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Abstract

Change point problems are referred to detect heterogeneity in temporal or spa-

tial data. They have applications in many areas like DNA sequences, financial

time series, signal processing, etc. A large number of techniques have been

proposed to tackle the problems. One of the most difficult issues is estimating

the number of the change points. As in other examples of model selection, the

Bayesian approach is particularly appealing, since it automatically captures a

trade off between model complexity (the number of change points) and model

fit. It also allows one to express uncertainty about the number and location of

change points.

In a series of papers [13, 14, 16], Fearnhead developed efficient dynamic pro-

gramming algorithms for exactly computing the posterior over the number and

location of change points in one dimensional series. This improved upon earlier

approaches, such as [12], which relied on reversible jump MCMC.

We extend Fearnhead’s algorithms to the case of multiple dimensional series.

This allows us to detect changes on correlation structures, as well as changes on

mean, variance, etc. We also model the correlation structures using Gaussian

graphical models. This allow us to estimate the changing topology of dependen-

cies among series, in addition to detecting change points. This is particularly

useful in high dimensional cases because of sparsity.
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Chapter 1

Introduction

1.1 Problem Statement

Change point problems are commonly referred to detect heterogeneity of tempo-

ral or spatial data. Given a sequence of data over time or space, change points

split data into a set of disjoint segments. Then it is assumed that the data from

the same segment comes from the same model. If we assume

data = model + noise

then the data on two successive segments could be different in the following

ways:

• different models (model types or model orders)

• same model with different parameters

• same model with different noise levels

• in multiple sequences, different correlation among sequences

Figure 1.1 shows four examples of changes over successive segments. In all

four examples, there is one change point at location 50 (black vertical solid

line) which separates 100 observations into two segments. The top left panel

shows an example of different model orders. The 1st segment is a 2nd order

Autoregressive model and the 2nd segment is a 4th order Autoregressive model.

The top right panel shows an example of same model with different parameters.

Both segments are linear models, but the 1st segment has a negative slope while

the 2nd segment has a positive slope. The bottom left panel shows an example

1



Chapter 1. Introduction

of same model with different noise level. Both segments are constant models

which have means at 0, but the noise level (the standard deviation) of the 2nd

segment is three times as large as the one on the 1st segment. The bottom right

panel is an example of different correlation between two series. We can see that

two series are positive correlated in the 1st segment, but negative correlated in

the 2nd segment.
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Figure 1.1: Examples show possible changes over successive segments. The

top left panel shows changes on AR model orders. The top right panel shows

changes on parameters. The bottom left panel shows changes on noise level.

The bottom right panel shows changes on correlation between two series.

The aim of the change point problems is to make inference about the number

and location of change points.
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Chapter 1. Introduction

1.2 Related Works

Many works have been done by many researchers in different areas. This the-

sis is an extension based on the Fearnhead’s work which is a special case of

the Product Partition Models (PPM) (defined later) and using dynamic pro-

gramming algorithms. Here I like to mention two approaches that are closely

related to our works. The first approach is based on a different models Hidden

Markov model (HMM), and the second approach is using a different algorithm

Reversible Jump Monte Carlo Markov Chain.

1.2.1 Hidden Markov Models

A HMM is a statistical model where system being modeled is assumed to be

Markov process with hidden states. In a regular Markov model, the state is

directly visible. In a HMM, the state is not directly visible, but variables influ-

enced by the hidden states are visible. The challenge is to determine the hidden

states from observed variables.

In change point problems, we view the change is due to change on hidden

states. Hence by inference on all hidden states, we can segment data implicitly.

In HMM, we need to fix the number of hidden states, and often the number of

state cannot be too large.

1.2.2 Reversible Jump MCMC

Reversible jump is a MCMC algorithm which has been extensively used in the

change point problems. It starts by a initial set of change points. At each step,

it can make the following three kinds of moves:

• Death move to delete a change point or merge two consecutive segments,

• Birth move to add a new change point or split a segment into two,

• Update move to shift the position of a change point

3



Chapter 1. Introduction

Each step, we will accept a move based on a probability calculated by the

Metropolis-Hastings algorithm. We run until the chain converges. Then we can

find out the posterior probability of the number and position of change points.

The advantage of reversible jump MCMC is that it can handle a large family

of distributions even when we only know the distribution up to a normalized

constant. The disadvantages are slow and difficult to diagnose convergence of

the chain.

1.3 Contribution

Our contributions of the thesis are:

• We extend Fearnhead’s work to the case of multiple dimensional series

which allows us to detect changes on correlation structures, as well as

changes on means, variance, etc.

• We further model the correlation structures using Gaussian graphical mod-

els which allows us to estimate the changing topology of dependencies

among series, in addition to detecting change points.

• We illustrate the algorithms by applying them to some synthetic and real

data sets.

1.4 Thesis Outline

The remaining of the thesis is organized as follows. In Chapter 2, we will review

Fearnhead’s work in one dimensional series in details, and provide experimen-

tal results on some synthetic and real data sets. In Chapter 3, we will show

how to extend Fearnhead’s work in multiple dimensional series and how to use

Gaussian graphical models to model and learn correlation structures. We will

also provide experimental results on some synthetic and real data sets. Finally,

our conclusions are stated in Chapter 4, along with a number of suggestions for

future works.

4



Chapter 2

One Dimensional Time

Series

Let’s consider the change point problems with the following conditional inde-

pendence property: given the position of a change point, the data before that

change point is independent of the data after the change point. Then these mod-

els are exactly the Product Partition Models (PPM) in one dimension [3, 4, 11].

Here a dataset Y1:N is partitioned into K partitions, where the number of the

partitions K is unknown. The data on the k-th segment Y k is assumed to be

independent with the data on the other segments given a set of parameters θk

for that partition . Hence given the segmentation (partition) S1:K , we can write

P (Y1:N |K,S1:K , θ1:K) =

K
∏

k=1

P (Y k|θk) (2.1)

Fearnhead [13, 14, 16] proposed three algorithms (offline, online exact and online

approximate) to solve the change point problems under PPM. They all first

calculate the joint posterior distribution of the number and positions of change

points P (K,S1:K |Y1:N ) using dynamic programming, then sample change points

from this posterior distribution by perfect sampling [22].

K,S1:K ∼ P (K,S1:K |Y1:N ) (2.2)

After sampling change points, making inference on models and their parameters

over segments is straight forward.

The offline algorithm and online exact algorithm run in O(N2), and the online

approximate algorithm runs in O(N).

5



Chapter 2. One Dimensional Time Series

2.1 Prior on Change Point Location and

Number

To express the uncertainty of the number and position of change points, we put

the following prior distribution on change points.

Let’s assume that the change points occur at discrete time points and we model

the change point positions by a Markov process. Let the transition probabilities

of this Markov process be the following,

P (next change point at t|change point at s) = g(|t − s|) (2.3)

We assume ( 2.3) only depends on the distance between two change points. Also

we let the probability mass function for the distance between two successive

change points s and t be g(|t − s|). Furthermore, we define the cumulative

distribution function for the distance as following,

G(l) =

l
∑

i=1

g(i) (2.4)

and assume that g() is also the probability mass function for the position of

the first change point. In general, g() can be any arbitrary probability mass

function with the domain over 1, 2, · · · , N − 1. Then g() and G() imply a prior

distribution on the number and positions of change points.

For example, if we use the Geometric distribution as g(), then our model implies

a Binomial distribution for the number of change points and a Uniform distri-

bution for the locations of change points. To see that, let’s suppose there are N

data points and we use a Geometric distribution with parameter λ. We denote

P (Ci = 1) as the probability of location i being a change point. By default,

position 0 is always a change point. That is,

P (C0 = 1) = 1 (2.5)

First, we show that the distribution for the location of change points is Uniform

by induction. That is, ∀i = 1, . . . , N

P (Ci = 1) = λ (2.6)

6



Chapter 2. One Dimensional Time Series

When i = 1, we only have one case: position 0 and 1 both are change points.

Hence the length of the segment is 1. We have,

P (C1 = 1) = g(1) = λ

Suppose ∀ i ≤ k, we have

P (Ci = 1) = λ (2.7)

Now when i = k+1, conditioning on the last change point before position k+1,

we have,

P (Ck+1 = 1) =

k
∑

j=0

P (Ck+1 = 1|Cj = 1)P (Cj = 1) (2.8)

where

P (Ck+1 = 1|Cj = 1) = g(k + 1 − j) = λ(1 − λ)k−j (2.9)

By ( 2.5), ( 2.7) and ( 2.9), ( 2.8) becomes,

P (Ck+1 = 1) = P (Ck+1 = 1|C0 = 1)P (C0 = 1) +
k
∑

j=1

P (Ck+1 = 1|Cj = 1)P (Cj = 1)

(let t = k − j) = λ(1 − λ)k +

k
∑

j=1

λ(1 − λ)k−jλ = λ(1 − λ)k + λ2
k−1
∑

t=0

(1 − λ)t

= λ(1 − λ)k + λ2 1 − (1 − λ)k

1 − (1 − λ)
= λ(1 − λ)k + λ(1 − (1 − λ)k)

= λ (2.10)

By induction, this proves ( 2.6). Next we show the number of change points

follows Binomial distribution.

