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Abstract

We propose a novel framework based on Bayesian principles for validating

clusterings and present efficient algorithms for use with centroid or exem-

plar based clustering solutions. Our framework treats the data as fixed and

introduces perturbations into the clustering procedure. In our algorithms,

we scale the distances between points by a random variable whose distri-

bution is tuned against a baseline null dataset. The random variable is

integrated out, yielding a soft assignment matrix that gives the behavior

under perturbation of the points relative to each of the clusters. From this

soft assignment matrix, we are able to visualize inter-cluster behavior, rank

clusters, and give a scalar index of the the clustering stability. In a large

test on synthetic data, our method matches or outperforms other leading

methods at predicting the correct number of clusters. We also present a

theoretical analysis of our approach, which suggests that it is useful for high

dimensional data.
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Chapter 1

Cluster Analysis and

Validation

Clustering, or cluster analysis, is the process of identifying groups of simi-

lar points in data with no associated class labels. It occurs commonly as a

subproblem in statistics, machine learning, data mining, biostatistics, pat-

tern recognition, image analysis, information retrieval and numerous other

disciplines. It is usually used to discover previously unknown structure, but

other uses, such as increasing efficiency in accessing data, are also common.

Because the problem is ubiquitous, numerous clustering algorithms have

been proposed and studied.

While many clustering algorithms produce a candidate partitioning, rel-

atively few attach a measure of confidence to the proposed clustering. An

ideal clustering algorithm would do both; however, such a procedure is not

always practical. As a result, the field of cluster validation attempts to rem-

edy this by proposing methods to assess how well a proposed clustering of

a dataset reflects its intrinsic structure.

The purpose of this thesis is to introduce a novel technique for validating

clusterings. We begin by broadly outlining, as much as possible, the field of

cluster analysis and cluster validation. Then, in chapter 2 we introduce our

method as a general framework for cluster validation that can apply gener-

ally to most clustering procedures and types of data. Then, in chapter 3,

1



we apply it specifically to distance based clusterings – clusterings where the

final partitioning depends on the distance between the point and a centroid

or exemplar point. To test our method, we then describe a procedure in

chapter 4 for generating synthetic data with the correct number of clusters.

Chapter 5 gives the results of a massive simulation on this data, compared

against several other leading methods, showing that our method performs

favorably.

Furthermore, our method has several desirable properties in high di-

mensions, which we outline in chapter 6. In addition, we also present results

describing the breakdown of certain types of clusterings in high dimensions,

which is itself of interest. Finally, in chapter 7, we introduce a Monte Carlo

algorithm developed for the case of reclustering a distribution, but which

may apply more broadly as well.

The focus of this chapter will be on clustering analysis and then vali-

dation methods. We will briefly describe several important clustering al-

gorithms in section 1.1, but refer the reader to other resources for more

in-depth treatments of the subject. In section 1.2.1, we discuss the concept

of stability as a cluster validation tool. This motivates our discussion of

cluster similarity indices in section 1.2.2, as stability based methods rely

heavily on these.

1.1 The Clustering Function

There are numerous ways to classify and describe the plethora of proposed

clustering algorithms, and our treatment of the subject here is far from

complete. Because the algorithms we propose in our framework apply to a

large class of clustering algorithms – those dealing with centroids or exemplar

points – we summarize several clustering algorithms relevant to our method

and refer the interested reader to one of [XW05, JTZ04, Ber02, JMF99,

BB99] for more detailed surveys.

In this section, we first look at two aspects that many clustering algo-

rithms, or clustering functions, share in common. The first common aspect

is the minimization of a cost function, which we discuss in detail in section

2



Data→ CS → Cluster Statistics → CP → Assignment

Figure 1.1: The two stages of the clustering function.

1.1.3. This cost function returns a value that indicates how well partitioned

the data is; a lower value of the cost function usually indicates a better

clustering. The second aspect, and one directly relevant to our proposed

framework, is that many clustering functions operate in two stages; the first

stage creates some model describing the clusters and the second partitions

the data. We visit this in section 1.1.1. Then, in section 1.1.2, we summarize

several different classes of clustering algorithms and present details of some

of the most common ones.

1.1.1 Stages of the Clustering Function

Anticipating the method we introduce in the next chapter, we note that

many clustering algorithms can be described as a two stage process, as

shown in Figure 1.1. The first stage is generating a set of statistics describing

the data, and the second stage uses those statistics to partition the data.1

Formally, suppose C (K,X ) is a clustering function. In most cases, we can

express this as a nested function, so

C (K,X ) = CP (CS(K,X ),X ) (1.1)

The first stage, CS , processes the data and outputs information or statistics

about the clustering. The second stage, CP , uses this information to parti-

tion the data points into clusters. We represent this graphically in Figure

1.1.

For example, k-means generates a set of centroids and points are assigned

to the closest centroid. In this case, either the centroids or the point-to-

centroid distance matrix could be treated as summary statistics produced

1Technically, all clustering functions can be divided this way because the statistics
could be a labeling of the data. While this makes the latter partitioning step trivial, we
put no constraints on the form of the statistics used to generate the information to keep
this description sufficiently general.
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by CS . Additionally, many model-based clustering methods, such as EM

with Gaussian mixture models, produce a mixture model representing the

density of the data, and the mixture model parameters completely describe

the clustering. Hierarchical algorithms often use such statistics of the data

to perform the merging or dividing steps.

This idea is used explicitly in the information bottleneck approach orig-

inally proposed by Tishby [TPB00, Slo02, ST00a]. The main idea is to find

a limited set of code words that preserves the most information about the

data. While this approach applies more generally than to just clustering,

it has inspired some effective clustering algorithms [TS00], particularly for

document clustering [ST00b] and image clustering [GGG02].

1.1.2 Common Clustering Algorithms

There are several categorizations that are useful in distinguishing the nu-

merous existing clustering algorithms. The distinguishing criteria we use

here are hierarchical versus partitional. Hierarchical algorithms build a

dendogram, or tree, representing a hierarchy of nested partitions, by either

repeatedly merging smaller clusters or dividing larger clusters into parts.

Agglomerative-type algorithms start with smaller clusters and successively

merge them until some stopping criteria is met. Partitional algorithms, on

the other hand, separate the data into the clusters in one pass.

Hierarchical Algorithms

The most basic hierarchical clustering algorithm is agglomerative; not sur-

prisingly, it is called agglomerative clustering. It can apply to any type of

data where the distances between points can be defined and is used not only

for clustering points in Euclidean space but for clustering other types of data

such as text [ST00a, ZK02].

It starts with each data point being a single cluster. At each stage, the

closest pair of points or clusters is merged, ending with a single cluster and

a tree shaped representation of the structure in the data. Closest is usually

defined according to one of three linkage measures. Single linkage is the

4



smallest distance between any point in one cluster and any point in the

other. This is fast, but tends to be highly sensitive to random effects in the

data and can often produce clusters that look more like strands of spaghetti

than clusters. Average linkage is the average distance between all pairs of

points where one point is in the first cluster and the other is in the second

cluster; this often produces better clusters but is a slower algorithm. Finally,

complete linkage is the farthest distance between points in one cluster and

points in the other; this is algorithmically as fast as single linkage, but often

produces tighter, more compact clusters.

Another well-studied class of agglomerative clustering algorithms uses

probabilistic models of the clustering and merges based on how well the re-

sulting posterior distribution would reflect the data in the resulting cluster.

The vanilla version [IT95] simply uses the likelihood of the resulting model;

a more developed version proposed by Heller and Ghahramani [HG05] uses

hypothesis testing. While these methods work for general models and data

types, they have found the most use in text and document clustering as tex-

tual data is more easily represented by probabilistic models than by points

in Euclidean space. For a more detailed discussion of these algorithms, and

other algorithms for textual data, we refer the reader to [ZK02], [HMS02]

or [SKK00].

Divisive hierarchical clustering algorithms recursively divide the data

into two or more partitions, thus building the dendogram from the root

node and ending with the leaves. There are several algorithms designed

specifically for this purpose [Bol98]. Another simple method, though, is to

apply a partitional clustering algorithm with only a handful of clusters to

divide the data, then recursively apply it to each of the partitions.

Partitional Clustering Algorithms

By far the most popular partitional clustering algorithm is k-means [Ste06].

This is not surprising, as the algorithm has several nice properties. It is

quite simple; it can be both described and coded in a few lines of code. The

k-means algorithm is also computationally quite fast and is one of the few

5



clustering algorithms that scales well to millions or even billions of points

with parallel implementations [SB99]. The algorithm works remarkably well

on a variety of data (though more specialized algorithms can readily beat

it). Theoretically, the algorithm attempts to minimize the squared error

cost function, discussed in more detail below. This formulation is conducive

to theoretical analysis, so the algorithm is quite well studied.

K-means works by iteratively assigning points to the nearest centroid,

then repositioning those centroids to the mean of the points. Centroids are

usually initialized randomly, though there are more sophisticated methods

based on density estimate that yield better results and/or faster convergence

times [AV07].

