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• H: Hypothesis space of possible concepts:
• X = {x1, . . . , xn}:  n examples of a concept C. 
• Evaluate hypotheses given data using Bayes’ rule:

– p(h) [“prior”]: domain knowledge, pre-existing biases 
– p(X|h) [“likelihood”]: statistical information in examples.
– p(h|X) [“posterior”]: degree of belief that h is the true extension of C.
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Bayesian inference



Hypothesis space
• Mathematical properties (~50): 

– odd, even, square, cube, prime, …
– multiples of small integers
– powers of small integers
– same first (or last) digit

• Magnitude intervals (~5000): 
– all intervals of integers with endpoints between 

1 and 100
• Hypothesis can be defined by its extension

h = {x : h(x) = 1, x = 1, 2, . . . , 100}



Likelihood p(X|h)
• Assume samples are iid, so

• Size principle: Smaller hypotheses receive greater 
likelihood, and exponentially more so as n increases.

• This is the likelihood of the ordered sequence x1, …, xn
sampled randomly (with replacement) from h
(strong sampling assumption).

• Captures the intuition of a representative sample. 

p(X|h) =Qn
i=1 p(xi|h)

p(X |h) =
½ 1

|size(h)|n if all x1, . . . , xn ∈ h
0 if any xi 6∈ h



Likelihood function

• Since         is a distribution over vectors of 
length n, we require that, for all h,

• It is easy to see this is true,
e.g., for h=even numbers, n=2

• If x is fixed, we do not require
• Hence we are free to multiply the likelihood 

by any constant independent of h
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Example of likelihood

• X={20,40,60}
• H1 = multiples of 10 = {10,20,…,100}
• H2 = even numbers = {2,4,…,100}
• H3 = odd numbers = {1,3,…,99}
• P(X|H1) = 1/10 * 1/10 * 1/10
• p(X|H2) = 1/50 * 1/50 * 1/50
• P(X|H3)   = 0





Hierarchical prior



Computing the posterior

• In this talk, we will not worry about 
computational issues (we will perform brute 
force enumeration or derive analytical 
expressions).
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Generalizing to new objects

Given p(h|X), how do we compute      , 
the probability that C applies to some new 
stimulus y? 
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Posterior predictive distribution

Compute the probability that C applies to some new 
object y by averaging the predictions of all 
hypotheses h, weighted by p(h|X)
(Bayesian model averaging):
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+ Examples Human generalization
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Summary of the Bayesian approach

1. Constrained hypothesis space H
2. Prior p(h)
3. Likelihood p(X|h) 
4. Hypothesis (model) averaging:  
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