Xi)

p(yj|Pa(yj) (25)

. . .

. . .U1 Um

Yn

Znj

Y1

Z1j
X

26

GIBBS SAMPLING FOR PAIRWISE UGMS

Full conditional

p(Xi = `|x−i) ∝
∏

j∈Ni
ψij(Xi = `, xj) (26)
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OUTLINE

• Directed graphical models
√

• Undirected graphical models
√

• State estimation
√

• MCMC

• Gaussians

• Mixture models
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MONTE CARLO INTEGRATION

I =

∫

h(x)p(x)dx ≈ 1

S

S
∑

s=1

h(x(s)) (27)
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MCMC

Build a Markov chain whose stationary distribution is propor-
tional to the target, π(x) ∝ p(x). Then samples from this chain
can be used for MC integration.
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METROPOLIS HASTINGS ALGORITHM

1. Initialize X0 arbitrarily.

2. For s = 0, 2, . . .

(a) Generate a proposed state x′ ∼ q(x′|xs)
(b) Evaluate the acceptance propability

α =
π(x′)q(x|x′)
π(x)q(x′|x)

=
π(x′)/q(x′|x)

π(x)/q(x|x′) (28)

r(x′|x) = min{1, α} (29)

(c) Set

Xs+1 =

{

x′ with probability r
xs with probability 1 − r

(30)

31

METROPOLIS ALGORITHM

Proposal q(x′|x) is symmetric, so

α =
π(x′)
π(x)

(31)

r(x′|x) = min{1, α} (32)

If π(x′) > π(x), we always accept, otherwise we may accept.
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MH: WHY SO USEFUL?

• Don’t need to be able to compute Z, i.e. only need p′(x) =
p(x)/Z.

• Statistical efficiency is (in principle!) independent of the di-
mension of x (does not suffer from the curse of dimensional-
ity)

• Can use any mixture of heuristics as proposals (so long as
it is possible to reach all states), so good way to combine
different techniques into coherent framework.
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PROPOSAL MATTERS

If using Gaussian proposal, q(x′|x) = N (x′|x,Σ), must pick Σ
carefully. Can use Σ = kH, where H is the Hessian of the log
likelihood (computed at the MLE) and k > 1 is a scale factor.

Target distribution

MCMC approximation

Markov chain

t θ

σ =1 σ =100

σ =10

* *

*
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GIBBS SAMPLING

Special case of MH which is useful when the full conditionals
are easy to sample from (eg in many graphical models)

1. xs+1
1 ∼ p(x1|xs2, . . . , xsD)

2. xs+1
2 ∼ p(x2|xs+1

1 , xs3, . . . , x
s
D)

3. xs+1
i ∼ p(xi|xs+1

1:i−1, x
s
i+1:D)

4. xs+1
D ∼ p(xD|xs+1

1 , . . . , xs+1
D−1)
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GIBBS FOR 2D GAUSSIANS

Alternately sample from p(x1|x2) and p(x2|x1)

36



GIBBS: GOOD AND BAD

Good

• No need to design proposal

• Acceptance rate α = 1

Bad

• Can be slow since only updates one variable at a time (eg for
Gaussians, axis parallel moves)
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CONVERGENCE

Can only use the samples xs once the chain has converged to
its stationary distribution. How detect this? Use trace plots.
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SIMULATED ANNEALING

Similar to Metropolis except we gradually change the target dis-
tribution from smooth to peaky.
Let πs(x) = π(x)1/Ts be the target at step s, where Ts is the
temperature. Let π(x) = exp(−E(x)) be the target defined in
terms of energy. Then

α =
π(x′)1/Ts

π(x)1/Ts
(33)

= exp
(

(E(x′) − E(x))/Ts
)

(34)

We can maximize the probability or minimize the energy by
cooling Ts.
If Es(x′) < Es(x) then we always accept, otherwise we accept
with a probability that depends on Es(x′) −Es(x): at large tem-
peratures we are more willing to go up in energy, at small tem-
peratures we will not go uphill.
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OUTLINE

• Directed graphical models
√

• Undirected graphical models
√

• State estimation
√

• MCMC
√

• Gaussians

• Mixture models
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1D

N (x|µ, σ)
def
=

1√
2πσ2

e
− 1

2σ2(x−µ)2
(35)