Another popular class of partitional clustering algorithms are spectral

clustering algorithms, which also operate on a graph structure of points

[KVV04, VM01, NJW02]. The central idea is that the values of the principle

eigenvector of the inter-point distance matrix can be used to group the

points – groups of similar points tend to have similar values in the principle

eigenvector.

This idea has also been extended to directed graphs [MP07]. The min-

flow-max-cut algorithm from optimization theory, can be used to cluster the

points by partitioning the inter-point distance matrix so as to maximize the

distances cut, thereby minimizing the distances within partitions [DHZ+01,

FTT04]. Additionally, statistics such as the sum of edge lengths within

clusters also reflects the connectivity of the graph, and the quality of the

resulting partitions, in a way that distance matrices do not.

1.1.3 The Squared Error Cost Functions

Many clustering algorithms, e.g. k-means, attempt to find a partition that

minimizes a given cost function. K-means uses the squared error cost func-

tion, which we define formally below. Because we use this extensively later

on, particularly in chapter 6, we formally show some of its general properties

here. We reserve the full analysis, however, to chapter 6.

Definition 1.1.1. Squared Error Cost Function

6



Let X (p) = (x
(p)
1 ,x

(p)
2 , ...,x

(p)
n ) be a list of n p-dimensional points. Then

the squared error cost of X (p) is

cost
(
X

(p)
)

=
n∑

i=1

‖xi −m‖22 (1.2)

=
n∑

i=1

p∑

q=1

(xiq − µq)2 (1.3)

where

µq =
1

n

n∑

i=1

xiq (1.4)

is the mean of the qth component of all the points in X (p). If p = 1, this

simply becomes

cost
(
X

(1)
)

=
n∑

i=1

(xi −m)2 (1.5)

Definition 1.1.2. Squared Error Cost Function for Partitions

Let X (p) = x
(p)
1 ,x

(p)
2 , ...,x

(p)
n be a set of n p-dimensional points, and let

P = (P1, P2, ..., PK) be a partitioning of those points into K clusters. The

squared error cost function is then just the sum of the costs of each partition:

cost
(
X

(p),P
)

=
∑

k

cost
({

xi ∈X
(p) : i ∈ Pk

})
(1.6)

=
∑

k

∑

i∈Pk
‖xi − µk‖22 (1.7)

where µk is the mean of the points in the kth partition.

Theorem 1.1.3. Separability of the Squared Error Cost Function

into Components.

The squared error cost function is separable into dimension components.

Specifically, suppose X (p) = x
(p)
1 ,x

(p)
2 , ...,x

(p)
n is a set of p-dimensional
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points, and let

X
(p)
q =

{
xq : x ∈X

(p)
}
. (1.8)

Then

cost
(
X

(p)
)

=

p∑

q=1

cost
(
X

(p)
q

)
(1.9)

Proof.

cost
(
X

(p)
)

=

p∑

q=1

n∑

i=1

(xiq − µq)2 (1.10)

=

p∑

q=1

cost
(
X

(p)
q

)
(1.11)

Theorem 1.1.4. Invariance of Cost Function Under Unitary Linear

Transformations

Let A be a p × p unitary matrix, and let X (p) = x
(p)
1 ,x

(p)
2 , ...,x

(p)
n be a

set of n p-dimensional points. Then

cost
({

Ax : x ∈X
(p)
})

= cost
(
X

(p)
)

(1.12)
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Proof.

cost
({

Ax : x ∈X
(p)
})

=
n∑

i=1

‖Axi −Am‖22 (1.13)

=
n∑

i=1

(A(xi −m))T (A(xi −m)) (1.14)

=
n∑

i=1

(xi −m)TATA(xi −m) (1.15)

=
n∑

i=1

(xi −m)T (xi −m) (1.16)

= cost
(
X

(p)
)

(1.17)

Another nice property of the squared error cost function is that it can

be expressed as a linear function of the total distance between all the pairs

of points. We present this in the following theorem.

Theorem 1.1.5. The squared error cost function can be express in terms

of the distances between every pair of points. Specifically,

cost
(
X

(p)
)

=
∑

i

‖xi − x̄‖22 =
1

2n

∑

i,j

‖xi − xj‖22 (1.18)

Proof. It is easier to start with the distances between pairs of points and

show that it equals the original form. By definition, we have that

9



1

2n

∑

i,j

(xi − xj)2 =
1

2n

∑

i,j

((xi − x̄)− (xj − x̄))2 (1.19)

=
1

2n

∑

i,j

(xi − x̄)2 + (xj − x̄)2 − 2(xi − x̄)(xj − x̄)

(1.20)

=
1

2n


∑

i

2n(xi−x̄)−
(∑

i

2n(xi−x̄)
)
∑

j

2n(xj−x̄)




.

(1.21)

However,

∑

i

(xi − x̄) =

[∑

i

xi

]
− n

[
1

n

∑

i

xi

]
= 0 (1.22)

so

1

2n

∑

i,j

(xi − xj)2 =
∑

i

(xi − x̄)2. (1.23)

Thus the theorem is proved.

Corollary 1.1.6. The cost function for multiple partitions can be expressed

in terms of the difference between all pairs of points within each of the par-

titions. Specifically,

cost
(
X

(p),P
)

=
∑

k

∑

i∈Pk
‖xi − µk‖22 =

1

2

∑

k

1

|Pk|
∑

i,j∈Pk
‖xi − xj‖22 (1.24)

Proof. This follows immediately from theorem 1.1.5 and the definition of

the cost function for multiple partitions.

Corollary 1.1.7. Invariance of the cost function to constant shifts

10



Let u be any p-dimensional point. Let X (p) = x
(p)
1 ,x

(p)
2 , ...,x

(p)
n be a set

of n p-dimensional points, and let Y (p) = x1 + u,x2 + u, ...,xn + u. Let P
be a partitioning of those points into K partitions. Then

cost
(
X

(p),P
)

= cost
(
Y

(p),P
)

(1.25)

Proof. This follows directly from corrolary 1.1.6 by observing that the cost

function is expressed entirely as the difference between points. Thus we have

that cost
(
Y (p),P

)
reduces trivially to cost

(
X (p),P

)
.

1.2 Cluster Validation

Once a clustering is found, one should ask how well it reflects the natural

structure of the data before trying to interpret it in the context of the

experiment. It is critical to detect if the clustering is spurious – i.e. if the

structure implied by the clustering is a random artifact of the data and not

part of the true underlying distribution.

Ultimately, techniques for cluster validation need to aid in answering

two overlapping questions regarding quantity and quality. First, does the

number of proposed clusters accurately reflect the data [MB02]? Second,

how representative of the modes of the underlying distribution is the clus-

tering? For example, one might want to know how well the data supports

two clusters being distinct or whether all the significant modes in the data

are represented by a cluster.

Model based clustering methods fit a mixture model to the data, rep-

resenting each “cluster” by one component of the mixture model. These

methods produce, for each point, a distribution over cluster memberships

formed by normalizing the probabilities that the point was drawn from each

of the components. This so called soft assignment matrix provides a natural

way to assess how well the mixture model reflects the data; the ideal fit

would result in all points having a much higher probability of belonging to

one component than to any others.

Other techniques involve assessing the clustering in terms of stability,

or the resistance of the clusters to reasonable perturbations to the data.

11



The idea is that a clustering that reflects the true underlying distribution

of the data will be resistant to such perturbations, but clusters that simply

reflect spurious and random effects would not. The general process, then is

to cluster the data multiple times, each time with different perturbations.

If the resulting set of clusterings is consistent, then the original clustering is

presumed to be stable. We discuss this more in the next section.

One aspect of cluster validation is ensuring that a proposed clustering

correctly identifies the number of clusters. In simulations, this can be tested

by checking how often a cluster validation technique shows that clustering

the dataset into the correct number of clusters yields a better clustering

than clustering it into an incorrect number of clusters. The problem of pre-

dicting the correct number of clusters is often phrased as a model selection

problem [TW05], and is generally accepted in the literature as a method

for comparing various cluster validation techniques. In chapter 5, we com-

pare the accuracy of our approach against that of other clustering validation

techniques on this problem.

1.2.1 Clustering Stability

Many stability based techniques for cluster validation have been proposed.

The key idea of stability based cluster validation is to perturb the data

set, usually by sub-sampling the data or adding noise, then clustering the

perturbed data [BHEG02, Hen04, GT04]. The primary idea behind clus-

ter stability is that a clustering solution should be resistant to changes, or

perturbations, in the data that one would expect to occur in a real process.

The stability of the clustering is determined by analyzing the similarity

of the clustering across data perturbation runs [BHEG02] or between the

original data and the perturbed data, usually using a type of index designed

for this purpose (see section 1.2.2). Typically, this is simply the average of

the stability indices produced by the sequence of data perturbation runs,

but other summaries are possible.

