CS340: Machine Learning

Modelling discrete data with Bernoulli and MULTINOMIAL DISTRIBUTIONS

Kevin Murphy

MODELING DISCRETE DATA

- Some data is discrete/ symbolic, e.g., words, DNA sequences, etc.
- We want to build probabilistic models of discrete data $p(X \mid M)$ for use in classification, clustering, segmentation, novelty detection, etc.
- We will start with models (density functions) of a single categorical random variable $X \in\{1, \ldots, K\}$. (Categorical means the values are unordered, not low/ medium/ high).
- Today we will focus on $K=2$ states, i.e., binary data.
- Later we will build models for multiple discrete random variables.

BERNOULLI DISTRIBUTION

- Let $X \in\{0,1\}$ represent tails/ heads.
- Suppose $P(X=1)=\theta$. Then

$$
P(x \mid \theta)=\operatorname{Be}(X \mid \theta)=\theta^{x}(1-\theta)^{1-x}
$$

- It is easy to show that

$$
E[X]=\theta, \quad \operatorname{Var}[X]=\theta(1-\theta)
$$

- Given $D=\left(x_{1}, \ldots, x_{N}\right)$, the likelihood is

$$
p(D \mid \theta)=\prod_{n=1}^{N} p\left(x_{n} \mid \theta\right)=\prod_{n=1}^{N} \theta^{x_{n}}(1-\theta)^{1-x_{n}}=\theta^{N_{1}}(1-\theta)^{N_{0}}
$$

where $N_{1}=\sum_{n} x_{n}$ is the number of heads and $N_{0}=\sum_{n}\left(1-x_{n}\right)$ is the number of tails (sufficient statistics). Obviously $N=N_{0}+N_{1}$.

Binomial distribution

- Let $X \in\{1, \ldots, N\}$ represent the number of heads in N trials. Then X has a binomial distribution

$$
p(X \mid N)=\binom{N}{X} \theta^{X}(1-\theta)^{N-X}
$$

where

$$
\binom{N}{X}=\frac{N!}{(N-X)!X!}
$$

is the number of ways to choose X items from N.

- We will rarely use this distribution.

PARAMETER ESTIMATION

- Suppose we have a coin with probability of heads θ. How do we estimate θ from a sequence of coin tosses $D=\left(X_{1}, \ldots, X_{n}\right)$, where $X_{i} \in\{0,1\}$?
- One approach is to find a maximum likelhood estimate

$$
\hat{\theta}_{M L}=\arg \max _{\theta} p(D \mid \theta)
$$

- The Bayesian approach is to treat θ as a random variable and to use Bayes rule

$$
p(\theta \mid D)=\frac{p(\theta) p(D \mid \theta)}{\int_{\theta^{\prime}} p\left(\theta^{\prime}, D\right)}
$$

and then to return the posterior mean or mode.

- We will discuss both methods below.

MLE (MAXIMUM LIKELIHOOD ESTIMATE) FOR BERNOULLI

- Given $D=\left(x_{1}, \ldots, x_{N}\right)$, the likelihood is

$$
p(D \mid \theta)=\theta^{N_{1}}(1-\theta)^{N_{0}}
$$

- The log-likelihood is

$$
L(\theta)=\log p(D \mid \theta)=N_{1} \log \theta+N_{0} \log (1-\theta)
$$

- Solving for $\frac{d L}{d \theta}=0$ yields

$$
\theta_{M L}=\frac{N_{1}}{N_{1}+N_{0}}=\frac{N_{1}}{N}
$$

Problems with the MLE

- Suppose we have seen $N_{1}=0$ heads out of $N=3$ trials. Then we predict that heads are impossible!

$$
\theta_{M L}=\frac{N_{1}}{N}=\frac{0}{3}=0
$$

- This is an example of the sparse data problem: if we fail to see something in the training set (e.g., an unknown word), we predict that it can never happen in the future.
- We will now see how to solve this pathology using Bayesian estimation.
- The Bayesian approach is to treat θ as a random variable and to use Bayes rule

$$
p(\theta \mid D)=\frac{p(\theta) p(D \mid \theta)}{\int_{\theta^{\prime}} p\left(\theta^{\prime}, D\right)}
$$

- We need to specify a prior $p(\theta)$. This reflects our subjective beliefs about what possible values of θ are plausible, before we have seen any data.
- We will discuss various "objective" priors below.