Let’s consider each position as a trial with two outcomes, either being a change

point or not. By ( 2.6), we know the probability of being a change point is

the same. Then we only need to show each trial is independent. That is,

∀i, j = 1, . . . , N and i 6= j,

P (Ci = 1) = P (Ci = 1|Cj = 1) = λ (2.11)

7



Chapter 2. One Dimensional Time Series

When i < j, it is true by default, since future will not change history. When

i > j, we show it by induction on j.

When j = i−1, we only have one case: position j and i both are change points.

Hence the length of the segment is 1. We have,

P (Ci = 1|Ci−1 = 1) = g(1) = λ

Suppose ∀ j ≥ k, we have

P (Ci = 1|Cj = 1) = λ (2.12)

Now when j = k−1, conditioning on the next change point after position k−1,

we have,

P (Ci = 1|Ck−1 = 1) =
i
∑

t=k

P (Ci = 1|Ct = 1, Ck−1 = 1)P (Ct = 1|Ck−1 = 1)

(2.13)

where

P (Ci = 1|Ct = 1, Ck−1 = 1) = P (Ci = 1|Ct = 1) =







λ if t < i

1 if t = i

P (Ct = 1|Ck−1 = 1) = g(t − k + 1) = λ(1 − λ)t−k (2.14)

Hence ( 2.13) becomes,

P (Ci = 1|Ck−1 = 1) =

i−1
∑

t=k

λλ(1 − λ)t−k + λ(1 − λ)i−k

(let s = t-k) = λ2
i−k−1
∑

s=0

(1 − λ)s + λ(1 − λ)i−k = λ2 1 − (1 − λ)i−k

1 − (1 − λ)
+ λ(1 − λ)i−k

= λ(1 − (1 − λ)i−k) + λ(1 − λ)i−k = λ (2.15)

By induction, this proves ( 2.11). Hence the number of change points follows

Binomial distribution.

8



Chapter 2. One Dimensional Time Series

2.2 Likelihood Functions for Data in Each

Partition

If we assume that s and t are two successive change points, then data Ys+1:t

forms one segment. We use the likelihood function P (Ys+1:t) to evaluate how

good the data Ys+1:t can be fit in one segment. Here there are two levels of

uncertainty.

The first is the uncertainty of model types. There are many possible candidate

models and we certainly cannot enumerate all of them. As a result, we will

only consider a finite set of models. For example, polynomial regression models

up to order 2 or autoregressive models up to order 3. Then if we put a prior

distribution π() on the set of models, and define P (Ys+1:t|q) as the likelihood

function of Ys+1:t conditional on a model q, then we can evaluate P (Ys+1:t) as

following,

P (Ys+1:t) =
∑

q

P (Ys+1:t|q)π(q) (2.16)

The second is the uncertainty of model parameters. If the parameter on this

segment conditional on model q is θq, and we put a prior distribution π(θq) on

parameters, we can evaluate P (Ys+1:t|q) as following,

P (Ys+1:t|q) =

∫ t
∏

i=s+1

f(Yi|θq, q)π(θq|q) dθq (2.17)

We assume that P (Ys+1:t|q) can be efficiently calculated for all s, t and q, where

s < t. In practice, this requires either conjugate priors on θq which allow us to

work out the likelihood function analytically, or fast numerical routines which

are able to evaluate the required integration. In general, for any data and

models, as long as we can evaluate the likelihood function ( 2.17), we can use

Fearnhead’s algorithms. Our extensions are mainly based on this.

Now let’s look at some examples.

9



Chapter 2. One Dimensional Time Series

2.2.1 Linear Regression Models

The linear regression models are one of the most widely used models. Here, we

assume

Ys+1:t = Hβ + ǫ (2.18)

where H is a (t − s) by q matrix of basis functions, β is a q by 1 vector of

regression parameters and ǫ is a (t − s) by 1 vector of iid Gaussian noise with

mean 0 and variance σ2. Since we assume conjugate priors, σ2 has an Inverse

Figure 2.1: Graphical representation of Hierarchical structures of Linear Re-

gression Models

Gamma distribution with parameters ν/2 and γ/2, and the jth component of

regression parameter βj has a Gaussian distribution with mean 0 and variance

σ2δ2
j . This hierarchical model can be illustrated by Figure 2.1. For simplicity,

we write Ys+1:t as Y and let n = t − s. And we have the following,

P (Y |β, σ2) =
1

(2π)n/2σn
exp

(

− 1

2σ2
(Y − Hβ)T I−1

n (Y − Hβ)

)

(2.19)

P (β|D,σ2) =
1

(2π)q/2σq|D|1/2
exp

(

− 1

2σ2
βT D−1β

)

(2.20)

10



Chapter 2. One Dimensional Time Series

P (σ2|ν, γ) =
(γ/2)ν/2

Γ(ν/2)
(σ2)−ν/2−1exp

(

− γ

2σ2

)

(2.21)

where D = diag(δ2
1 , . . . , δ2

q ) and In is a n by n identity matrix.

By ( 2.17), we have,

P (Ys+1,t|q) = P (Y |D, ν, γ)

=

∫ ∫

P (Y, β, σ2|D, ν, γ) dβ dσ2

=

∫ ∫

P (Y |β, σ2)P (β|D,σ2)P (σ2|ν, γ) dβ dσ2

Multiplying ( 2.19) and ( 2.20), we have following,

P (Y |β, σ2)P (β|D,σ2) ∝ exp

(

− 1

2σ2
((Y − Hβ)T (Y − Hβ) + βT D−1β)

)

∝ exp

(

− 1

2σ2
(Y T Y − 2Y T Hβ + βT HT Hβ + βT D−1β)

)

Now let

M = (HT H + D−1)−1

P = (I − HMHT )

||Y ||2P = Y T PY

(∗) = Y T Y − 2Y T Hβ + βT HT Hβ + βT D−1β

Then

(∗) = βT (HT H + D−1)β − 2Y T Hβ + Y T Y

= βT M−1β − 2Y T HMM−1β + Y T Y

= βT M−1β − 2Y T HMM−1β + Y T HMM−1MT HT Y − Y T HMM−1MT HT Y + Y T Y

Using fact M = MT

(∗) = (β − MHT Y )T M−1(β − MHT Y ) + Y T Y − Y T HMHT Y

= (β − MHT Y )T M−1(β − MHT Y ) + Y T PY

= (β − MHT Y )T M−1(β − MHT Y ) + ||Y ||2P

11



Chapter 2. One Dimensional Time Series

Hence

P (Y |β,K)P (β|D,K) ∝ exp

(

− 1

2σ2
((β − MHT Y )T M−1(β − MHT Y ) + ||Y ||2P

)

So the posterior for β is still Gaussian with mean MHT Y and variance σ2M :

P (β|D,σ2) =
1

(2π)q/2σq|M |1/2
exp

(

− 1

2σ2
(β − MHT Y )T M−1(β − MHT Y )

)

(2.22)

Then integrating out β, we have

P (Y |D,σ2) =

∫

P (Y |β, σ2)P (β|D,σ2) dβ

=
1

(2π)n/2σn

(2π)q/2σq|M |1/2

(2π)q/2σq|D|1/2
exp

(

− 1

2σ2
||Y ||2P

)

=
1

(2π)n/2σn

( |M |
|D|

)
1
2

exp

(

− 1

2σ2
||Y ||2P

)

(2.23)

Now we multiply ( 2.21) and ( 2.23),

P (Y |D,σ2)P (σ2|ν, γ) ∝ (σ2)−n/2−ν/2−1exp

(

−γ + ||Y ||2P
2σ2

)

So the posterior for σ2 is still Inverse Gamma with parameters (n + ν)/2 and

(γ + ||Y ||2P )/2:

P (σ2|ν, γ) =
((γ + ||Y ||2P )/2)(n+ν)/2

Γ((n + ν)/2)
(σ2)−(n+ν)/2−1exp

(

−γ + ||Y ||2P
2σ2

)

(2.24)

Then integrating out σ2, we have

P (Ys+1:t|q) = P (Y |D, ν, γ)

=

∫

P (Y |D,σ2)P (σ2|ν, γ) dσ2

=

[

1

(2π)n/2

( |M |
|D|

)
1
2

]

[

(γ/2)ν/2

Γ(ν/2)

] [

Γ((n + ν)/2)

((γ + ||Y ||2P )/2)(n+ν)/2

]

= π−n/2

( |M |
|D|

)
1
2 (γ)ν/2

(γ + ||Y ||2P )(n+ν)/2

Γ((n + ν)/2)

Γ(ν/2)

(2.25)

12
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In implementation, we rewrite ( 2.25) in log space as following,

log(P (Ys+1:t|q)) = −n

2
log(π) − 1

2
(log|M | − log|D|) +

ν

2
log(γ) − n + ν

2
log(γ + ||Y ||2P )

+ log(Γ((n + ν)/2)) − log(Γ(ν/2)) (2.26)

To speed up, −n
2 log(π), ν

2 log(γ), − 1
2 log|D|, log(Γ((n + ν)/2)) and log(Γ(ν/2))

can be pre-computed. At each iteration, M and ||Y ||2P can be computed by the

following rank one update,

HT
1:i+1,:H1:i+1,: = HT

1:i,:H1:i,: + HT
i+1,:Hi+1,:

Y T
1:i+1Y1:i+1 = Y T

1:iY1:i + Y T
i+1Yi+1

HT
1:i+1,:Y1:i+1 = HT

1:i,:Y1:i + HT
i+1,:Yi+1

We use the following notations: if Y is a vector, then Ys:t denotes the entries

from position s to t inclusive. If Y is a matrix, then Ys:t,: denotes the s-th row

to the t-th row inclusive, and Y:,s:t denotes the s-th column to the t-th column

inclusive.