There are numerous papers on the best way to construct this procedure.

Ben-Hur et. al. [BHEG02] randomly draws a certain percentage of all the

12



data points, clustering each, and compares each resulting clustering to all

the others. They then form a histogram of the resulting stabilities and use

that to chose the cluster. Other variants of this idea have also been proposed

[ALA+03, SG03].

As a slightly different variation, Breckenridge proposes measuring repli-

cation and consistency using a type of cross-validation on the original data

[Bre89]. He first tries to identify consistently corresponding clusters between

multiple runs, then measure the prediction strength on these consistently re-

curring clusters.

This idea is extended by Lange, Roth, Braun, and Buhmann in a se-

ries of papers [LBRB02, LRBB04, RLBB02]. Moller and Radke propose a

variant based on using nearest neighbors to guide the resampling [MR06].

Their idea is to split the dataset into two different parts by splitting the

nearest neighbor pairs, then ask how well a clustering on one part predicts

a clustering on the other. Fridlyand and Dudoit also build on this idea, in-

stead using a hierarchical procedure based on repeatedly splitting a dataset

[FD01, DF02].

Despite all these techniques to perturb the data, it’s unclear how often

these stability indices are actually used in practice [Hen04]. Perhaps this is

because a single scalar index is a fairly limited assessment of the properties

of the clustering. Ben-Hur et. al. [BHEG02] uses histograms of the stability

indices to present more information, but it is unclear if this is significantly

more useful. An ideal summary would also include statistics indicating the

stability of each of the clusters as well as the entire clustering, but few, if

any, data perturbation techniques are able provide this information.

Critiques of Cluster Stability Analysis

Cluster stability analysis, while conceptually straightforward and commonly

used in practice, does have some major flaws. In particular, Ben-David

[BDvLP06] points out that a highly stable clustering implies that cluster-

ing is good. For example, k-means with 2 means will usually converge to

a consistent solution when applied to three clusters in which two are suffi-

13



ciently well separated from the other or when applied to a single elliptical

cluster. Though the latter case could be handled by a parsimony or model

complexity argument, the former example would counter that.

Shamir and Tishby, however, counter this [ST07] by relating stability

to measures of generalization in model selection, arguing that the rate of

convergence of these measures is the important criteria. This, they argue,

justifies the use of stability for cluster validation.

Another problem, however, has been pointed out by Tibshirani and

Walther in [TW05]. In particular, if the true number of clusters is large, the

method does not have sufficient resolution to distinguish between k and k+1

possible clusters. This problem, it seems, is systemic in these techniques;

however, to counter it, may argue that knowing, for example, that predict-

ing that a data set has 15 clusters when it actually has 16 is less grievous

a mistake than predicting a clustering has 2 clusters when it actually has

3. Nevertheless, Tibshirani’s observation lends more weight to our previous

claim that summarizing an entire clustering by a single scalar stability index

can easily hide important properties of the clustering.

Predicting the Number of Clusters

To predict the number of clusters in a dataset, one would would calculate

a scalar assessment of the clusterings for a range of k, then choose the one

that is “best” according to some specified criteria. In the data stability case,

the scalar assessment is usually the stability of that clustering. If additional

information is available, such as the standard deviation of the assessment,

more sophisticated methods of choosing k can also be used, e.g. the smallest

one within one standard deviation of the best.

In the literature, it seems that the canonical method for comparing tech-

niques is in terms of the accuracy of how well they predict the number of

clusters in a dataset where the true value of k is known. While one could

argue that good performance on this type of problem may not be a good

predictor of its performance in many real-life cluster validation scenarios,

which is likely true, it is perhaps the best method of comparison out there
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given the discussed limitations of existing techniques. Thus it is also the

method we use in chapter 5 to compare our proposed cluster validation ap-

proach against current methods. Furthermore, choosing the correct number

of clusters does come up often, and there are techniques developed specifi-

cally for that, e.g. the gap statistic, described in section 1.3.

1.2.2 Clustering Similarity Indices

Because cluster stability analysis depends on how measuring the consistency

of a set of clusterings, a key subproblem that has also received widescale

attention is how to accurately compare clusterings. Numerous methods

have been proposed in the literature.

While there are literally dozens of indices, we focus on two here, the

Hubert-Arabie Adjusted Rand Index [HA85], which we denote by AR, and

the Variation of Information, VI [Mei07, Mei03]. The AR index has a rel-

atively long history in cluster analysis, while VI is more recent. [MC85]

compare many different indices for measuring the difference between two

partitions in a set of data and end up recommending the Hubert-Arabie

adjusted Rand index. However, while it is arguably the most popular, we

actually found the Variation of Information to perform better in our simu-

lations.

We first discuss the matching matrix, something used commonly by sim-

ilarity indices and these in particular. We then discuss the details of each

index, and we include connections to the probabilistic formulations which

can be readily incorporated into our index.

The Matching Matrix

One of the common representations of the overlap between two clusterings is

a so-called matching matrix or confusion table. If CCCA =
{
CA1 , C

A
2 , ..., C

A
KA

}

and CCCB =
{
CB1 , C

B
2 , ..., C

B
KB

}
, let njk be

∣∣∣CAj ∩ CBk
∣∣∣, that is, the number of

points in common between clusters CAj and CBk . Then this matching matrix

is just
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MAB = [njk]j=1,2,...,KA,k=1,2,...,KB (1.26)

If the two clusterings are represented by assignment matrices AA = [aAjk]

and AB = [aBjk], where ajk = 1 if point j is a member of cluster j and 0

otherwise, than this matching matrix is just

MAB = AT
AAB (1.27)

Let nAj =
∣∣∣CAj

∣∣∣ and let nBk =
∣∣CBk

∣∣. Note that these statistics match up

to the total counts in rows and columns of the matching matrix:

nAj =
∑

k

njk (1.28)

nBk =
∑

j

njk (1.29)

The majority of the cluster stability indices rely on this matching matrix

and particularly these summaries. We go on to present two such indices in

the next two sections.

Hubert-Arabie Adjusted Rand Index

The Hubert-Arabie Adjusted Rand Index is based on the Rand index pro-

posed in 1971 [HA85] and measures stability by looking at pairwise assign-

ments between clusterings. Given two clusterings CCCA and CCCB on a dataset

XXX with n points, we can separate the n(n − 1) possible pairs of points into

four categories and count the number of pairs in each:
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NA Number of pairs whose points in the same clusters

(ignoring cluster labels) in CCCA and CCCB.

NB Number of pairs whose points are in the same cluster

in CCCA but different clusters in CCCB.

NC Number of pairs whose points are in different clusters

in CCCA but the same cluster in CCCB.

ND Number of pairs whose points are in different clusters

in both CCCA and CCCB.

Using these definitions, the Rand index is defined as

R(CCCA,CCCB) =
NA +ND

NA +NB +NC +ND
(1.30)

it is easy to see that R(CCCA,CCCB) is 1 if both clusterings are identical.

Computing NA, NB, NC , and ND can be done naively in O
(
n2
)

time.

However, by using alternate statistics of the clusters, we can calculate it

much more efficiently. Using the notation used to define the matching matrix

in the previous section, we have that

NA =
∑

j,k

(
njk
2

)
(1.31)

NB =
∑

j

(
nAj
2

)
−NA (1.32)

NC =
∑

k

(
nB
k
2

)
−NA (1.33)

ND =
(
n
2

)
−NA +NB +NC (1.34)

which can be calculated easily.

However, the main issue with the Rand index is that its expected value

depends on n and tends toward 1 as n increases [Ste04, HA85]. This makes

results on different datasets more difficult to compare and limits the power

of the method for large n. Thus in 1986, Hubert and Arabie proposed a

modified index that solved this problem:
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AR(CCCA,CCCB) =
R(CCCA,CCCB)− E [R(CCCA,CCCB)]

maxR(CCCA,CCCB)− E [R(CCCA,CCCB)]
(1.35)

To calculate the expectations, they assumed the partitionings came from a

generalized hypergeometric distribution. Under this assumption, it can be

proved [HA85] that

E [RCCCA,CCCB] =


∑

j

(
nAj
2

)

[∑

k

(
nBk
2

)](
n

2

)−1

. (1.36)

The proof, however, is lengthy and tedious and we omit it here. With some

simple algebra, AR can then be expressed as

AR(CCCA,CCCB) =

∑
j,k

(
njk
2

)
−
[∑

j

(
nAj
2

)] [∑
k

(
nB
k
2

)](
n
2

)−1

1
2

[∑
j

(
nAj
2

)
+
∑

k

(
nB
k
2

)]
−
[∑

j

(
nAj
2

)] [∑
k

(
nB
k
2

)](
n
2

)−1

(1.37)

This expression can be calculated efficiently given the partitionings CCCA and

CCCB.