The beta distribution

We will assume the prior distribution is a beta distribution,

$$
p(\theta)=B e\left(\theta \mid \alpha_{1}, \alpha_{0}\right) \propto\left[\theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{0}-1}\right]
$$

This is also written as $\theta \sim B e\left(\alpha_{1}, \alpha_{0}\right)$ where α_{0}, α_{1} are called hyperparameters, since they are parameters of the prior. This distribution satisfies

$$
\begin{aligned}
E \theta & =\frac{\alpha_{1}}{\alpha_{0}+\alpha_{1}} \\
\text { mode } \theta & =\frac{\alpha_{1}-1}{\alpha_{0}+\alpha_{1}-2}
\end{aligned}
$$

Conjugate priors

- A prior $p(\theta)$ is called conjugate if, when multiplied by the likelihood $p(D \mid \theta)$, the resulting posterior is in the same parametric family as the prior. (Closed under Bayesian updating.)
- The Beta prior is conjugate to the Bernoulli likelihood

$$
\begin{aligned}
P(\theta \mid D) & \propto P(D \mid \theta) P(\theta)=p(D \mid \theta) B e\left(\theta \mid \alpha_{1}, \alpha_{0}\right) \\
& \left.\propto\left[\theta^{N_{1}}(1-\theta)^{\left.N_{0}\right]}\right] \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{0}-1}\right] \\
& =\theta^{N_{1}+\alpha_{1}-1}(1-\theta)^{N_{0}+\alpha_{0}-1} \\
& \propto B e\left(\theta \mid \alpha_{1}+N_{1}, \alpha_{0}+N_{0}\right)
\end{aligned}
$$

- e.g., start with $\operatorname{Be}(\theta \mid 2,2)$ and observe $x=1$ to get $\operatorname{Be}(\theta \mid 3,2)$, so the mean shifts from $E[\theta]=2 / 4$ to $E[\theta \mid D]=3 / 5$.
- We see that the hyperparameters α_{1}, α_{0} act like "pseudo counts", and correspond to the number of "virtual" heads/tails.
- $\alpha=\alpha_{0}+\alpha_{1}$ is called the effective sample size (strength) of the prior, since it plays a role analogous to $N=N_{0}+N_{1}$.

BAYESIAN UPDATING IN PICTURES

- Start with $\operatorname{Be}\left(\theta \mid \alpha_{0}=2, \alpha_{1}=2\right)$ and observe $x=1$, so the posterior is $\operatorname{Be}\left(\theta \mid \alpha_{0}=3, \alpha_{1}=2\right)$.
thetas = 0:0.01:1;
alpha1 = 2; alphaO = 2; N1=1; NO=O; N = N1+NO;
prior $=$ betapdf(thetas, alpha1, alpha1);
lik $=$ thetas.^N1 .* (1-thetas).^NO;
post $=$ betapdf(thetas, alpha1+N1, alpha0+NO); subplot(1,3,1);plot(thetas, prior);
subplot (1,3,2);plot(thetas, lik);
subplot(1,3,3);plot(thetas, post);

Sequential Bayesian updating

SEquential Bayesian updating

- Start with $\operatorname{Be}\left(\theta \mid \alpha_{1}, \alpha_{0}\right)$ and observe N_{0}, N_{1} to get $B e\left(\theta \mid \alpha_{1}+N_{1}, \alpha_{0}+N_{0}\right)$.
- Treat the posterior as a new prior: define $\alpha_{0}^{\prime}=\alpha_{0}+N_{0}, \alpha_{1}^{\prime}=$ $\alpha_{1}+N_{1}$, so $p\left(\theta \mid N_{0}, N_{1}\right)=\operatorname{Be}\left(\theta \mid \alpha_{1}^{\prime}, \alpha_{0}^{\prime}\right)$.
- Now see a new set of data, $N_{0}^{\prime}, N_{1}^{\prime}$ to get get the new posterior

$$
\begin{aligned}
p\left(\theta \mid N_{0}, N_{1}, N_{0}^{\prime}, N_{1}^{\prime}\right) & =\operatorname{Be}\left(\theta \mid \alpha_{1}^{\prime}+N_{1}^{\prime}, \alpha_{0}^{\prime}+N_{0}^{\prime}\right) \\
& =\operatorname{Be}\left(\theta \mid \alpha_{1}+N_{1}+N_{1}^{\prime}, \alpha_{0}+N_{0}+N_{0}^{\prime}\right)
\end{aligned}
$$

- This is equivalent to combining the two data sets into one big data set with counts $N_{0}+N_{0}^{\prime}$ and $N_{1}+N_{1}^{\prime}$.
- The advantage of sequential updating is that you can learn online, and don't need to store the data.