2.2.2 Poisson-Gamma Models

In Poisson Models, each observation Yi is a non-negative integer which fol-

lows Poisson distribution with parameter λ. With conjugate prior, λ follows a

Gamma distribution with parameters α and β. This hierarchical model can be

illustrated by Figure 2.2. Hence we have the following,

P (Yi|λ) =
e−λλYi

Yi!
(2.27)

P (λ|α, β) = λ(α−1) βαe−βλ

Γ(α)
(2.28)

For simplicity, we write Ys+1:t as Y and let n = t − s. By ( 2.17), we have,

P (Ys+1:t|q) = P (Y |α, β)

=

∫

P (Y, λ|α, β) dλ

=

∫

P (Y |λ)P (λ|α, β) dλ

=

∫

(

∏

i

P (Yi|λ)

)

P (λ|α, β) dλ

13
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Figure 2.2: Graphical representation of Hierarchical structures of Poisson-

Gamma Models. Note the Exponential-Gamma Models have the same Graphical

representation of their Hierarchical structures.

By multiply ( 2.27) and ( 2.28), and let SY =
∑

i Yi, we have,

P (Y |λ)P (λ|α, β) ∝ e−nλ−βλλSY +α−1

So the posterior for λ is still Gamma with parameters SY + α and n + β:

P (λ|α, β) = λ(SY +α−1) (n + β)SY +αe−(n+β)λ

Γ(SY + α)
(2.29)

Then integrating out λ, we have

P (Ys+1:t|q) = P (Y |α, β)

=

(

∏

i

1

Yi!

)

βα

Γ(α)

Γ(SY + α)

(n + β)SY +α

=

(

∏

i

1

Yi!

)

Γ(SY + α)

Γ(α)

βα

(n + β)SY +α
(2.30)

Similarly, in log space, we have the following,

log(P (Ys+1:t|q)) = −
∑

i

log(Yi!) + log(Γ(SY + α)) − log(Γ(α)) + αlog(β)

14
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− (SY + α)log(n + β) (2.31)

Where
∑

i log(Yi!), log(Γ(α)) and αlog(β) can be pre-computed, and SY can

use the following rank one update,

SYi+1 = SYi + Yi+1

2.2.3 Exponential-Gamma Models

In Exponential Models, each observation Yi is a positive real number which

follows Exponential distribution with parameter λ. With conjugate prior, λ

follows a Gamma distribution with parameters α and β. This hierarchical model

is the same as the one in Poisson-Gamma Models, which can be illustrated by

Figure 2.2. Hence we have the following,

P (Yi|λ) = λe−λYi (2.32)

P (λ|α, β) = λ(α−1) βαe−βλ

Γ(α)
(2.33)

For simplicity, we write Ys+1:t as Y and let n = t − s. By ( 2.17), we have,

P (Ys+1:t|q) = P (Y |α, β)

=

∫

P (Y, λ|α, β) dλ

=

∫

P (Y |λ)P (λ|α, β) dλ

=

∫

(

∏

i

P (Yi|λ)

)

P (λ|α, β) dλ

By multiply ( 2.32) and ( 2.33), and let SY =
∑

i Yi, we have,

P (Y |λ)P (λ|α, β) ∞ e−SY λ−βλλn+α−1

So the posterior for λ is still Gamma with parameters n + α and SY + β:

P (λ|α, β) = λ(n+α−1) (SY + β)n+αe−(SY +β)λ

Γ(n + α)
(2.34)

Then integrating out λ, we have

P (Ys+1:t|q) = P (Y |α, β)

=
βα

Γ(α)

Γ(n + α)

(SY + β)n+α
(2.35)

15
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Similarly, in log space, we have the following,

log(P (Ys+1:t|q)) = αlog(β) − log(Γ(α)) + log(Γ(n + α)) − (n + α)log(SY + β)

(2.36)

Where log(Γ(α)) and αlog(β) can be pre-computed, and SY can use the rank

one update as mentioned earlier.

2.3 Basis Functions

In the linear regression model ( 2.18), we have a basis function H.

Some common basis functions are the following.

2.3.1 Polynomial Basis

Polynomial model of order r is defined as following,

Yi = β0 + β1Xi + β2X
2
i + · · · + βrX

r
i (2.37)

Hence the polynomial basis H is following,

Hi:j =

















1 Xi X2
i · · · Xr

i

1 Xi+1 X2
i+1 · · · Xr

i+1

...
...

...
. . .

...

1 Xj X2
j · · · Xr

j

















(2.38)

where Xi = i
N .

2.3.2 Autoregressive Basis

Autoregressive model of order r is defined as following,

Yi = β1Yi−1 + β2Yi−2 + · · · + βrYi−r (2.39)
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Hence the autoregressive basis H is following,

Hi:j =

















Yi−1 Yi−2 · · · Yi−r

Yi Yi−1 · · · Yi−r+1

...
...

. . .
...

Yj−1 Yj−2 · · · Yj−r

















(2.40)

There are many other possible basis functions as well (eg, Fourier Basis). Here

we just want to point out that the basis function does provide a way to extend

Fearnhead’s algorithms (eg, Kernel Basis).

2.4 Offline Algorithms

Now we review the offline algorithm in detail. By its name, we know it works in

batch mode. It first recurses backward, then simulates change points forward.

2.4.1 Backward Recursion

Let’s define for s = 2, . . . , N ,

Q(s) = Prob(Ys:N |location s − 1 is a change point) (2.41)

and Q(1) = Prob(Y1:N ) since location 0 is a change point by default.

Offline algorithm will calculate Q(s) for all s = 1, 2, · · · , N .

When s = N

Q(N) =
∑

q

P (YN :N |q)π(q) (2.42)

When s < N

Q(s) =
N−1
∑

t=s

∑

q

P (Ys:t|q)π(q)Q(t + 1)g(t − s + 1)

+
∑

q

P (Ys:N |q)π(q)(1 − G(N − s)) (2.43)

where π(q) is the prior probability of model q and g() and G() are defined in

( 2.4).

17
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The reason behind ( 2.43) is that (drop the explicit conditioning on a change

point at s − 1 for notational convenience)

Q(s) =

N−1
∑

t=s

P (Ys:N , next change point is at t)

+ P (Ys:N , no further change points) (2.44)

For the first part we have,

P (Ys:N , next change point is at t)

= P (next change point is at t)P (Ys:t, Yt+1:N |next change point is at t)

= g(t − s + 1)P (Ys:t|s,t form a segment)P (Yt+1:N |next change point is at t)

=
∑

q

P (Ys:t|q)π(q)Q(t + 1)g(t − s + 1)

For the second part we have,

P (Ys:N , no further change points)

= P (Ys:N |s,N form a segment)P (the length of segment > N − s)

=
∑

q

P (Ys:N |q)π(q)(1 − G(N − s))

We will calculate Q(s) backward for s = N, · · · , 1 by ( 2.42) and ( 2.43). Since

s is from N to 1, and at step s we will compute sum over t where t is from s to

N , the whole algorithm runs in O(N2).

2.4.2 Forward Simulation

After we calculate Q(s) for all s = 1, . . . , N , we can simulate all change points

forward. To simulate one realisation, we do the following,

1. Set τ0 = 0, and k = 0.

2. Compute the posterior distribution of τk+1 given τk as following,

For τk+1 = τk + 1, τk + 2, · · · , N − 1,

P (τk+1|τk, Y1:N ) =
∑

q

P (Yτk+1:τk+1
|q)π(q)Q(τk+1 + 1)g(τk+1 − τk)/Q(τk + 1)
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For τk+1 = N , which means no further change points

P (τk+1|τk, Y1:N ) =
∑

q

P (Yτk+1:N |q)π(q)(1 − G(N − τk))/Q(τk + 1)

3. Simulated τk+1 from P (τk+1|τk, Y1:N ), and set k = k + 1.

4. If τk < N return to step (2); otherwise output the set of simulated change

points, τ1, τ2, . . . , τk.

2.5 Online Algorithms

Now we discuss the online algorithms which have two versions (exact and ap-

proximate). Both work in online mode, and in the same way that first calculate

recursion forward, then simulate change points backward.

We first review the online exact algorithm in detail. Let’s introduce Ct as a

state at time t, which is defined to be the time of the most recent change point

prior to t. If Ct = 0, then there is no change point before time t. Then the

state Ct can take values 0, 1, . . . , t− 1, and C1, C2, . . . , Ct satisfy Markov prop-

erty since we assume conditional independence over segments. Conditional on

Ct−1 = j, either t − 1 is not a change point, which leads to Ct = j, or t − 1 is

a change point, which leads to Ct = t− 1. Hence the transition probabilities of

this Markov Chain can be calculated as following,

TP (Ct = j|Ct−1 = i) =



















1−G(t−i−1)
1−G(t−i−2) if j = i

G(t−i−1)−G(t−i−2)
1−G(t−i−2) if j = t − 1

0 otherwise

(2.45)

where G is defined in ( 2.4).