Because the Hubert-Arabie Adjusted Rand Index depends on partition

counts, we cannot apply the index directly when our input is in terms of

probabilities or distributions over point assignments. In this case, we can

use an n-invariant form of the index as given by [YR01] and [Mei07]. The

idea is to represent each row of the soft assignment matrix by m draws from

a multinomial distribution with weights given by that row. The similarity

index between the two soft partitionings of n1, n2 points is then approxi-

mated by the similarity between mn1,mn2 points with a hard partitioning,

an the approximation becomes exact as m→∞.

Let pjk be the probability of a point belonging to cluster j in CCCA and

cluster k in CCCB, and let pAj be the probability of a point belonging to cluster

j in CCCA and similarly for pBk . Then the n-invariant form is given by [Mei07]
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PAR =

∑
j

∑
k p

2
jk −

(∑
j

(
pAj

)2
)(∑

k

(
pBk
)2)

1
2

[(∑
j

(
pAj

)2
)

+
(∑

k

(
pBk
)2)
]
−
(∑

j

(
pAj

)2
)(∑

k

(
pBk
)2)

(1.38)

Again, the derivations is tedious and we omit it here.

Variation of Information

Some scalar similarity indices rely on probabilistic summaries of the cluster-

ing, e.g. the empirical probability of a point being in CAj in clustering CCCA
and CBk in clustering CCCB. The Variation of Information is one such index.

The Variation of Information measures the sum of information lost and

information gained between the two clusterings:

VI(CCCA,CCCB) = H(A) +H(B)− 2MI(A,B) (1.39)

where H(A) is the entropy of A, and MI(A,B) is the mutual information

between A and B.

When using a hard clustering, we can get the probabilities needed empir-

ically using statistics from the matching matrix. Now pAj = nAj /n
A denotes

the probability that a point is assigned to cluster j in CCCA, and likewise

pBk = nBk /n
B denotes the probability that a point is assigned to cluster k

in CCCB. Likewise, pjk = njk/n is the probability that a point is assigned to

cluster CAj in clustering CCCA and cluster CBk in CCCB. Then Meilă’s Variation

of Information is:

VI(CCCA,CCCB) = −
∑

j

pAj log pAj −
∑

k

pBk log pBk −2
∑

j

∑

k

pjk log
pjk

pAj p
B
k

(1.40)

This can easily be calculated.
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1.3 Gap Statistic

One popular way of choosing number of clusters is using the so-called gap

statistic proposed by Tibshirani [TWH01]. The gap statistic uses the dif-

ference in total cluster spread, defined in terms of the sum of all pairwise

distances in a cluster, between the true dataset and the clusterings of sev-

eral reference distributions with no true clusters. For example, in Euclidean

space and with the squared error distance metric, the spread is the total

empirical variance of all the clusters.

The reference datasets are used primarily to adjust for the dependence on

k in the measure, but also to guard against spurious clusterings as random

structure would presumably be present in the reference datasets. However,

generating a null dataset is not necessarily easy, as the final value can still be

highly dependent on the distribution of points. While much of this is not well

understood, Tibshirani [TWH01] proposes using the uniform distribution

within the PCA rotated bounding box of the original dataset, arguing that

a uniform distribution is most likely to contain spurious structure.

Formally, the within-cluster spread of points is the sum of the distance

between each point within a cluster to every other point in the same cluster

divided by the number of points:

spread (C) =
1

2nj

∑

i,i′∈Cj
dist

(
xi,x

′
i

)
(1.41)

The most common choice for the distance measure is the Euclidean sum of

squares distance:

dist
(
xi,x

′
i

)
= ‖xi − x′

i‖22, (1.42)

but other distance measures can also be used. Note that in this case, theorem

1.1.5 tells us that the spread is the same as the empirical variance of the

cluster around the mean of the points.

We present the procedure more formally as a three step process:

1. For each k in a given range of k’s, cluster the data into k clusters
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C = {C1, C2, ..., Ck}.

2. Generate Nb reference datasets and cluster each to form Nb sets of

clusters C1,C2, ...,CNb . The gap statistic is then

Gap (k) =

[
1

Nb

Nb∑

b=1

log (spread (Cb))

]
− log (spread (C)) (1.43)

The purpose of the logs is to essentially use the fractional difference

between the given data and the reference instead of the absolute dif-

ference, as log (a/b) = log a− log b. Because there is more dependence

on k in spread (C)− spread (Cb) than in spread (C)/ spread (Cb), the

logs are used here.

3. If b̄ = 1
Nb

∑Nb
b=1 log (spread (Cb)), compute the unbiased standard de-

viation of the baseline clusterings:

sk =

√√√√ 1

Nb − 1

Nb∑

b=1

(
log (spread (Cb))− b̄

)2
, (1.44)

then estimate the number of clusters K̂ using one of two criteria:

A. K̂ = smallest k such that Gap (k) ≥ Gap (k + 1)− sk+1.

B. K̂ = smallest k such that Gap (k) ≥ Gap (ℓ) − sℓ, where ℓ =

argmaxℓ′ Gap (ℓ′). Note that K̂ may equal ℓ.

The intuition behind A is that at some point Gap (k) levels off and

stops improving with increasing k. The intuition behind the second one

invokes a parsimony principle – the simplest model which adequately

explains the data, as determined by how well the best model explains

it, is probably correct.

While [TWH01] proposes using A, we actually found B to work better

on some of the simpler problems so we include it here. We study when

each holds in detail in chapter 5.
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In our results section, we compare our method against several flavors of

data perturbation methods and the gap statistic. The gap statistic performs

surprisingly well, though it begins to break down when the clusters do not

have Gaussian shapes. In this case, it seems that our methods, described in

the following chapters, perform the best.
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Chapter 2

A Bayesian Framework for

Clustering Stability

In this chapter, we propose an abstract framework that can, at a high level,

be applied universally to almost any clustering function. In our approach, we

modify the clustering function to take a hyperparameter that quantitatively

introduces some type of perturbation, then integrate over a prior on the

hyperparameter to obtain a probabilistic soft assignment matrix of points

to clusters. This matrix gives the probability that a point i is assigned to a

cluster j under perturbation.1 To our knowledge, this approach is unique.

Given this matrix, we propose a set of summarizing statistics. These

allow us to determine the behavior of specific points and clusters, rank

clusters in terms of stability, quantify interactions between clusters, and

compare clusterings with an overall stability index. Many of these tools –

particularly those giving information about individual clusters within the

clustering – are unique to our method.

We begin by formally describing our approach and introducing the per-

turbation induced soft assignment matrix, which we denote here and in

subsequent chapters using Φ = [φij ]. What we propose here is a framework

that abstracts away many of the implementation details, namely the aspects

1This is in contrast to the soft assignment matrix that comes from model based clus-
tering, which gives the probability that point i originated from jth mixture component.
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of generating Φ that depend on particular clustering algorithms. The rest of

the chapter assumes that those issues are worked out (which we do in chap-

ter 3). We then introduce a set of tools and summary statistics based on Φ

that aid in analyzing and validating a clustering. We end this chapter by

discussing possible extensions that incorporate previously studied validation

indices.

While this chapter focuses on the abstract framework, in the next chapter

we use this framework to develop specific algorithms for clustering valida-

tion. The most critical aspects of this are choosing the type of perturbation

and selecting a good prior, and we discuss these issues only superficially

here. In chapter 5, we show, in a massive test on synthetic data, that the

proposed validation algorithms proposed in this framework are as reliable

or better than several other leading methods in terms of determining the

number of clusters, demonstrating the potential usefulness of the proposed

framework. Finally, in chapter 6, we discuss the asymptotic behavior of our

method as the dimension increases, suggesting that it is appropriate for use

in high dimensions.

2.1 The Abstract Framework

Suppose C (K,X ) is a clustering function that partitions a set of n data

X = {x1,x2, ...,xn} into a set {C1, C2, ..., CK} of K clusters based on some

structural feature of the data. Our approach is to create a new clustering

function C⋆(K,X ,λ) by modifying C (K,X ) to take a hyperparameter λ,

where the role of λ is (informally) to perturb some aspect of the cluster-

ing.2 The definitions in our framework make no assumptions about how the

parameter affects the clustering function; the details will vary based on the

clustering algorithm and what type of stability one wishes to assess.

We then define a prior distribution π(λ|θ) over the perturbation param-

eter indexed by a hyperparameter θ. While the full prior selection issue

depends on the role of λ in C⋆, we describe a procedure in chapter 3 to

2Notationally, we use a superscript ⋆ to denote a part of the procedure that has been
modified to accommodate the perturbation parameter λ
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choose an optimal θ using various aspects of the clustering distribution.

Without loss of generality, suppose the clustering function C (K,X ) re-

turns an n×K assignment matrix giving the assignment of points to clusters.

Thus

A = [aij ] = C (K,X ) (2.1)

In the hard clustering case, we assume that aij equals 1 if xi is in cluster

C and 0 otherwise.3 For soft clustering algorithms, each row of A is a

distribution over the clusters giving the partial membership of each point.