Point estimates

- $p(\theta \mid D)$ is the full posterior distribution. Sometimes we want to collapse this to a single point. It is common to pick the posterior mean or posterior mode.
- If $\theta \sim B e\left(\alpha_{1}, \alpha_{0}\right)$, then $E \theta=\frac{\alpha_{1}}{\alpha}$, mode $\theta=\frac{\alpha_{1}-1}{\alpha-2}$.
- Hence the MAP (maximum a posterior) estimate is

$$
\hat{\theta}_{M A P}=\arg \max _{\theta} p(D \mid \theta) p(\theta)=\frac{\alpha_{1}+N_{1}-1}{\alpha+N-2}
$$

- The posterior mean is

$$
\hat{\theta}_{\text {mean }}=\frac{\alpha_{1}+N_{1}}{\alpha+N}
$$

- The maximum likelihood estimate is

$$
\hat{\theta}_{M L E}=\frac{N_{1}}{N}
$$

Posterior predictive distribution

- The posterior predictive distribution is

$$
\begin{aligned}
p(X=1 \mid D) & =\int_{0}^{1} p(X=1 \mid \theta) p(\theta \mid D) d \theta \\
& =\int_{0}^{1} \theta p(\theta \mid D) d \theta=E[\theta \mid D] \\
& =\frac{N_{1}+\alpha_{1}}{N_{1}+N_{0}+\alpha_{1}+\alpha_{0}}=\frac{N_{1}+\alpha_{1}}{N+\alpha}
\end{aligned}
$$

- With a uniform prior $\alpha_{0}=\alpha_{1}=1$, we get Laplace's rule of succession

$$
p\left(X=1 \mid N_{1}, N_{0}\right)=\frac{N_{1}+1}{N_{1}+N_{0}+2}
$$

- eg. if we see $D=1,1,1, \ldots$, our predicted probability of heads steadily increases: $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots$

PLUG-IN ESTIMATES

- Rather than integrating over the posterior, we can pick a single point estimate of θ and make predictions using that.

$$
\begin{aligned}
p\left(X=1 \mid D, \hat{\theta}_{M L}\right) & =\frac{N_{1}}{N} \\
p\left(X=1 \mid D, \hat{\theta}_{\text {mean }}\right) & =\frac{N_{1}+\alpha_{1}}{N+\alpha} \\
p\left(X=1 \mid D, \hat{\theta}_{M A P}\right) & =\frac{N_{1}+\alpha_{1}-1}{N+\alpha-2}
\end{aligned}
$$

- In this case the full posterior predictive density $p(X=1 \mid D)$ is the same as the plug-in estimate using the posterior mean parameter $p\left(X=1 \mid D, \hat{\theta}_{\text {mean }}\right)$.

Posterior mean

- The posterior mean is a convex combination of the prior mean $\alpha_{1}^{\prime}=\alpha_{1} / \alpha$ and the MLE N_{1} / N :

$$
\begin{aligned}
\hat{\theta}_{\text {mean }} & =\frac{\alpha_{1}+N_{1}}{\alpha+N} \\
& =\frac{\alpha_{1}^{\prime} \alpha}{\alpha+N}+\frac{N}{\alpha+N} \frac{N_{1}}{N} \\
& =\lambda \alpha_{1}^{\prime}+(1-\lambda) \frac{N_{1}}{N}
\end{aligned}
$$

where

$$
\lambda=\frac{\alpha}{N+\alpha}
$$

is the prior weight relative to the total weight.

- (We will derive a similar result later for Gaussians.)

Effect of Prior strength

- Suppose we weakly believe in a fair coin, $p(\theta)=B e(1,1)$.
- If $N_{1}=3, N_{0}=7$ then $p(\theta \mid D)=\operatorname{Be}(4,8)$ so $E[\theta \mid D]=4 / 12=$ 0.33.
- Suppose we strongly believe in a fair coin, $p(\theta)=B e(10,10)$.
- If $N_{1}=3, N_{0}=7$ then $p(\theta \mid D)=B e(13,17)$ so $E[\theta \mid D]=13 / 30=$ 0.43 .
- With a strong prior, we need a lot of data to move away from our initial beliefs.

UNINFORMATIVE/ OBJECTIVE/ REFERENCE PRIOR

- If $\alpha_{0}=\alpha_{1}=1$, then $\operatorname{Be}\left(\theta \mid \alpha_{1}, \alpha_{0}\right)$ is uniform, which seems like an uninformative prior.

- But since the posterior predictive is

$$
p\left(X=1 \mid N_{1}, N_{0}\right)=\frac{N_{1}+\alpha_{1}}{N+\alpha}
$$

$\alpha_{1}=\alpha_{0}=0$ is a better definition of uninformative, since then the posterior mean is the MLE.

- Note that as $\alpha_{0}, \alpha_{1} \rightarrow 0$, the prior becomes bimodal.
- This shows that a uniform prior is not always uninformative.
- Let $X \in\{1, \ldots, K\}$ have distribution

$$
p(X=k \mid \theta)=\theta_{k}=\theta_{1}^{I(X=1)} \theta_{2}^{I(X=2)} \cdots \theta_{K}^{I(X=k)}
$$

This is called a multinomial distribution. We require $0 \leq \theta_{k} \leq 1$ and $\sum_{k=1}^{K} \theta_{k}=1$.