The reason behind ( 2.45) is : given Ct−1 = i, we know there is no change point

between i and t− 2. This also means that the length of segment must be longer

than t− 2− i. At the same time, G(n) means the cumulative probability of the

distance between two consecutive change points no more than n, which can also

be considered as the cumulative probability of the length of segment no more
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than n. Hence We have P (Ct−1 = i) = 1−G(t− 2− i). Then if j = i, we have

P (Ct = i) = 1−G(t− 1− i). If j = t− 1, which means there is a change point

at t − 1, and by definition of g(), the length of two change points is t − 1 − i,

and this is just g(t − 1 − i), which is also G(t − i − 1) − G(t − i − 2).

If we use a Geometric distribution as g(), then g(i) = (1 − λ)i−1λ and G(i) =

1 − (1 − λ)i. Now if j = i,

TP (Ct = j|Ct−1 = i) =
1 − G(t − i − 1)

1 − G(t − i − 2)
=

(1 − λ)t−i−1

(1 − λ)t−i−2

= 1 − λ

And if j = t − 1

TP (Ct = j|Ct−1 = i) =
G(t − i − 1) − G(t − i − 2)

1 − G(t − i − 2)
=

(1 − λ)t−i−2 − (1 − λ)t−i−1

(1 − λ)t−i−2

= λ

Hence ( 2.45) becomes,

TP (Ct = j|Ct−1 = i) =



















1 − λ if j = i

λ if j = t − 1

0 otherwise

where λ is the parameter of the Geometric distribution.

2.5.1 Forward Recursion

Let’s define the filtering density P (Ct = j|Y1:t) as: given data Y1:t, the proba-

bility of the last change point is at position j. Online algorithm will compute

P (Ct = j|Y1:t) for all t, j, such that t = 1, 2, . . . , N and j = 0, 1, . . . , t − 1.

When t = 1, we have j = 0, hence

P (C1 = 0|Y1:1) = 1 (2.46)

When t > 1, by standard filtering recursions, we have

P (Ct = j|Y1:t) = P (Ct = j|Yt, Y1:t−1)

=
P (Ct = j, Yt|Y1:t−1)

P (Yt|Y1:t−1)
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=
P (Yt|Ct = j, Y1:t−1)P (Ct = j|Y1:t−1)

P (Yt|Y1:t−1)

∝ P (Yt|Ct = j, Y1:t−1)P (Ct = j|Y1:t−1) (2.47)

and

P (Ct = j|Y1:t−1) =

t−2
∑

i=0

TP (Ct = j|Ct−1 = i)P (Ct−1 = i|Y1:t−1) (2.48)

If we define wj
t = P (Yt|Ct = j, Y1:t−1), and with ( 2.45), we have

P (Ct = j|Y1:t) ∝







wj
t

1−G(t−i−1)
1−G(t−i−2)P (Ct−1 = j|Y1:t−1) if j < t − 1

wt
t

∑t−2
i=0

(

G(t−i−1)−G(t−i−2)
1−G(t−i−2) P (Ct−1 = i|Y1:t−1)

)

if j = t − 1

(2.49)

Now wj
t can be calculated as following.

When j < t − 1,

wj
t =

P (Yj+1:t|Ct = j)

P (Yj+1:t−1|Ct = j)

=

∑

q P (Yj+1:t|q)π(q)
∑

q P (Yj+1:t−1|q)π(q)

When j = t − 1,

wt
t =

∑

q

P (Yt:t|q)π(q) (2.50)

where π(q) is the prior probability of model q.

We will calculate P (Ct|Y1:t) forward for t = 1, · · · , N by ( 2.46) and ( 2.49).

Since t is from 1 to N , and at step t we will compute Ct = j where j is from 0

to t − 1, the whole algorithm runs in O(N2).

2.5.2 Backward Simulation

After we calculate the filtering densities P (Ct|Y1:t) for all t = 1, . . . , N , we

can use idea in [9] to simulate all change points backward. To simulate one

realisation from this joint density, we do the following,

1. Set τ0 = N , and k = 0.

21



Chapter 2. One Dimensional Time Series

2. Simulated τk+1 from the filtering density P (Cτk
|Y1:τk

), and set k = k + 1.

3. If τk > 0 return to step (2); otherwise output the set of simulated change

points backward, τk−1, τk−2, . . . , τ1.

2.5.3 Viterbi Algorithms

We can also obtain an online Viterbi algorithm for calculating the maximum a

posterior (MAP) estimate of positions of change points and model parameters

for each segment as following. We define Mi to be the event that given a change

point at time i, the MAP choice of change points and model parameters occurs

prior to time i.

For t = 1, . . . , n, and i = 0, . . . , t − 1, and all q,

Pt(i, q) = P (Ct = i,modelq,Mi, Y1:t)

and

PMAP
t = P (change point at t,Mt, Y1:t)

Then we can compute Pt(i, q) using the following:

Pt(i, q) = (1 − G(t − j − 1))P (Yj+1:t|q)π(q)PMAP
j (2.51)

and

PMAP
t = maxj,q

Pt(j, q)g(t − j)

1 − G(t − j − 1)
(2.52)

At time t, the MAP estimates of Ct and the current model parameters are given

respectively by the values of j and q which maximize Pt(i, q). Given a MAP

estimate of Ct, we can then calculate the MAP estimates of the change point

prior to Ct and the model parameters of that segment by the value of j and q

that maximized the right hand side of ( 2.52). This procedure can be repeated

to find the MAP estimates of all change points and model parameters.
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2.5.4 Approximate Algorithm

Now we look at the online approximate algorithm. The online approximate

algorithm works in almost same way as the online exact algorithm. The only

difference is the following. At step t, online exact algorithm stores the complete

posterior distribution P (Ct = j|Y1:t) for j = 0, 1, · · · , t − 1. We approximate

P (Ct = j|Y1:t) by a discrete distribution with fewer points. This approximate

distribution can be described by a set of support points. We call them particles.

We impose a maximum number (eg, M) of particles to be stored at each step.

Whenever we have M particles, we perform resampling to reduce the number

of particles to L, where L < M . Hence the maximum computational cost per

iteration is proportional to M . Since M is not dependent on the size of data

N , the approximate algorithm runs in O(N).

There are many ways to perform resampling [7, 12, 15, 16]. Here, we use the

simplest one. We let L = M − 1, hence each step we just drop the particle that

has the lowest support. We will show later that this approximation will not

affect the accuracy of the result much, but runs much faster.

2.6 Implementation Issues

There are two issues that need to be mentioned in implementation.

The first issue is numerical stability. We perform all calculations in log space

to prevent overflow and underflow. We also use the functions logsumexp and

logdet. In all three algorithms, we introduce a threshold (eg, 1×10−30). During

recursions, whenever the quantity that we need to compute is less than the

threshold, we will set it to be −∞, hence it will not be computed in the next

iteration. This will provide not only stable calculation but also speed up because

we will calculate less terms in each iteration. At the end of each iteration, we

will rescale the quantity to prevent underflow.

The second one is rank one update. This is very important in term of speed.

The way to do rank one update depends on the likelihood function we use.
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2.7 Experimental Results

Now we will show experimental results on some synthetic and real data sets.

2.7.1 Synthetic Data

We will look at two synthetic data sets.

The first one is called Blocks. It has been previously analyzed in [10, 13, 21]. It

is a very simple data set, and the results are shown in Figure 2.3. Each segment

is a piecewise constant model, with mean level shifting over segments. We set

the hyper parameter ν = 2 and γ = 2 on σ2. The top panel shows the raw

data with the true change points (red vertical line). The bottom three panels

show the posterior probability of being change points at each position and the

number of segments that are calculated (from top to bottom) by the offline, the

online exact and the online approximate algorithms. We can see that the results

are essentially the same.

The second data set is called AR1, and results are shown in Figure 2.4. Each

segment is an autoregressive model. We set the hyper parameter ν = 2 and

γ = 0.02 on σ2. The top panel shows the raw data with the true change points

(red vertical line). The bottom three panels show the posterior probability

of being change points at each position and the number of segments that are

calculated (from top to bottom) by the offline, the online exact and the online

approximate algorithms. Again, we see the results from three algorithms are

essentially the same. Henceforth only use online approximate method.

2.7.2 British Coal Mining Disaster Data

Now let’s look at a real data set which records British coal-mining disasters [17]

by year during the 112 year period from 1851 to 1962. This is a well-known

data set and is previously studied by many researchers [6, 14, 18, 25]. Here Yi is

the number of disasters in the i-th year, which follows Poisson distribution with

parameter (rate) λ. Hence the natural conjugate prior is a Gamma distribution.
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We set the hyper parameter α = 1.66 and β = 1, since we let the prior mean

of λ is equal to the empirical mean (α
β = Ȳ = 1.66) and the prior strength β

to be weak. Then we use Fearnhead’s algorithms to analyse the data, and the

results are shown in Figure 2.5. In top left panel, it shows the raw data as

a Poisson sequence. The bottom left panel shows the posterior distribution on

the number of segments. It shows the most probable number of segments is

four. The bottom right panel shows the posterior distribution of being change

points at each location. Since we have four segments, we will pick the most

probable three change points at location 41, 84 and 102 which corresponding

to year 1891, 1934 and 1952. Then in the up right panel, it shows the resulted

segmentation (the red vertical line) and the posterior estimators of rate λ on

each segment (the red horizontal line). On four segments, the posterior rates

are roughly as following, 3, 1, 1.5 and 0.5.