Note that these definitions imply that
∑

j aij = 1.

Likewise, suppose that, for a given instance of the random variable λ,

the perturbed clustering function also C⋆(K,X ,λ) returns a similarly defined

assignment matrix. Explicitly denoting the dependence on λ, we have

A⋆(λ) = [a⋆ij(λ)] = C
⋆(K,X ,λ) (2.2)

For our purposes, we require C⋆(K,X ,λ) to be a deterministic function of

λ. However, this does not necessarily exclude algorithms such as k-means

which inherently incorporate some degree of randomness as we show later.

Also, we assume X and K are constants throughout our procedure. Again,

this does not exclude clustering algorithms that return a variable number of

centroids, as we do allow empty clusters.

2.1.1 The Averaged Assignment Matrix

Recall that the modified clustering algorithm C⋆(K,X ,λ) is a deterministic

function of λ. This allows us to integrate out the parameter λ from a⋆ij(λ)

with respect to π(dλ|θ). This gives us an n × K matrix Φ such that φij

expresses the average membership of xi in cluster Cj under perturbation.

More formally, suppose C⋆(K,X ,λ) returns, for each point of λ, an n×K
assignment matrix, and let π(λ|θ) be a prior distribution over λ. Then the

averaged assignment matrix Φ is given by

3Notationally, we consistently use i to index the data point and j, k, and ℓ to index
clusters.
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Φ = [φij ] =

∫
A⋆(λ)π(λ; θ)dλ. (2.3)

Note that if one interprets the assignment matrix A⋆(λ) as a probability

distribution over the labels, i.e.

a⋆ij(λ) = p(aij |λ), (2.4)

then equation (2.3) has the form of a Bayesian posterior distribution.

This equation formalizes the core concept of our framework. The integra-

tion spreads the binary membership matrix A⋆(λ) across the clusters based

on the behavior of those points under perturbation. Each row of Φ can be in-

terpreted as a probability vector such that φij indicates the probability that

datum xi belongs to cluster j when perturbed. If the perturbation type

and corresponding prior are well chosen, this probability matrix provides

significant information about the behavior and stability of the clustering.

2.1.2 The Matching Matrix

We can define the averaged matching matrix M = [mjj′ ] in terms of Φ:

M = ATΦ⇔ mjk =
∑

i
aijφik =

∑
i:aij=1

φik (2.5)

In this matrix, mjk represents the total point-mass (each point having

a mass of 1) in the unperturbed cluster Cj that moves to cluster Ck under

perturbation. In an analogous way to the matching matrix for comparing

two clusterings (see section 1.2.2), mjk/ |Cj | (normalizing M across rows) is

the probability of a point in the unperturbed cluster Cj belonging to cluster

Ck under perturbation. Likewise, mjk/n is the probability that a randomly-

selected point belongs to cluster Cj in the unperturbed clustering and to

cluster Ck under perturbation.
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2.1.3 Perturbations and Label Matching

As we mentioned above, one assumption required in our framework is that

C⋆(K,X ,λ) is a deterministic function of the parameter λ. However, this is

not necessarily enough to guarantee that the integral in equation (2.3) gives

a sensible answer. We discuss here one reason that is often referred to as

the label matching problem.

The label matching problem refers to the fact that many algorithms may

give similar answers across different runs but only modulo a permutation of

the label indices. As a simple example, two runs of random-start k-means

may give identical final locations for the centroids, but the centroid given

the index 1 in the algorithm on the first one may have the index 5 on the

second. This means that the points associated with one centroid in the first

run may be associated with a differently labeled centroid in the second. Even

without randomness in the clustering algorithm, many ways of introducing

perturbations into the clustering function will cause the cluster labels to

switch given different values of λ.

The label matching problem is inherent in the data perturbation methods

and has received some attention. There are generally two ways of dealing

with it. The first is to rely on scalar stability indices such as those described

in section 1.2.2; these are invariant to permutations of the labels and thus

provide a way to compare clusterings when the label matching problem is an

issue. The other way is to permute the labels to maximize their similarity

[Bre00, LRBB04]. This corresponds to solving a bipartite graph matching

problem between the two sets of clusters labels, where the edge weights are

proportional to the number of shared points. Finding the optimal matching

can be done in O(K3) time using the Hungarian method [Kuh55] or network

flow simplex [Chv83].

Avoiding Label Matching Completely

To handle the label matching problem in our framework, we have a third

option in addition to these two. Introducing the perturbation and hyper-

parameter into the CP step, so C⋆(K,X ,λ) = C⋆P (CS(K,X ),λ), provides
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an alternate way around this problem. Because the cluster statistics are

already calculated, perturbations will not mix up the labels. This avoids

the label matching problem completely, something not possible with data-

perturbation methods.

Should we want to perturb the clustering function in a way that requires

matching up the labels, we can introduce a K×K permutation matrix P(λ)

to formally express this. This permutation matrix matches up the labels at

each point of λ. Equation (2.5) then becomes:

Φ = [φij ] =

∫

Λ
A⋆(λ)P(λ)dΠ(λ) (2.6)

where

P(λ) = argmax
Q∈P

trace
[
ATA⋆(λ)Q

]
(2.7)

The definition for equation (2.5) which follows remains unchanged. While

this is tractable when testing a small set of λ, however, it can still pose a

significant problem.

2.2 Visualizations and Statistical Summaries of

the Averaged Assignment Matrix

In this section, we discuss ways of extracting useful information about the

clustering from the averaged assignment matrix. The first technique we

present is a picture of how the clusters give and take points under perturba-

tion. We then expand this to include various statistical summaries of these

properties.

2.2.1 Heatmap Plot of Φ

We present here a simple way to intuitively visualize the behavior of a clus-

tering, by plotting a rearranged form of Φ as a heat map. This heat map

requires the cluster labels to be matched up; thus it is computationally
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difficult using data perturbation methods and, while it is a simple proce-

dure to display the clusterings, to our knowledge it has not been previously

introduced.

Given the averaged assignment matrix and the unperturbed assignment,

we construct the heat map that separates out the rows by their assignment

in the unperturbed clustering and the probability they are assigned to that

same cluster under perturbation. An example of how we do this is shown in

Figure 2.1. As can be seen, it gives us a visually appealing and informative

picture of the behavior of the clustering under perturbation.

To be precise, we build an index mapping that rearranges the rows of A

so that the nonzero elements are all in contiguous blocks along the columns

and these blocks are arranged in descending order along the rows. Within

the blocks, we permute the rows so the elements in the block Φ in descending

order. We then apply this index mapping to Φ and further refine it so that

the rows within each block are sorted by the entry corresponding to the clus-

ter to which the point is assigned in the baseline clustering. Algorithmically,

this can all be expressed in two lines:

hi = argmax
k

aik (2.8)

ψ = argsort (hi + φihi , i = 1, 2, ..., n) (2.9)

where ψ is the resulting mapping index.

To illustrate the properties of the averaged assignment matrix and the

the corresponding heatmap, we show a 2d toy example in Figure 2.1. The

specific perturbations (scaled distance) and prior (location exponential) used

to generate the plots are introduced in chapter 3; we focus here on the

intuitive understanding.

In the heatmap plot, the blocks along the “diagonal” denote the stability

of points relative to their assigned clusters under perturbation, and the “off-

diagonal” blocks represent membership in other clusters under perturbation.

Each row shows how the corresponding point behaves when the cluster is
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Figure 2.1: A 2d toy example illustrating the use of the heatmap plot
for analyzing how clusters exchange point mass under perturbation.
(a) shows the clustered 2d sample. (b) shows the sample with the
pointwise stability (equation (2.11)) of each (x,y) coordinate plotted in
the background, with white representing a pointwise stability of 1 and
black a pointwise stability of 0. (c) shows the corresponding heatmap
plot of the clustering.
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perturbed; the point mass in unstable points will show up as red and orange

colors to the side of such blocks. Dark red or black indicates separation

between clusters. This allows us to visualize clearly how clusters exchange

points when perturbed.4

As can be seen, cluster separation or closeness can be easily noted in the

heatmap. For example, the 2d plot indicates that cluster E is well separated

from cluster A; the heatmap plot shows this as A shares no point mass with

E and vis-versa. Clusters A and B however, are not well separated, and

exchange significant point mass as illustrated by the red and orange (gray)

in blocks (A,B) and (B,A) in the heatmap.

2.2.2 Scalar Stability Indices

While the heatmap presents the clearest picture of the properties of the

clustering, statistics summarizing the behavior of the clustering are often

useful. We here present a set of summary statistics that condenses the rele-

vant information in Φ. We here provide indices that serve several purposes.

The pointwise stability of a point, PW i, is a per-point stability index that

indicates how well point i fits into the clustering. The cluster-wise stability,

CWk, summarizes the stability of each clustering. An inter-cluster index

ICjk indexes the separation of two clusters j and k. Finally, the average

pointwise APW summarizes the stability of the entire clustering.

