
CS340 Fall 2006: Homework 6

Out Mon 30 Oct, back Mon 6 Nov

1 Simulated annealing

1. Modify the functionMH.m so it does simulated annealing instead of sampling from the target distribution.
Specifically, the interface to your function should be as follows

function [samples, naccept] = SA(target, proposal, xinit, Nsamples,...
targetArgs, proposalArgs, proposalProb, temp);

% Simulated annealing algorithm
%
% Inputs (similar to MH.m)
% target returns the unnormalized log posterior, called as ’p = exp(target(x, targetArgs{:}))’
% proposal is a fn, as ’xprime = proposal(x, proposalArgs{:})’ where x is a 1xd vector
% xinit is a 1xd vector specifying the initial state
% Nsamples - total number of samples to draw
% targetArgs - cell array passed to target
% proposalArgs - cell array passed to proposal
% proposalProb - optional fn, called as
% ’p = proposalProb(x,xprime, proposalArgs{:})’,
% computes q(xprime|x). Set to [] if proposal is symmetric.
% temp(s) = temperature at step s
% initTemp - initial temperature, defaults to 1
% coolingFactor - temp(t) = temp(t-1)*coolingFactor, defaults to 0.995
%
% Outputs
% samples(s,:) is the s’th sample (of size d)
% naccept = number of accepted moves

2. Use the provided functionSAdemoMOG.m to test your code. You should get something that looks like Figure 1.

3. Modify the demo so it finds the global optimum of the 2D surface shown in Figure 2. This surface be computed
using

Z = peaks;

and returns a49 × 49 matrix, whereZ(i, j) is the function value at locationi, j. You will need to use a 2D
proposal distribution and a suitable cooling schedule.
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Figure 1: An example of simulated annealing applied to a mixture of two 1D Gaussians. We use the cooling schedule
Ts = 0.995s−1, starting atT1 = 1. Left: we plot p(x)1/Ts at stepss = 100, 500, 1000, 5000. At the lowest
temperature the function appears flat, due to numerical underflow. But in the sampling, we just need to compute
[p(x′)/p(x)]1/Ts , which is more numerically stable. Right: we plot samples drawn from this distribution. This figure
was produced usingSAdemoMOG.m.
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Figure 2: A peaky landscape
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Figure 3: An example of the Metropolis algorithm for sampling from a binomial distribution with uniform prior using
a Gaussian proposal withσ = 0.5. We used 40,000 samples and a burnin of 2000. Left: samples ofthe original
parameterθ. The peak is near the MLE of̂θML = 0.6. Middle: samples of the transformed parameterφ. Right: plot
of the last 500 samples ofφ. Figure produced usingmhDemoBino.m (exercise).

2 Metropolis Hastings

Consider again the example of Binomial distribution with non conjugate prior in the MCMC handout. Use the MH
algorithm (function MH.m is provided) to draw samples fromp(φ|X), where

p(φ|X) ∝
(0.5 + eφ)Xeφ

(1 + eφ)N+2
=

(0.5 + eφ)12eφ

(1 + eφ)22
(1)

(Note: the MH.m function was the target to computelog p(φ|X). You may need to uselog(p(φ|X) + ε) to avoid log
of zero errors.) Use a Gaussian proposal with varianceσ2:

q(φ′|φ) = N (φ′|φ, σ2) (2)

(Hint: usenormrnd in the statistics toolbox.) Tryσ = 0.5 andσ = 10. Use the following code snippet to ensure
reproducable results

seed = 1;
randn(’state’, seed); rand(’state’, seed);
xinit = rand(1,1); % initial state

Draw 40,000 samples, discarding the first 2000 for burnin (these numbers are somewhat arbitrary). Plot a histogram
of all the samples ofφ post burnin, and also a trace of the last 500 samples ofφ. Finally, convert the samples ofφ back
to the 0:1 scale using

θ =
0.5 + eφ

1 + eφ
(3)

and plot a histogram of these. Your results should look like Figure 3 and Figure 4.
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Figure 4: Same as Figure 3, except the Gaussian proposal hasσ = 10. On the right we see the chain is not mixing is
well, so the histograms are narrower and more blocky.
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