- $I(e)=1$ if event e is true, and $I(e)=0$ otherwise (the indicator function).
- e.g., a fair dice has $\theta_{k}=1 / 6$ for $k=1: 6$.
- Sometimes instead of writing $X=k$ we will use a one-of-K encoding. Specifically, $[x] \in\{0,1\}^{K}$ with the k 'th bit on means $X=k$. eg. if $x=3$ and $K=6$, then $[x]=(0,0,1,0,0,0)$.

MAXIMUM LIKELIHOOD ESTIMATION

- Suppose we observe N iid die rolls (K-sided): $D=3,1,6,2, \ldots$
- The log likelihood of the data is given by

$$
\begin{aligned}
\ell(\theta ; D) & =\log p(D \mid \theta)=\log \prod_{m} p\left(x_{m} \mid \theta\right) \\
& =\sum_{m} \log \prod_{k} \theta_{k}^{I\left(x^{m}=k\right)} \\
& =\sum_{m} \sum_{k} I\left(x^{m}=k\right) \log \theta_{k}=\sum_{k} N_{k} \log \theta_{k}
\end{aligned}
$$

- The sufficient statistics are the counts $N_{k}=\sum_{m} I\left(X_{m}=k\right)$,
- We need to maximize this subject to the constraint $\sum_{k} \theta_{k}=1$, so we use a Lagrange multiplier.

MAXIMUM LIKELIHOOD ESTIMATION

- Constrained cost function:

$$
\tilde{l}=\sum_{k} N_{k} \log \theta_{k}+\lambda\left(1-\sum_{k} \theta_{k}\right)
$$

- Take derivatives wrt θ_{k} :

$$
\begin{aligned}
\frac{\partial \tilde{l}}{\partial \theta_{k}} & =\frac{N_{k}}{\theta_{k}}-\lambda=0 \\
N_{k} & =\lambda \theta_{k} \\
\sum_{k} N_{k} & =N=\lambda \sum_{k} \theta_{k}=\lambda \\
\hat{\theta}_{k} & =\frac{N_{k}}{N}
\end{aligned}
$$

- $\hat{\theta}_{k}$ is the fraction of times k occurs.

MLE Example

- Suppose $K=6$ and we see $D=(1,6,1,2)$ so $N=4$. Then
$\hat{\theta}=(2 / 4,1 / 4,0 / 4,0 / 4,0 / 4,1 / 4)$

BAYESIAN ESTIMATION

- We will now consider Bayesian estimates $p(\theta \mid D)$.
- We just replace the bernoulli likelihood with a multinomial likelihood, and replace the beta prior with a Dirichlet prior.

DIRICHLET PRIORS

A Dirichlet prior generalizes the beta from binary variables to K-ary variables.

$$
p(\theta \mid \alpha)=\mathcal{D}(\theta \mid \alpha) \propto \theta_{1}^{\alpha_{1}-1} \cdot \theta_{2}^{\alpha_{2}-1} \cdots \theta_{K}^{\alpha_{K}-1}
$$

Properties of the Dirichlet distribution

- If $\theta \sim \operatorname{Dir}\left(\theta \mid \alpha_{1}, \ldots, \alpha_{K}\right)$, then

$$
\begin{aligned}
E\left[\theta_{k}\right] & =\frac{\alpha_{k}}{\alpha} \\
\operatorname{mode}\left[\theta_{k}\right] & =\frac{\alpha_{k}-1}{\alpha-K}
\end{aligned}
$$

where $\alpha \stackrel{\text { def }}{=} \sum_{k=1}^{K} \alpha_{k}$ is the total strength of the prior.

Dirichlet-multinomial model

By analogy to the Beta-bernoulli case, we can just write down the likelihood, prior, posterior and predictive as follows

$$
\begin{aligned}
P(\vec{N} \mid \vec{\theta}) & =\prod_{i=1}^{K} \theta_{i}^{N_{i}} \\
p(\theta \mid \alpha) & =\mathcal{D}(\theta \mid \alpha) \propto \theta_{1}^{\alpha_{1}-1} \cdot \theta_{2}^{\alpha_{2}-1} \cdots \theta_{K}^{\alpha_{K}-1} \\
p(\theta \mid \vec{N}, \vec{\alpha}) & =\mathcal{D}\left(\alpha_{1}+N_{1}, \ldots, \alpha_{K}+N_{K}\right) \\
p(X=k \mid D) & =E\left[\theta_{k} \mid D\right]=\frac{N_{k}+\alpha_{k}}{N+\alpha}
\end{aligned}
$$