The primary motivating idea behind the way we chose to condense the

information is competitive loss. Essentially, we measure the stability of a

point according to the “closeness” of the competition. If the probability

that a point belongs to one cluster under perturbation is nearly equal to the

probability that it belongs to a different cluster, it lends evidence that the

clustering is unstable. Likewise, if the probability that a point belongs to

a given cluster is close to one, implying that it is significantly greater than

the probability of it belonging to any other cluster, it lends evidence that

the clustering is good and fits the data well.

4Note that all comparisons must be done keeping in mind that only the rows are
normalized; comparisons within columns are not on the same scale and, though suggestive,
are not formally justified.
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Pointwise Stability

We define the pointwise stability of point i in terms of the difference in as-

signment probability between the cluster it is assigned to in the unperturbed

clustering and the maximum probability of all the others. This, ultimately,

gives us a scalar measure of confidence in the point’s assignment. Formally,

hi = argmax
k

aik (2.10)

PW i = φihi −max
ℓ6=hi

φiℓ (2.11)

For a dataset with n points, this produces a vector of length n. While other

summary statistics might be possible – e.g. the entropy of φi· (see below) –

we find this definition works quite well in practice.

As can be seen in Figure 2.1, the pointwise stability imposes a type of

partitioning on the space around the cluster centers. In this plot, we fix the

location of the cluster centers and plot the pointwise stability of each (x,y)

coordinate given the location of the cluster centers, i.e. what the pointwise

stability of a point at (x,y) would be. Note that near the boundary regions,

the pointwise stability is near zero, whereas near the cluster centers the

pointwise stability is near one.

As mentioned, note that other summary statistics are also possible. In

particular, one could use the entropy of each row of Φ instead of the com-

petitive loss as the resulting measure of stability. However, the pointwise

stability has the advantage that it detects when the given clustering is wrong,

i.e. the probability of a point belonging to the cluster it is assigned to in

the unperturbed clustering is less than the probability of it belonging to a

different cluster. To see this, suppose that φiℓ = 1 for ℓ 6= j (recall that j is

the cluster it is assigned to in the unperturbed clustering). In such a case,

PW i would be -1 but the entropy would be the same as the correct case

where φij = 1.
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Stability Measures for Clusters

We define the cluster-wise stability as the average pointwise stability of the

points assigned to it in the unperturbed clustering. Specifically,

CWk = mean
i:xi∈Ck

PW i (2.12)

This statistic allows for useful operations such as ranking clusters by their

relevance to the structure of the data. This type of information is very

difficult to attain using other methods.

We can also measure the separation of clusters based on the probability

that the points assigned to each of the clusters in the unperturbed clustering

stay there under perturbation minus the probability that they move to the

other cluster. Specifically,

ICjk =
1

|Cj |+ |Ck|


 ∑

i:xi∈Cj
φij − φik +

∑

i:xi∈Ck
φik − φij


. (2.13)

A value of ICjk near 1 indicates that clusters j and k are well separated

as they exchange almost no point mass under perturbation. A value of 0

(or less) means that they are practically indistinguishable (assuming the

method used to generate Φ is sensible).

Note that it is also possible to construct an asymmetric measure of inter-

cluster stability by measuring the average point mass that moves from cluster

j to cluster k under perturbation. Formally,

AssymmetricICjk = mean
i:xi∈Cj

φij − φik. (2.14)

This could be useful if the clusters had significantly different properties that,

for instance, caused some clusters to be unstable and give point mass to their

much more stable neighbors. While practically such a behavior can be seen

in the heatmap plot, an index that allows for the detection of such behavior

could be useful.
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Stability Indices for the Clustering

Finally, the average of the pointwise stability vector gives us an overall

measure of the stability of the clustering:

APW = mean
i
PW i. (2.15)

We refer to this as the average pointwise stability of the clustering. In

chapter 5, where we present our results, we use the difference between the

APW of a clustering of the given data and the APW on a baseline null

clustering, defined in the next chapter. We show that this method can be as

accurate, in terms of predicting the number of clusters, as the other leading

methods.

2.2.3 Extensions to Other Stability Indices

Because many of the scalar scalar indices work by comparing two partition-

ings, it is natural to compare the unperturbed assignment matrix and Φ

using these indices as an alternative method of obtaining a statistical sum-

mary of the clustering. In this section, we discuss using two such indices,

the Hubert-Arabie Adjusted Rand Index and the Variation of Information.

We introduced both of these in the context of comparing two clusterings in

section 1.2.2.

Recall from section 1.2.2 that the n-invariant form of the Hubert-Arabie

Adjusted Rand Index is given by

AR⋆ =

∑
j

∑
k p

2
jk −

(∑
j

(
pAj

)2
)(∑

k

(
pBk
)2)

1
2

[(∑
j

(
pAj

)2
)

+
(∑

k

(
pBk
)2)
]
−
(∑

j

(
pAj

)2
)(∑

k

(
pBk
)2)

(2.16)

and the Variation of Information (section 1.2.2) is given by
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VI⋆ = −
∑

j

pAj log pAj −
∑

k

pBk log pBk − 2
∑

j

∑

k

pjk log
pjk

pAj p
B
k

(2.17)

We have the probabilities needed to calculate these from A and Φ as

follows:
pAj The probability of a point belonging to cluster j in the un-

perturbed clustering is simply the total number of points in

that cluster divided by the total number of points, so

pAj =
1

n

∑

i

aij . (2.18)

pBk Likewise, The probability of a point belonging to cluster k

in the averaged assignment matrix is simply the total point

mass in that cluster divided by the total number of points,

so

pBk =
1

n

∑

i

φik. (2.19)

pjk The probability that a point belongs to cluster j in the unper-

turbed clustering and to cluster k under perturbation. Recall

that the matching matrix M gives the total point mass shared

between clusters the unperturbed clustering and clusters in

the averaged assignment, so

pjk =
mjk

n
(2.20)

We now have everything needed to calculate VI⋆ and AR⋆. However,

we observed that these indices do not work as well as the average pointwise

stability, so we present them here as possible extensions and instead recom-

mend using the averaged pointwise stability for general use. This hints that

in bypassing the label matching problem – as these indices do – they discard
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important information about the dataset and the clustering.

2.3 Conclusion

In this chapter, we have presented a general framework for clustering va-

lidity based on introducing perturbations into the clustering function. This

method may be seen as a natural expansion of clustering stability analysis

to include more general perturbations of the clustering function. This ex-

pansion is consistent with the Bayesian tenet of conditioning on the data

but expressing uncertainty in the modeling procedure.

Now that we have presented the framework at a high, abstract level,

we go through the details of how we introduce the perturbation into the

clustering function and how we select a prior.
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Chapter 3

Bayesian Cluster Stability

Algorithms

While the previous chapter proposed a general framework to use in develop-

ing cluster validation techniques, this chapter uses this framework to develop

algorithms for cluster validation. Recall that the key idea in this framework

is to alter the clustering function to take a parameter λ which indexes some

sort of perturbation, then integrate out λ over a prior π(λ|θ) to get an av-

erage assignment matrix Φ. For reference, recall here the principle equation

as

Φ = [φij ] =

∫
A⋆(λ)π(λ; θ)dλ (3.1)

where A⋆(λ) is the perturbed assignment matrix returned by the modified

clustering function,

A⋆(λ) = [a⋆ij(λ)] = C
⋆(K,X ,λ). (3.2)

At this point, there are two outstanding issues to address.

First, what part of the clustering function should be perturbed? Cer-

tainly, there are numerous possibilities. Showing that a particular pertur-

bation technique is “optimal” would be extremely difficult, and the proof
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would likely be highly dependent on a particular application, clustering al-

gorithm, or type of data. However, it is far less difficult to demonstrate that

a particular technique can work well on several types of data and a variety

of clustering algorithms. In this chapter and later, we advocate scaling the

distance metric used to partition the data points by the random variable

indexing the perturbation. We demonstrate in section 3.1 that this method

has some desirable geometric qualities. In chapter 5, we show that it can

perform quite well, matching or outperforming other leading methods. On

the theoretical side, we show in chapter 6 we show that it has some nice

properties as the dimension increases.

Second, given the perturbation method, which prior should be used?

Again, there are numerous possibilities to consider, and proving that a prior

is somehow optimal is quite difficult and would likely depend significantly

on the type of data and other factors; thus it is beyond our scope. Our aim

here is to find a prior that works well on a wide variety of data and can be

calculated quickly enough to be used in a wide variety of applications.

Ultimately, we leave the full prior selection question for future research,

and instead focus on choosing the best prior out of a class of priors. We

choose the hyperparameters of the prior to maximize the difference in over-

all stability against a baseline null clustering and the overall stability of the

clustered data. For a class of perturbations based on distance scaling, this

technique turns out to work quite well, as we demonstrate in chapter 5.