2.7.3 Tiger Woods Data

Now let’s look at another interesting example. In sports, when an individual

player or team enjoys periods of good form, it, is called ’streakiness’. It is

interesting to detect a streaky player or a streaky team in many sports [1, 5, 26]

including baseball, basketball and golf. The opposite of a streaky competitor

is a player or team with a constant rate of success over time. A streaky player

is different, since the associated success rate is not constant over time. Streaky

players might have a large number of success during one or more periods, with

fewer or no successes during other periods. More streaky players tend to have

more change points. Here we use Tiger Woods as an example.

Tiger Woods is one of the most famous golf players in the world, and the first

ever to win all four professional major championships consecutively. Woods

turned professional at the Great Milwaukee Open in August 29, 1996 and play

230 tournaments, winning 62 championships in the period September 1996 to

December 2005. Let Yi = 1 if Woods won the i-th tournament and Yi =

0 otherwise. Then the data can be expressed as a Bernoulli sequence with
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parameter (rate) λ. We put a conjugate Beta prior with hyper parameters

α = 1 and β = 1 on λ since this is the weakest prior. Then we perform

Fearnhead’s algorithms to analyse the data, and the results are shown in Figure

2.6. In top left panel, it shows the raw data as a Bernoulli sequence. The

bottom left panel shows the posterior distribution on the number of segments.

It shows the most probable number of segments is three. The bottom right

panel shows the posterior distribution of being change points at each location.

Since we have three segments, we will pick the most probable two change points

at location 73 and 167 which corresponding to May 1999 and March 2003.

Then in the up right panel, it shows the resulted segmentation (the red vertical

line) and the posterior estimators of rate λ on each segment (the red horizontal

line). We can see clearly that Tiger Woods’s career from September 1996 to

December 2005 can be splitted into three periods. Initially, from September 1996

to May 1999, he was an golf player with winning rate lower than 0.2. However,

from May 1999 to March 2003, he was in his peak period with winning rate

nearly 0.5. After March 2003 till December 2005, his winning rate was dropped

back to lower than 0.2. The data comes from Tiger Woods’s official website

http://www.tigerwoods.com/, and is previous studied by [26]. In [26], the data

is only from September 1996 to June 2001.

2.8 Choices of Hyperparameters

Hyperparameters λ is the rate of change points and can be set as following,

λ =
the total number of expected segments

the total number of data points
(2.53)

For example, if there are 1000 data points and we expect there are 10 seg-

ments, then we will set λ = 0.01. If we increase λ, we will encourage more

change points. We use the synthetic data Blocks as an example. Results ob-

tained by the online approximate algorithms under different values of λ are

shown in Figure 2.7. From top to bottom, the values of λ are: 0.5, 0.1, 0.01,

0.001 and 0.0002. We see when λ = 0.5 (this prior says the length of segment is

26



Chapter 2. One Dimensional Time Series

2, which is too short.), the result is clearly oversegmented. Under other values

of λ, results are fine.

Different likelihood functions have different hyperparameters. In linear regres-

sion, we have hyperparameters ν and γ on the variance σ2. Since ν represents

the strength of prior, we normally set ν = 2 such that it is a weak prior. Then

we can set γ to reflect our belief on how large the variance will be within each

segment. (Note: we parameterize Inverse-Gamma in term of ν
2 and γ

2 .) When

ν = 2, the mean does not exist. We use the mode γ
ν+2 to set γ = 4σ2, where σ2

is expected variance within each segment. For example, if we believe the vari-

ance is 0.01, then we will set γ = 0.04. Now we show results from synthetic data

Blocks and AR1 obtained by the online approximate algorithms under different

values of γ in Figure 2.8 and Figure 2.9. From top to bottom, the values of γ

are: 100, 20, 2, 0.2 and 0.04. We see that the data Blocks is very robust to the

choices of γ. For the data AR1, we see when γ = 100, we only detect 3 change

points instead of 5. For other values of γ, results are fine.
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Figure 2.3: Results on synthetic data Blocks (1000 data points). The top

panel is the Blocks data set with true change points. The rest are the posterior

probability of being change points at each position and the number of segments

calculated by (from top to bottom) the offline, the online exact and the online

approximate algorithms. Results are generated by ’showBlocks’.
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Figure 2.4: Results on synthetic data AR1 (1000 data points). The top panel is

the AR1 data set with true change points. The rest are the posterior probability

of being change points at each position and the number of segments calculated

by (from top to bottom) the offline, the online exact and the online approximate

algorithms. Results are generated by ’showAR1’.
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Figure 2.5: Results on Coal Mining Disaster data. The top left panel shows

the raw data as a Poisson sequence. The bottom left panel shows the posterior

distribution on the number of segments. The bottom right panel shows the

posterior distribution of being change points at each position. The up right

panel shows the resulted segmentation and the posterior estimators of rate λ on

each segment. Results are generated by ’showCoalMining’.
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Figure 2.6: Results on Tiger Woods data. The top left panel shows the raw

data as a Bernoulli sequence. The bottom left panel shows the posterior distri-

bution on the number of segments. The bottom right panel shows the posterior

distribution of being change points at each position. The up right panel shows

the resulted segmentation and the posterior estimators of rate λ on each seg-

ment. Results are generated by ’showTigerWoods’. This data comes from Tiger

Woods’s official website http://www.tigerwoods.com/.
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Figure 2.7: Results on synthetic data Blocks (1000 data points) under different

values of hyperparameter λ. The top panel is the Blocks data set with true

change points. The rest are the posterior probability of being change points at

each position and the number of segments calculated by the online approximate

algorithms under different values of λ. From top to bottom, the values of λ are:

0.5, 0.1, 0.01, 0.001 and 0.0002. Large value of λ will encourage more segments.

Results are generated by ’showBlocksLambda’.
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Figure 2.8: Results on synthetic data Blocks (1000 data points) under different

values of hyperparameter γ. The top panel is the Blocks data set with true

change points. The rest are the posterior probability of being change points at

each position and the number of segments calculated by the online approximate

algorithms under different values of γ. From top to bottom, the values of γ

are: 100, 20, 2, 0.2 and 0.04. Large value of γ will allow higher variance in one

segment, hence encourage less segments. Results are generated by ’showBlocks-

Gamma’.
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Figure 2.9: Results on synthetic data AR1 (1000 data points) under differ-

ent values of hyperparameter γ. The top panel is the AR1 data set with true

change points. The rest are the posterior probability of being change points

at each position and the number of segments calculated by the online approx-

imate algorithms under different values of γ. From top to bottom, the values

of γ are: 100, 20, 2, 0.2 and 0.04. Large value of γ will allow higher variance

within one segment, hence encourage less segments. Results are generated by

’showAR1Gamma’.
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Multiple Dimensional Time

Series

We extend Fearnhead’s algorithms to the case of multiple dimensional series.

Now Yi, the observation at time i, is a d-dimensional vector. Then we can

detect change points based on changing correlation structure. We model the

correlation structures using Gaussian graphical models. Hence we can estimate

the changing topology of the dependencies among the series, in addition to

detecting change points.

3.1 Independent Sequences

The first obvious extension is to assume that each dimension is independent.

Under this assumption, the marginal likelihood function ( 2.16) can be written

as the following product,

P (Ys+1:t) =
d
∏

j=1

P (Y j
s+1:t) (3.1)

where P (Y j
s+1:t) is the marginal likelihood in the j-th dimension. Since now

Y j
s+1:t is one dimension, P (Y j

s+1:t) can be any likelihood function discussed in

the previous chapter.

The independent model is simple to use. Even when independent assumption is

not valid, it can be used as an approximate model similar to Naive Bayes when

we cannot model the correlation structures among each dimension.
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3.2 Dependent Sequences

Correlation structures only exist when we have multiple series. This is the main

difference when we go from one dimension to multiple dimensions. Hence we

should model correlation structures whenever we are able to do so.

3.2.1 A Motivating Example

Let’s use the following example to illustrate the importance of modeling corre-

lation structures. As shown in Figure 3.1, we have two series. The data on
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Figure 3.1: A simple example to show the importance of modeling chang-

ing correlation structures. We are unable to identify any change if we look

at each series individually. However, their correlation structures are changed

over segments(positive, independent, negative). Results are generated by

’plot2DExample’.

three segments are generated from the following Gaussian distributions. On the
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k-th segment,

Yk ∼ N(0,Σk)

where Σ1 =





1 0.75

0.75 1



 ,Σ2 =





1 0

0 1



 ,Σ3 =





1 −0.75

−0.75 1





As a result, the marginal distribution on each dimension is, N(0, 1), the same

over all three segments. Hence if we look at each dimension individually, we are

unable to identify any changes. However if we consider them jointly, then we

find their correlation structures are changed. For example, in the first segment,

they are positive correlated; in the second segment, they are independent; in

the last segment, they are negative correlated.

3.2.2 Multivariate Linear Regression Models

For multivariate linear regression models, we know how to model correlation

structures, and we can calculate the likelihood function ( 2.16) analytically.

On segment Ys+1:t we still have,

Ys+1:t = Hβ + ǫ (3.2)

For simplicity, we write Ys+1:t as Y , and let n = t − s. Now Y is a n by d

matrix of data, H is a n by q matrix of basis functions, β is a q by d matrix of

regression parameters and ǫ is a n by d matrix of noise.