MLE

µML =
1

N

N
∑

i=1

xi (36)

σ̂2
ML =

1

N

N
∑

i=1

(xi − µML)2 (37)

=
1

N

∑

i

(x2
i ) − (

1

N

∑

i

xi)
2 (38)
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MULTID

Read Alpaydin sec 5.1-5.4

N (~x|~µ,Σ)
def
=

1

(2π)p/2|Σ|1/2
exp[−1

2(~x− ~µ)TΣ−1(~x− ~µ)] (39)

Σ (and hence Σ−1) is a symmetric positive definite matrix i.e.
for all vectors u

∆ = uTΣ−1u ≥ 0

If u = x− µ, this is the Mahalanobis distance between x and µ.

42

2D GAUSSIANS

Σ =

(

σX ρσXσY
ρσXσY σY

)

(40)

ρ =
Cov(X,Y )

√

V ar(X)V ar(Y )
(41)
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SPHERICAL, DIAGONAL, FULL COVARIANCE MATRICES

1, d, O(d2) parameters
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MLE

µML =
1

N

∑

i

~xi (42)

ΣML =
1

N

N
∑

i=1

(~xi − µML)(~xi − µML)T (43)

N ,
∑

i ~xi and
∑

i ~xi~x
T
i are called (minimal) sufficient statistics.
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OUTLINE

• Directed graphical models
√

• Undirected graphical models
√
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√

• MCMC
√

• Gaussians
√

• Mixture models
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GAUSSIAN MIXTURE MODELS

Read Alpaydin ch 7!

p(x|θ) =

K
∑

k=1

p(z = k)p(x|z = k) =
∑

k

π(k)N (x|µk,Σk) (44)
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MIXTURE OF BERNOULLIS

Just change the “class conditional density” p(x|z = k)

p(x|z = k, θ) =

K
∏

i=1

Be(xi|θki) =

K
∏

i=1

x
θki
i (1 − xi)

1−θki (45)

Useful for clustering binary data
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MLES

Log likelihood

`(θ) =
∑

n

log

K
∑

zn=1

π(zn)N (xn|zn, µ(zn),Σ(zn)) (46)

Can use Newton’s method or conjugate gradient descent, etc.
Or can use EM. Both will get stuck in local maxima.
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EM FOR GMMS

• E step:

p(zn = k|xn, θold) = rnk =
πkN (xn|µk,Σk)
∑

j πjN (xn|µj,Σj)
(47)

The value rnk is called the responsibility of cluster k for data
point n.

• M step:

θnew = arg max
θ
Q(θ, θold) = arg max

θ
E
∑

n

log p(xn, zn|θ)(48)

πk =
1

N

∑

n

rnk (49)

µnewk =

∑

n rnkxn
∑

n rnk
(50)

Σk =

∑

n rnk(xn − µnewk )(xn − µnewk )T
∑

n rnk
(51)
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K MEANS FOR GMMS

• We assume Σk = I and πk = 1/K are fixed and just learn the
centers µk (prototypes).

• E step: hard assign each point to closest prototype

z∗n = arg max
k
p(zn = k|xn, θold) (52)

= arg max
k

exp(−1
2(xn − µk)

2) (53)

= arg min
k

||xn − µk||2 (54)

• M step: just take average of all the points assigned to you

µnewk =

∑

n:z∗n=k xn
∑

n z
∗
n = k

(55)
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CHOOSING K

• Cross validation

• MDL: pick K to minimize cost, which is number of bits re-
quired to encode model and data given model. By Shannon,
we have

cost(K) ≈ − log p(D|, θ̂,K) − log p(θ̂|K) (56)

This is the number of bits required to specify the parame-
ters θ̂, and the number of bits required to specify the residual
errors.
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AGGLOMERATIVE CLUSTERING

GMM is a flat clustering. We can do hierarchical clustering by
greedily merging clusters that are most similar.
Single link clustering:

DSL(Gi, Gj) = min
xr∈Gi,xs∈Gj

D(xr, xs) (57)

where D(xr, xs) is a distance measure between two feature
vectors. Same as building a minimum spanning tree of the
data. Order of merges produces a dendogram.
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