We propose several classes of priors for the distance scaling perturbations,

a location exponential and shifted Gamma distribution. In section 3.3.1,

we derive an efficient algorithm to calculate the averaged assignment ma-

trix Φ with a location exponential prior in O(nK logK) time. In section

3.4.1, we do the same for the shifted Gamma prior, though this algorithm

requires O
(
nK3

)
time to calculate. However, we show in section 3.6 that

these prior classes have several nice properties, the most significant being

provable bounds on the error if some of the centroids are excluded from the

calculation; this can vastly improve the running time. Finally, in section

3.5, we propose a general and reasonably fast Monte Carlo algorithm, which

allows the partial assignment matrix to be calculated provided the prior can
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be sampled from.

3.1 Perturbing the distance metric

In the algorithms we discuss here, we restrict ourselves to clustering func-

tions where the final partitioning depends on the distances to a set of cen-

troids or exemplar points, and data points are assigned to the nearest cen-

troid or exemplar. Thus we assume the first stage of the clustering algorithm

returns an n×K matrix D = [dij ], where dij is the distance between point

i and centroid (or exemplar) j. Then the assignment matrix A in the un-

perturbed clustering would be

aij =

{
1 dij ≤ diℓ ∀ ℓ 6= j

0 otherwise
. (3.3)

We propose that scaling the distance metrics used to partition the points is a

reasonable way to introduce the perturbation. Specifically, given D = [dij ],

the perturbed assignment matrix A⋆(λ) would be

a⋆ij(λ) =

{
1 dijλj ≤ diℓλℓ ∀ ℓ 6= j

0 otherwise
, (3.4)

and the elements of Φ = [φij ] can be expressed as

φij =

∫
I[dijλj ≤ diℓλℓ ∀ ℓ 6= j]π(λ; θ)dλ. (3.5)

For convenience, we here introduce an alternative functional formulation

of equation (3.5) that explicitly denotes the dependence on the distances.

Let di = (di1, di2, ..., diK) be the vector of points to centroids. Then, define

the function ψ as

ψj(di, θ) = φij =

∫
I[dijλj ≤ diℓλℓ ∀ ℓ 6= j]π(λ; θ)dλ. (3.6)

We use this formulation often in subsequent proofs.

For several reasons, we believe this is a reasonable way to introduce the

perturbations. First, because the distance measures are the statistics used to
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partition the data points, changing them sufficiently will result in an altered

configuration. Second, it gives us an excellent geometrical interpretation

which we elaborate on next. Third, we are able to derive computationally

efficient and accurate algorithms to calculate φij – for a location exponen-

tial prior, the most useful prior we’ve found, it can be done in amortized

O(logK) time. Finally, we demonstrate in chapter 5 that it can yield excel-

lent results that match or exceed all other methods we’ve compared against.

3.1.1 Intuitive Understanding

Restating equation (3.5) in terms of probabilities gives us

φij = P(dijλj ≤ diℓλℓ ∀ ℓ) (3.7)

φij is, intuitively, a measure of how “competitive” the distances to the clus-

ters are. If cluster j is a clear winner – meaning it is significantly closer

than the others – then P(dijλj ≤ diℓλℓ ∀ ℓ) would be higher as the condition

would be true for a larger set of λ. Conversely, if the distances to another

cluster is similar to the distance to cluster j, φij would be less as the event

{dijλj ≤ diℓλℓ ∀ ℓ} would occur for a smaller set of λ. Essentially, then the

values in Φ provide information about the relative density of points close to

the boundary regions versus the density around the cluster centers.

3.1.2 Example: Exponential Prior

At this point, it is helpful to consider an example prior for scaled distance

based perturbations that has an intuitive analytic evaluation for φ. The

priors that we ultimately propose for use in actual cluster validation work

yield a very unintuitive equation for φij (see section 3.3.1, but work much

better than this one in practice. We first present the result as a proof and

then discuss the final equation.

Theorem 3.1.1. φij with an exponential prior.

Let φij be defined as in equation (3.5), and let
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π(λ) =
∏

ℓ

Exp(λℓ|θ) =
∏

ℓ

θe−θλℓ . (3.8)

Then

φij =
d−1
ij∑
ℓ d

−1
iℓ

(3.9)

Proof. For convenience, we drop the i’s as they are constant throughout the

proof. By definition, we have that

φj =

∫
I[djλj ≤ dℓλℓ ∀ ℓ 6= j]

∏

ℓ

Exp(λℓ|θ)dλ (3.10)

=

∫
θe−θλℓ

∏

ℓ6=j

[
I[djλj ≤ dℓλℓ]θe−θλℓ

]
dλ (3.11)

=

∫ ∞

0
θe−θλℓ


∏

ℓ6=j

∫ ∞

djλj/dℓ

θe−θλℓdλℓ


dλj (3.12)

=

∫ ∞

0
θe−θλℓ


∏

ℓ6=j
exp

[
−θdj
dℓ
λj

]
dλj (3.13)

=

∫ ∞

0
θ exp


−


1 +

∑

ℓ6=j

dj
dℓ


θλj


dλj (3.14)

=
θ

θ
(
1 +

∑
ℓ6=j

dj
dℓ

)
∫ ∞

0
Exp


λj |θ


1 +

∑

ℓ6=j

dj
dℓ




dλj (3.15)

=
1

1 +
∑

ℓ6=j
dj
dℓ

(3.16)

=
d−1
j∑
ℓ d

−1
ℓ

(3.17)

This result – that the stability is indicated by the normalized inverse

distance metrics – is a sensible. If one of the distances is quite small relative
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to the others, the corresponding entry in φij will be close to 1. Similarly, if

all of them are close to the same value, φij becomes close to 1/K.

3.2 Prior Selection Using a Baseline Null

Distribution

The full question of prior selection is historically an extremely difficult prob-

lem, and the present case is no different. As a result, finding a good prior, or

class of priors, is an effort/reward trade-off – the goal is to find some guid-

ing principles that are relatively easy to work with but greatly improve the

technique. While there are surely additional undiscovered principles beyond

the one we outline here, the following principle has proved very useful.

3.2.1 Observations from High Dimensions

In higher dimensions, the distances between points become similar and many

methods break down. Much literature has been published on this effect. In

fact, if each dimension component xi in a set of random data is i.i.d. from

a continuous distribution,

maxi6=j‖xi − xj‖2
mini6=j‖xi − xj‖2

P−→ 1 (3.18)

as the dimension goes to infinity. This is proved by Hinneburg et. al.

[HAK00] (their version of the proof has more general conditions than i.i.d.,

but i.i.d. and continuous is sufficient.)

The implication of this for us is that clustering algorithms in high di-

mensions often produce a clustering based on very small relative differences

in dimension. This does not necessarily imply the clustering is unstable;

rather, it reflects the fact such small differences carry significant influence

in determining the outcome. This observation is something that cluster

validation schemes must take into considerations.
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3.2.2 Tunable Priors

In our case – scaled distance perturbations, where the scaling is determined

by a prior – this means that we must be able to adjust the severity of the

scaled distance perturbations to accommodate this effect. In other words,

we must be able to adjust π(λ|θ) so that P(dijλj ≤ diℓλℓ ∀ ℓ) has the proper

sensitivity to the magnitude of the relative differences between the dij ’s. We

suspect that being able to readily tune our method is one thing that gives

it an edge over the other methods for testing stability in higher dimensions,

as no other methods that we know of explicitly account for it.
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Figure 3.1: Plots of the pointwise stability at each point of a 2d plain
given the cluster centers.
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Both of the prior classes we introduce in sections 3.3 and 3.4 can be

tuned to be arbitrarily sensitive, a result we prove formally in chapter 6.

Figure Figure 3.1 illustrates this by fixing the cluster centers and plotting

the pointwise stability of the coordinates (x, y) around these centers. This is

done for several values of the prior hyperparameter θ. As can be observed, as

the value of θ increases, points must be much closer to the boundary regions

before they are unstable. As discussed above, this is highly advantageous in

higher dimensions.

In our case, we use a baseline null clustering – a clustered distribution of

points in which any clusters found are spurious, random effects rather than

true clusters – to tune the prior to account for the effects of high dimensions.

The baseline data needed for our procedure is a point-to-centroid distance

matrix that represents a clustered dataset that has no actual clusters. To

tune the prior, π(λ|θ), we choose the θ that maximizes the difference be-

tween the average pointwise stability of the clustering we are examining and

the baseline clustering. Using this prior in our method, in principle, differ-

entiates between a bad clustering, which has more points in the unstable

boundary regions, and a good clustering, which does not.