Here we need introduce the Matrix-Gaussian distribution. A random m by n

matrix A is Matrix-Gaussian distributed with parameters MA, V and W if the

density function of A is

A ∼ N(MA, V,W )

P (A) =
1

(2π)mn/2|V |n/2|W |m/2
exp

(

−1

2
trace((A − MA)T V −1(A − MA)W−1)

)

where M is a m by n matrix representing the mean, V is a m by m matrix

representing covariance among rows and W is a n by n matrix representing

covariance among columns.
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Similar as before we assume conjugate priors, ǫ has a Matrix-Gaussian distri-

bution with mean 0 and covariance In and Σ, since we assume ǫ is independent

across time(rows) but dependent across features(columns). And β has a Matrix-

Gaussian distribution with mean 0 and covariance D and Σ. Finally covariance

Σ has an Inverse-Wishart distribution with parameter N0 and Σ0. This hierar-

chical model can be illustrated by Figure 3.2.

Here D = diag(δ2
1 , · · · , δ2

q ) and In is a n by n identity matrix. Hence we have,

Figure 3.2: Graphical representation of Hierarchical structures of Multivariate

Linear Regression Models

P (Y |β,Σ) =
1

(2π)nd/2|In|d/2|Σ|n/2
exp

(

−1

2
trace((Y − Hβ)T I−1

n (Y − Hβ)Σ−1)

)

(3.3)

P (β|D,Σ) =
1

(2π)qd/2|D|d/2|Σ|q/2
exp

(

−1

2
trace(βT D−1βΣ−1)

)

(3.4)

P (Σ|N0,Σ0) =
|Σ0|N0/2

Z(N0, d)2N0d/2

1

|Σ|(N0+d+1)/2
exp

(

−1

2
trace(Σ0Σ

−1)

)

(3.5)

where N0 ≥ d and

Z(n, d) = πd(d−1)/4
d
∏

i=1

Γ((n + 1 − i)/2)

38



Chapter 3. Multiple Dimensional Time Series

By ( 2.17), we have,

P (Ys+1:t|q) = P (Y |D,N0,Σ0)

=

∫ ∫

P (Y, β,Σ|D,N0,Σ0) dβ dΣ

=

∫ ∫

P (Y |β,Σ)P (β|D,Σ)P (Σ|N0,Σ0) dβ dΣ

Now multiply ( 3.3) and ( 3.4),

P (Y |β,Σ)P (β|D,Σ) ∝ exp

(

−1

2
trace(((Y − Hβ)T (Y − Hβ) + βT D−1β)Σ−1)

)

∝ exp

(

−1

2
trace((Y T Y − 2Y T Hβ + βT HT Hβ + βT D−1β)Σ−1)

)

Now let

M = (HT H + D−1)−1

P = (I − HMHT )

(∗) = Y T Y − 2Y T Hβ + βT HT Hβ + βT D−1β

Then

(∗) = βT (HT H + D−1)β − 2Y T Hβ + Y T Y

= βT M−1β − 2Y T HMM−1β + Y T Y

= βT M−1β − 2Y T HMM−1β + Y T HMM−1MT HT Y − Y T HMM−1MT HT Y + Y T Y

Using fact M = MT

(∗) = (β − MHT Y )T M−1(β − MHT Y ) + Y T Y − Y T HMHT Y

= (β − MHT Y )T M−1(β − MHT Y ) + Y T PY

Hence

P (Y |β,Σ)P (β|D,Σ) ∝ exp

(

−1

2
trace(((β − MHT Y )T M−1(β − MHT Y ))Σ−1 + Y T PY Σ−1)

)

So the posterior for β is still Matrix-Gaussian with mean MHT Y and covariance

M and W ,

P (β|D,Σ) ∼ N(MHT Y,M,Σ) (3.6)
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Then integrating out β, we have

P (Y |D,Σ) =

∫

P (Y |β,Σ)P (β|D,Σ) dβ (3.7)

=
1

(2π)nd/2|In|d/2|Σ|n/2

(2π)qd/2|M |d/2|Σ|q/2

(2π)qd/2|D|d/2|Σ|q/2
exp(−1

2
trace(Y T PY Σ−1))

=
1

(2π)nd/2|Σ|n/2

( |M |
|D|

)
d
2

exp(−1

2
trace(Y T PY Σ−1))

Now multiply ( 3.5) and ( 3.7)

P (Y |D,Σ)P (Σ|N0,Σ0) ∝ 1

|Σ|n/2|Σ|(N0+d+1)/2
exp(−1

2
trace((Y T PY + Σ0)Σ

−1))

∝ 1

|Σ|(n+N0+d+1)/2
exp(−1

2
trace((Y T PY + Σ0)Σ

−1))

So the posterior for Σ is still Inverse-Wishart with parameter n + N0 and

Y T PY + Σ0,

P (Σ) ∼ IW (n + N0, Y
T PY + Σ0) (3.8)

Then integrating out Σ, we have

P (Ys+1:t|q) = P (Y |D,N0,Σ0)

=

∫

P (Y |D,Σ)P (Σ|N0,Σ0) dΣ

=

( |M |
|D|

)
d
2 1

(2π)nd/2

|Σ0|N0/2

Z(N0, d)2N0d/2

Z(n + N0, d)2(n+N0)d/2

|Y T PY + Σ0|(n+N0)/2

= π−nd/2

( |M |
|D|

)
d
2 |Σ0|N0/2

|Y T PY + Σ0|(n+N0)/2

Z(n + N0, d)

Z(N0, d)
(3.9)

When d = 1 and by setting N0 = ν and Σ0 = γ, ( 2.25) is just a special case

of ( 3.9), since InverseWishart(ν, γ) ≡ InverseGamma(ν
2 , γ

2 ). In implementa-

tion, we rewrite ( 3.9) in log space as following,

log(P (Ys+1:t|q)) =
N0

2
log(|Σ0|) −

n + N0

2
log(|Y T PY + Σ0|) −

d

2
(log|M | − log|D|)

−nd

2
log(π) +

d
∑

i=1

log(Γ((n + N0 + 1 − i)/2)) −
d
∑

i=1

log(Γ((N0 + 1 − i)/2))

(3.10)
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To speed up, −nd
2 log(π), N0

2 log(|Σ0|), −d
2 log|D|,∑d

i=1 log(Γ((n+N0+1−i)/2))

and
∑d

i=1 log(Γ((N0 + 1 − i)/2)) can be pre-computed. At each iteration, M

and Y T PY can be computed by the following rank one update,

HT
1:i+1,:H1:i+1,: = HT

1:i,:H1:i,: + HT
i+1,:Hi+1,:

Y T
1:i+1,:Y1:i+1,: = Y T

1:i,:Y1:i,: + Y T
i+1,:Yi+1,:

HT
1:i+1,:Y1:i+1,: = HT

1:i,:Y1:i,: + HT
i+1,:Yi+1,:

3.3 Gaussian Graphical Models

Gaussian graphical models are more general tools to model correlation struc-

tures, especially conditional independence structures. There are two kinds of

graphs: directed and undirected. Here we use undirected graphs as examples,

and we will talk about directed graphs later.

3.3.1 Structure Representation

In an undirected graph, each node represents a random variable. Define the

precision matrix K = Σ−1, which is the inverse of covariance matrix Σ. There

is no edge between node i and node j if and only if Kij = 0. As shown in Figure

3.3, there are four nodes. There is an edge between node 1 and node 2, since

K12 6= 0. (”X” denotes non-zero entries in the matrix.)

Then the independent model and the multivariate linear regression model are

just two special cases of Gaussian graphical models. In independent model, K

is a diagonal matrix, which represents the graph with all isolated nodes.

In multivariate linear regression model, K is a full matrix, which represents the

graph with fully connected nodes.

Unlike independent models which are too simple, full covariance models could

be too complex when the dimension d is large since the number of parameters

needed by the models are O(d2). Gaussian graphical models provide a more flex-

ible and better solution between these two extremes, especially when d becomes

large, since in higher dimensions, sparse structures are more important.
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Figure 3.3: A simple example to show how to use a graph to represent correla-

tion structures. We first compute precision matrix K. Then from K, if Kij = 0,

then there is no edge on from node i to node j. ”X” represent non-zero entries

in the matrix.

3.3.2 Sliding Windows and Structure Learning Methods

In order to use Fearnhead’s algorithms, we need to do the following two things:

• generate a list of possible graph structures,

• compute the marginal likelihood given a graph structure.

For the first one, the number of all possible undirected graphs is O(2d2

). Hence

it is infeasible to try all possible graphs. We can only choose a subset of all

graphs. How to choose them is a chicken and egg problem: if we knew the

segmentation, then we could run a fast structure learning algorithm on each

segment, but we need to know the structures in order to compute the segmen-

tation. Hence we propose the following sliding window method to generate the

42



Chapter 3. Multiple Dimensional Time Series

Figure 3.4: Gaussian graphical model of independent models.

Figure 3.5: Gaussian graphical model of full models.

set of graphs. We slide a window of width w = 0.2N across the data, shifting

by s = 0.1w at each step. This will generate a set of about 50 candidate seg-

mentations. We can repeat this for different setting of w and s. Then we run a

fast structure learning algorithm on each windowed segment, and sort resulting

set of graphs by frequency of occurrence. Finally we pick the top M = 20 to

form the set of candidate graphs. We hope this set will contain the true graph

structures or at least the ones that are very similar.

