CS340 Fall 2006: Homework 6

Out Mon 30 Oct, back Mon 6 Nov

1 Simulated annealing

1. Modify the functionMH. mso it does simulated annealing instead of sampling from dnget distribution.
Specifically, the interface to your function should be atofes

function [sanpl es, naccept] = SA(target, proposal, xinit, Nsanples,...
target Args, proposal Args, proposal Prob, tenp);

% Si mul at ed anneal i ng al gorithm

%

% |l nputs (simlar to VH m

% target returns the unnormalized | og posterior, called as "p = exp(target(x, targetArgs{:}))’

% proposal is a fn, as 'xprine = proposal (x, proposal Args{:})’ where x is a 1xd vector

% xinit is a 1xd vector specifying the initial state

% Nsanpl es - total nunber of sanples to draw

% target Args - cell array passed to target

% proposal Args - cell array passed to proposal

% proposal Prob - optional fn, called as

% "p = proposal Prob(x, xprinme, proposal Args{:})’,

% conputes q(xprine|x). Set to [] if proposal is symetric.

% tenp(s) = tenperature at step s

% initTenp - initial tenperature, defaults to 1

% cool i ngFactor - tenp(t) = tenp(t-1)+*coolingFactor, defaults to 0.995

%

% Qut put s

% sanmpl es(s,:) is the s'th sanple (of size d)

% naccept = nunber of accepted noves

2. Use the provided functiocBAdenoMOG. mto test your code. You should get something that looks likgifé 1.

3. Modify the demo so it finds the global optimum of the 2D saefahown in Figure 2. This surface be computed
using

Z = peaks;

and returns a9 x 49 matrix, whereZ(i, j) is the function value at locatiof j. You will need to use a 2D
proposal distribution and a suitable cooling schedule.
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Figure 1: An example of simulated annealing applied to a unexbf two 1D Gaussians. We use the cooling schedule
T, = 0.995° 1, starting at7; = 1. Left: we plotp(z)'/™ at stepss = 100,500, 1000, 5000. At the lowest
temperature the function appears flat, due to numericalrfiode But in the sampling, we just need to compute
[p(z')/p(x)]*/ "=, which is more numerically stable. Right: we plot samplesadr from this distribution. This figure
was produced usin§AdenoMOG. m
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Figure 2: A peaky landscape
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Figure 3: An example of the Metropolis algorithm for samglfrom a binomial distribution with uniform prior using
a Gaussian proposal with = 0.5. We used 40,000 samples and a burnin of 2000. Left: sampléseddriginal
parametef. The peak is near the MLE &/~ = 0.6. Middle: samples of the transformed parameteRight: plot
of the last 500 samples @f Figure produced usinghDenoBi no. m(exercise).

2 MetropolisHastings

Consider again the example of Binomial distribution witmramnjugate prior in the MCMC handout. Use the MH
algorithm (function MH.m is provided) to draw samples frp(w|X ), where

(0.5 +e?)¥e? (0.5 e?)12e?
(1+ed)N+2 (14 e?)22

p(¢|X) o )

(Note: the MH.m function was the target to complitep($|X ). You may need to usleg(p(¢|X) + €) to avoid log
of zero errors.) Use a Gaussian proposal with variartce

9(¢'l¢) = N (¢|¢,0?) )

(Hint: usenor nr nd in the statistics toolbox.) Try = 0.5 ando = 10. Use the following code snippet to ensure
reproducable results

seed = 1;
randn(’ state’, seed); rand(’'state’, seed);
xinit = rand(1,1); %initial state

Draw 40,000 samples, discarding the first 2000 for burniagghnumbers are somewhat arbitrary). Plot a histogram

of all the samples ap post burnin, and also a trace of the last 500 samplés Bfnally, convert the samples ofback

to the 0:1 scale using

g 05+ e?
1 4e?

and plot a histogram of these. Your results should look liigeife 3 and Figure 4.
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Figure 4: Same as Figure 3, except the Gaussian proposalfal). On the right we see the chain is not mixing is
well, so the histograms are narrower and more blocky.