As shown in Figure 3.6, suppose the vertical pink dot lines are true segmen-

tations. When we run a sliding window inside of a true segment, (eg, the red

window), we hope the structure we learn from this window is similar to the

true structure of this segment. And when we shift the window one step, (eg,

shifting to the blue window), if it is still inside of the same segment, we hope

the structure we learn is the same or at least very similar to the one we learn

in the previous window. Of course we will have the window that overlaps two

segments (eg, the black window), then we know the structure we learn from this

window will represent neither segments. However, this brings no harm since

these ”wrong” graph structures will later receive negligible posterior probabil-
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Figure 3.6: An example to show sliding window method.

ity. We can choose the number of the graphs we want to consider based on how

fast we want the algorithms to run.

Now on each windowed segment, we need to learn the graph structure.

The simplest method is the thresholding method. It works as following,

1. compute the empirical covariance Σ,

2. compute the precision K = Σ−1,

3. compute the partial correlation coefficients by ρij =
Kij√

KiiKjj

,

4. set edge Gij = 0 if |ρij | < θ for some threshold θ (eg, θ = 0.2).

The thresholding method is simple and fast, but it may not give a good esti-

mator. We can also use the shrinkage method discussed in [23] to get a better

estimator of Σ, which helps regularize the problem when the segment is too

short and d is large.

If we further pose the sparsity on the graph structure, we can use convex op-

timization techniques discussed in [2] to compute the MAP estimator for the

precision K under a prior that encourage many entries to go to 0. We first form
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the following problem,

maxΣ≻0 log(det(K)) − trace(ΣK) − ρ||K||1 (3.11)

where Σ is the empirical covariance, ||K||1 = Σij |Kij |, and ρ > 0 is the regular-

ization parameter which controls the sparsity of the graph. Then we can solve

( 3.11) by block coordinate descent algorithms.

We summarize the overall algorithm as following,

1. Input: data Y1:N , hyperparameters λ for change point rate and θ for

likelihood functions, observation model obslik and parameter ρ for graph

structure learning methods.

2. S = make overlapping segments from Y1:N by sliding windows

3. G = estimate graph structure estG(Ys, ρ) : s ∈ S

4. while not converged do

5. (K,S1:K) = segment(Y1:N , obslik, λ, θ)

6. G = estG(Ys, ρ) : s ∈ S1:K

7. end while

8. Inference model mi = maxm P (m|Ys) for i = 1 : K

9. Output: the number of segments K, the set of segments S1:K , the model

inferences on each segment m1:K

3.3.3 Likelihood Functions

After we get the set of candidate graphs, we need to be able to compute marginal

likelihood for each graph. However, we can only do so for decomposable graphs

in undirected graphs. For non-decomposable graphs, we will use approximation

by adding minimum number of edges to make it decomposable.

Given a decomposable graph, we will assume the following conjugate priors.

Comparing with the multivariate linear regression models, everything is the
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same except the prior on Σ is now a Hyper-Inverse-Wishart instead of Inverse-

Wishart.

Hence we still have the following model, (let Ys+1:t as Y and n = t − s)

Y = Hβ + ǫ

ǫ ∼ N(0, In,Σ)

The priors are,

β ∼ N(0,D,Σ)

Σ ∼ HIW (b0,Σ0) (3.12)

where D, In are defined before, and b0 = N0 + 1 − d > 0.

When a graph G is decomposable, by the standard graph theory [8], G can

be decomposited into a list of components and a list of separators, and each

component and separator itself is a clique. Then the joint density of Hyper-

Inverse-Wishart can be decomposed as following,

P (Σ|b0,Σ0) =

∏

C P (ΣC |b0,Σ
C
0 )

∏

S P (ΣS |b0,ΣS
0 )

(3.13)

where C is each component and S is each separator.

For each C, we have ΣC ∼ IW (b0 + |C| − 1,ΣC
0 ) and ΣC

0 is the block of Σ0

corresponding to ΣC . The same applies to each S. By ( 2.17), we have,

P (Ys+1:t|q) = P (Y |D, b0,Σ0)

=

∫ ∫

P (Y, β,Σ|D, b0,Σ0) dβ dΣ

=

∫ ∫

P (Y |β,Σ)P (β|D,Σ)P (Σ|b0,Σ0) dβ dΣ

Since P (Y |β,Σ)P (β|D,Σ) are the same as before, by integrating out β, we have,

P (Y |D,Σ) =

∫

P (Y |β,Σ)P (β|D,Σ) dβ (3.14)

=
1

(2π)nd/2|Σ|n/2

( |M |
|D|

)
d
2

exp(−1

2
trace(Y T PY Σ−1))

where M = (HT H + D−1)−1 and P = (I − HMHT ) are defined before.

When P is positive definite, P has the Cholesky decomposition QT Q. (In
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practice, we can let the prior D = c∗ I, where I is the identity matrix and c is a

scalar. By setting c into a proper value, we can make sure P is always positive

definite. This is very important in high dimension.) Now let X = QY , then

( 3.14) can rewrite as the following,

P (Y |D,Σ) =
1

(2π)nd/2|Σ|n/2

( |M |
|D|

)
d
2

exp(−1

2
trace(XT XΣ−1))

=

( |M |
|D|

)
d
2
(

1

(2π)nd/2|In|d/2|Σ|n/2
exp(−1

2
trace(XT I−1

n XΣ−1))

)

=

( |M |
|D|

)
d
2

P (X|Σ) (3.15)

where P (X|Σ) ∼ N(0, In,Σ), or just P (X|Σ) ∼ N(0,Σ).

Since we use decomposable graphs, this likelihood P (X|Σ) can be decomposited

as following [8],

P (X|Σ) =

∏

C P (XC |ΣC)
∏

S P (XS |ΣS)
(3.16)

where C is each component and S is each separator.

For each C, we have XC ∼ N(0,ΣC) and ΣC is the block of Σ corresponding

to XC . The same applies to each S.

Now multiply ( 3.13) and ( 3.16), we have,

P (X|Σ)P (Σ|b0,Σ0) =

∏

C P (XC |ΣC)P (ΣC |b0,Σ
C
0 )

∏

S P (XS |ΣS)P (ΣS |b0,ΣS
0 )

(3.17)

Then for each C, the posterior of ΣC ∼ IW (b0 + |C|−1+n,ΣC
0 +XT

CXC). The

same holds for each S. As a result, the posterior of Σ ∼ HIW (b0+n,Σ0+XT X).

Hence by integrating out Σ, we have,

P (Ys+1:t|q) = P (Y |D, b0,Σ0)

=

∫

P (Y |D,Σ)P (Σ|b0,Σ0) dΣ

=

( |M |
|D|

)
d
2

(π)−nd/2 h(G, b0,Σ0)

h(G, bn,Σn)
(3.18)

where

h(G, b,Σ) =

∏

C |ΣC |
b+|C|−1

2 Z(b0 + |C| − 1, |C|)−1

∏

S |ΣS |
b+|S|−1

2 Z(b0 + |S| − 1, |S|)−1
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Z(n, d) = πd(d−1)/4
d
∏

i=1

Γ((n + 1 − i)/2)

Σn = Σ0 + Y T PY

bn = b0 + n

In log space, ( 3.18) can re-write as following,

log(P (Ys+1:t|q)) = −nd

2
log(π) − d

2
(log|M | − log|D|) + log(h(G, b0,Σ0)) − log(h(G, bn,Σn))

(3.19)

We will also use the similar rank one update as mentioned earlier. Also notice

that h(G, b,Σ) contains many local terms. When we evaluate h(G, b,Σ) over

different graphs, we will cache all local terms. Then later when we meet the

same term, we don’t need to re-evalue it.

3.4 Experimental Results

Now we will show experimental results on some synthetic and real data sets.

3.4.1 Synthetic Data

First, we revisit the 2D synthetic data mentioned in the beginning of this chap-

ter. We run it with all three different models (independent, full and Gaussian

graphical models). We set the hyper parameter ν = 2 and γ = 2 on σ2 for each

dimension in the independent model; and set the hyper parameter N0 = d and

Σ0 = I on Σ where d is the number of the dimension (in this case d = 2) and

I is the identity matrix in the full model; and set the hyper parameter b0 = 1

and Σ0 = I on Σ in the Gaussian graphical model. We know there are three

segments. From Figure 3.7, the raw data are shown in the first two rows. The

independent model thinks there is only one segment, since the posterior prob-

ability of the number of segments is mainly at 1. Hence it detects no change

points. The other two models both think there are three segments. Both models

detect positions of change points that are close to the ground truth with some
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uncertainty.
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Figure 3.7: Results on synthetic data 2D. The top two rows are raw data. The

3rd row is the ground truth of change points. From the 4th row to the 6th row,

results are the posterior distributions of being change points at each position

and the number of segments generated from the independent model, the full

model and the Gaussian graphical model respectfully. Results are generated by

’show2D’.

Now let’s look at a 10D synthetic data. We generate data in a similar way, but

this time we have 10 series. And we set the hyper parameters in a similar way.

To save space, we only show the first two dimensions since the rest are similar.

From Figure 3.8, we see as before the independent model thinks there is only

one segment hence detects no change point. The full model thinks there might

be one or two segments. Also it detects the position of change point is close to
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two ends which is wrong. In this case, only the Gaussian graphical model think

there are three segments, and detects positions that are very close to the ground

truth. Then based on the segments estimated by Gaussian graphical model, we

plot the posterior over all graph structures, P (G|Ys:t), the true graph struc-

ture, the MAP structure GMAP = argmaxGP (G|Ys:t), and the marginal edge

probability, P (Gi,j = 1|Ys:t), computed using Bayesian model averaging (Gray

squares represent edges about which we are uncertain) in the bottom two rows

of Figure 3.8. Note, we plot the graph structure by its adjacency matrix, such

that if node i and j are connected, then the corresponding entry is a black square;

otherwise it is a white square.

We plot all candidate graph strutures selected by sliding windows in Figure 3.9.

In this case, we have 30 graphs in total. For the 1st segment, we notice that

the true graph structure is not included in the candidate list. As a result, GGM

picks the graphs that are most close to the true structure. In this case, there are

two graphs that both are close. Hence we see some uncertainty over the edges.

However on the 3rd segment, the true structure is included in the candidate list.

In this case, GGM can identify it correctly, and we see very little uncertainty in

the posterior probability. As mentioned earlier, the candidate list contains 30

graphs. Some are very different from the true structures which might be gener-

ated by the window overlapping two segments. However, we find these graphs

only slow the algorithms but won’t hurt their results, because these ”useless”

graphs all get very low posterior probabilities.

Finally let’s look at a 20D synthetic data. We generate data in a similar way and

set the hyper parameters in a similar way. To save space, we only show the first

two dimensions since the rest are similar. From Figure 3.10, we see as before

the independent model thinks there is only one segment hence detects no change

point. The full model clearly oversegments the data. Again, only the Gaussian

graphical model correctly segments, and detects positions that are very close to

the ground truth. Comparing with the results from 2d and 10d cases, we find

that the independent model fails to detect in all cases since the changes are on

the correlation structures, and the independent model cannot model it. The
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full model can detect in low dimensional case, but fails in high dimension cases,

because the full model has more parameters to learn. The Gaussian graphical

model can detect on all cases, and it is more confident in high dimension cases

since the sparsity structures are more important in high dimension.

3.4.2 U.S. Portfolios Data

Now let’s look at two real data sets which record annually rebalanced value-

weighted monthly returns from July 1926 to December 2001 total 906 month

of U.S. portfolios data. The first data set has five industries (manufacturing,

utilities, shops, finance and other) and the second has thirty industries.

The first data set has been previously studied by Talih and Hengartner in [24].

We set the hyper parameter ν = 2 and γ = 2 on σ2 for each dimension in the

independent model; and set the hyper parameter N0 = 5 and Σ0 = I on Σ in

the full model; and set the hyper parameter b0 = 1 and Σ0 = I on Σ in the

Gaussian graphical model. The raw data are shown in the first five rows of

Figure 3.11. Talih’s result is shown on the 6th row. From the 7th row to the

9th row, results are from independent model, full model and GGM respectfully.

We find that full model and GGM have similar results since they think there

are roughly 7 segments, and they agree on 4 out of 6 change points. Indepen-

dent model seems to be over-segmented. In this problem, we do not know the

ground truth and the true graph structures. Note, only 2 change points that we

discovered coincide with the results of Talih (namely 1959 and 1984). There are

many possible reasons for this. First, they assume a different prior over models

(the graph changes by one arc at a time between neighboring segments); second,

they use reversible jump MCMC; third, their model requires to pre-specify the

number of change points. In this case, the positions of change points are very

sensitive to the number of change points. We think their results could be over-

segmented. In this data, sliding windows generates 17 graphs. As usual, based

on the segmentation estimated by GGM, we plot the posterior over all 17 graphs
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structures, P (G|Ys:t), the MAP graph structure GMAP = argmaxGP (G|Ys:t),

and the marginal edge probability, P (Gi,j = 1|Ys:t), computed using Bayesian

model averaging (Gray squares represent edges about which we are uncertain)

in the bottom three rows of Figure 3.11. From the MAP graph structures

detected from our results, we find Talih’s assumption on the graph structure

changing by one arc at a time between neighboring segments may not be true.

For example, between the third segment and the fourth segment in our results,

the graph structure is changed by three arcs, rather than one.

The second data set is similar to the first one, but has 30 series. Since from

the results of synthetic data, we know that in higher dimension, the Gaussian

graphical model performs much better than the independent model and the full

model, we only show the result from the Gaussian graphical model in Figure

3.12.

We show the first two industry raw data in the top two rows. In the third row,

we show the resulted posterior distribution of being change points at each po-

sition and the number of segments generated by the Gaussian graphical model.

We still don’t know the ground truth and the true graph structures. We also

show the MAP graph structures detected on three consecutive regions. We can

see that the graph structures are very sparse and they differ more than one arcs.

3.4.3 Honey Bee Dance Data

Finally, we analyse the honey bee dance data set used in [19, 20]. This consists

of the x and y coordinates of a honey bee, and its head angle θ, as it moves

around an enclosure, as observed by an overhead camera. Two examples of the

data, together with a ground truth segmentation (created by human experts)

are shown in Figure 3.13 and 3.14. We also show the results of segmenting

this using a first-order auto-regressive AR(1) model, using independent model

or with full covariate model. We preprocessed the data by replacing θ with sinθ

and cosθ to overcome the discontinuity as the bees moves between −π to π. We

set the hyper parameter ν = 2 and γ = 0.02 on σ2 for each dimension in the
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independent model; and set the hyper parameter N0 = 4 and Σ0 = 0.01 ∗ I on

Σ in the full model.

From both Figures, the results from full covariate model are very close to the

ground truth, but the results from independent model are clearly over seg-

mented.
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Figure 3.8: Results on synthetic data 10D. The top two rows are the first two

dimensions of raw data. The 3rd row is the ground truth of change points. From

the 4th row to the 6th row, results are the posterior distributions of being change

points at each position and the number of segments generated from the inde-

pendent model, the full model and the Gaussian graphical model respectfully.

In the bottom 2 rows, we plot the posterior over all graph stuctures, P (G|Ys:t),

the true graph structure, the MAP structure GMAP = argmaxGP (G|Ys:t), and

the marginal edge probability, P (Gi,j = 1|Ys:t) on 3 segments detected by the

Gaussian graphical model. Results are generated by ’show10D’.
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Figure 3.9: Candidate list of graphs generated by sliding windows in 10D data.

We plot the graph structure by its adjacency matrix, such that if node i and j

are connected, then the corresponding entry is a black square; otherwise it is a

white square. Results are generated by ’show10D’.
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Figure 3.10: Results on synthetic data 20D. The top two rows are the first two

dimensions of raw data. The 3rd row is the ground truth of change points. From

the 4th row to the 6th row, results are the posterior distributions of being change

points at each position and the number of segments generated from the inde-

pendent model, the full model and the Gaussian graphical model respectfully.

In the bottom 2 rows, we plot the posterior over all graph stuctures, P (G|Ys:t),

the true graph structure, the MAP structure GMAP = argmaxGP (G|Ys:t), and

the marginal edge probability, P (Gi,j = 1|Ys:t) on 3 segments detected by the

Gaussian graphical model. Results are generated by ’show20D’.
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Figure 3.11: Results on U.S. portfolios data of 5 industries. The top five rows

are the raw data representing annually rebalanced value-weighted monthly re-

turn in 5 industries from July 1926 to December 2001. Total there are 906

month. The 6th row is the result by Talih. From the 7th row to the 9th row,

results are the posterior distributions of being change points at each position

and the number of segments generated from the independent model, the full

model and the Gaussian graphical model respectfully. In the bottom three

rows, we plot the posterior over all graph structures, P (G|Ys:t), the MAP

graph structure GMAP = argmaxGP (G|Ys:t), and the marginal edge proba-

bility, P (Gi,j = 1|Ys:t). Results are generated by ’showPortofios’.
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Figure 3.12: Results on U.S. portfolios data of 30 industries. We show the first

two industry raw data in the top two rows. The third row is the result of the

posterior distribution of being change points at each position and the number

of segments generated from the Gaussian graphical model. In the fourth row,

we show the MAP graph structures in 3 consecutive regions detected by the

Gaussian graphical model. Results are generated by ’showPort30’.
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Figure 3.13: Results on honey bee dance data 4. The top four rows are the raw

data representing x, y coordinates of honey bee and sin, cos of its head angle

θ. The 5th row is the ground truth. The 6th row is the result from independent

model and the 7th row is the result from full covariate model. Results are

generated by ’showBees(4)’.
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Figure 3.14: Results on honey bee dance data 6. The top four rows are the raw

data representing x, y coordinates of honey bee and sin, cos of its head angle

θ. The 5th row is the ground truth. The 6th row is the result from independent

model and the 7th row is the result from full covariate model. Results are

generated by ’showBees(6)’.
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Conclusion and Future

Work

In this thesis, we extended Fearnhead’s algorithms to the case of multiple di-

mensional series. This allowed us to detect changes on correlation structures, as

well as changes on mean, variance, etc. We modeled the correlation structures

using undirected Gaussian graphical models. This allowed us to estimate the

changing topology of dependencies among series, in addition to detecting change

points. This is particularly useful in high dimensional cases because of sparsity.

We can also model the correlation structures by directed graphs. In directed

graphs, we can compute the marginal likelihood for any graph structures. How-

ever, we don’t have a fast way to generate candidate list of graph structures

since currently all structure learning algorithms for directed graphs are too

slow. Hence if there is a fast way to learn structure of directed graphs, we can

use directed graphs.

Finally, the conditional independence property sometime might not be reason-

able. Or we might want to model other constrains on changing over consecutive

segments. This requires us to come up with new models.
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