Another way of saying this is that we choose the parameters for the

prior as those which maximize the difference between the stability of the

true data and the stability of the baseline. This causes the distance metric

to “fit” the regions of stability to the true clusters. In the baseline, the

density of the dataset around the boundary regions is roughly the same as

that closer to the cluster centers. Thus maximizing the difference penalizes

priors that force points to be very close to the boundary regions before

they can be considered stable. Because the baseline can be made arbitrarily

stable (assuming the priors we propose later in this chapter) by choosing

the prior parameters so that only points very close to the boundary regions

are unstable, this penalizes priors that cause too much of the space to be

considered stable. Conversely, if the density around the cluster centers of

the true data really is higher than that close to the boundaries, then making

too little of the space will decrease the difference. The optimum balances

the two, and in practice this works very well.
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This can be formulated as an optimization problem. Let APWD(θ)

denote the difference in average pointwise stability, i.e.

APWD(θ′) = APW(D, θ′)− 1

NB

∑

i

APW(DB
i , θ

′) (3.19)

⇒ θ = argmax
θ′

APW(D, θ′)− 1

NB

∑

i

APW(DB
i , θ

′) (3.20)

= argmax
θ′

APWD(θ′) (3.21)

where we express the averaged pointwise stability, APW, as a function

of the point to centroid distance matrix D and the prior hyperparameter

θ. We use the average over NB baseline distance matrices as the baseline

APW. Because it is an optimization problem, the algorithms are much

more efficient if they can make use of the first derivative of APWD(θ) with

respect to θ; thus we also derive
∂φij
∂θ .

3.2.3 Types of Baseline Distance Matrices

Measuring the stability of a baseline null clustering is often used to account

for dependence of the measure on non-clustering effects of the data. The

gap statistic uses a clustering on a uniform distribution to adjust for the

dependence in the measure on the number of clusters. However, the gap

statistic is quite sensitive to the distribution of the null data since it depends

on only the closest cluster. In comparison, calculating φij depends on the

distribution of distances, so it is far less sensitive to the null data. This

allows us significantly more flexibility in how we generate the dij ’s for the

baseline.

Ultimately, we consider three types of baseline distance matrices to use

to train the prior. The first comes from the baseline distribution proposed

previously as part of the gap statistic [TWH01], namely reclustering a set

of points distributed uniformly in the bounding box of the dataset along its

PCA components. The second is also uses a uniform dataset in the same

bounding box, but recycles the same cluster centers. The third uses an idea
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from nonparametrics and simple uses a random permutation of the elements

in the distance matrix. In chapter 5 we show that in higher dimensions and

on more difficult datasets, all three baseline distributions produce compara-

ble results, but the cheapest computationally, by far, is the third.

Reclustered, Uniformly Distributed Data

Tibshirani [TWH01] proposes running the clustering algorithm on a dataset

uniformly distributed in the bounding box of the original data along its

PCA components. They justify this empirically and by noting that in one

dimension, a uniform distribution is provably the most likely to contain spu-

rious clusterings and provide an intuitive argument that this generalizes into

higher dimensions. One downside to this is that it does require running the

clustering algorithm multiple times. In using this baseline for our method,

we find that, in lower dimensions, it works best with data less easily de-

scribed by simple, symmetric disstributions such as 2 dimensional ANOVA

data. However, in higher dimensions and with less structured data, the next

methods that we propose yield comparable or even superior results without

requiring multiple runs of the clustering function.

Uniformly Distributed Data

In the gap statistic, the purpose of reclustering the data is to capture spu-

rious clusterings in the dataset and thus account for those in the clustering

on real data. However, since our purpose is to tune the prior, we care more

about the estimated density of points between the cluster regions than about

spurious clusterings. This provides some justification for simply recycling

the centroids from the original dataset (we provide some empirical justifica-

tion in chapter 5). This both saves the computational expense of rerunning

the clustering algorithm and yields the natural geometric interpretation that

tuning the prior is adjusting the sharpness of the geometric partitioning of

the space.
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Permutation of the Distance Matrix

This method, inspired by permutation tests from nonparametrics, simply

uses a random permutation of all the elements in the distance matrix. Per-

mutation tests [RW79] are used in non-parametric statistics as a way of

operationalizing null hypothesis testing without having to specify a null

distribution precisely. Here, we tune the prior to maximally distinguish be-

tween the null distribution and the true distribution. Furthermore, it has

the advantage of being distribution free in the sense that only the original

dij ’s are needed; this can be a huge advantage for data types where it is not

clear how to generate a null distribution.

3.3 Scaled-distance Perturbations with a

Location Exponential Prior

The most useful prior we’ve found thus far on scaled distance perturbations

is the exponential distribution with the location shifted by 1:

π(λ|θ) = LocExp(λ|θ) = θe−θ(λ−1)1λ≥1 . (3.22)

Note that since factors that scale the entire distribution drop out (section

3.1.2), it would be redundant to have parameters controling both the shift

and the slope; thus we set the slope to 1. We denote the corresponding

averaged assignment matrix with a superscript LE:

ΦLE = [φLE
ij ] =

∫
I[dijλj ≤ diℓλℓ ∀ ℓ]

[∏

ℓ

LocExp(λℓ|θℓ)
]

dλ (3.23)

Although we derive an analytical way to calculate this for the case when the

parameter θ can vary between priors, in practice and in our tests we tied

them all to the same value, so θℓ = θ. The equations for this case are a

straightforward simplification of the more general result.

By shifting the exponential, φij = P(dijλj ≤ diℓλℓ ∀ ℓ) is no longer in-

dependent of the scaling parameter θ. This gives us a tuning parameter to
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adjust the degree of perturbation – note that as θ increases, the prior puts its

mass closer 1, causing φij to resemble the indicator function I[dij ≤ diℓ ∀ ℓ]
unless the differences in di·’s are sufficiently small. As we discuss in section

3.2.2, this allows us to optimally fit the perturbation to the clustering.

While it does make the derivation substantially more difficult than the

more intuitive non-shifted exponential described in section 3.1.2, the calcu-

lation is still quite efficient. We derive an algorithm in section 3.3.1 that

calculates ΦLE in O(nK logK). Additionally, in section 3.6, we use the lack

of support in the prior distribution for λ < 1 to prove a rigorous and useful

lower bound on the accuracy when we ignore sets of distances larger than

an easily computed threshold.

3.3.1 Analytic Calculation of φLE

In this section, we derive a computationally simple algorithm to compute

φLE , scaled distance perturbations with a location exponential prior. We do

the calculation independently for each row of φ, so for notational convenience

we drop the row index i.

Proposition 3.3.1. Calculation of φLE

Suppose d is a list of K distances and θ is a list of K slope parameters

for a location exponential prior. Let ψ be a bijective mapping of the indices,

{1, ...,K} 7→ {1, ...,K}, that puts d in sorted order, i.e.

dψ(1) ≤ dψ(2) ≤ · · · ≤ dψ(K). (3.24)

Let
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Bj =

j∑

k=1

θψ(k)

dψ(k)
(3.25)

Cj =

{
1 j = 1

exp
[
−∑j−1

k=1 θψ(k)

(
dψ(j)

dψ(k)
− 1
)]

j ∈ {2, ...,K} (3.26)

Dj =

K∑

k=j+1

Ck

[
Bk−1

(
Bk−1

dψ(k)

θψ(k)
+ 1

)]−1

(3.27)

Then

φLE
j =

θj
dj

[
Cψ−1(j)

Bψ−1(j)
−Dψ−1(j)

]
(3.28)

Proof. From equation (3.23), we have that

φLE

j =

∫
πj(λj , θj)

∏

ℓ 6=j

I[djλj ≤ dℓλℓ]πℓ(λℓ, θℓ)dλℓdλj (3.29)

=

∫ ∞

1

θje
−θj(λj−1)

∏

ℓ 6=j

∫ ∞

1

θℓe
−θℓ(λℓ−1)

∫ ∞

0

δ((dℓλℓ − djλj)− tℓ)dtℓdλℓ dλj

(3.30)

where δ(·) is the Dirac delta function, defined such that
∫ b
a δ(x− t)dt equals

one if a ≤ x ≤ b and zero otherwise, so 1a≤b =
∫∞
0 δ(b−a−t)dt, and f(x) =∫

f(t)δ(x− t)dt [AWR96]. We can then switch the order of integration and

integrate over λℓ first:
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φLE

j =

∫ ∞

1

θje
−θj(λj−1)

∏

ℓ 6=j

∫ ∞

0

θℓ

dℓ

e
−θℓ

“

tℓ+djλj
dℓ

−1
”

1h

tℓ+djλj
dℓ

≥1
i dtℓ dλj (3.31)

=

∫ ∞

1

θje
−θj(λj−1)

∏

ℓ 6=j

[
exp

(
−θℓ

(
dj

dℓ

λj−1

)
− θℓ

dℓ

tℓ

)∣∣∣∣
tℓ=max (dℓ−djλj ,0)

dλj

(3.32)

=

∫ ∞

1

θje
−θj(λj−1)

∏

ℓ 6=j

{
exp
[
−θℓ

(
dj

dℓ
λj−1

)]
λj ≥ dℓ

dj

1 otherwise

}
dλj (3.33)

At this point, we can use the fact that many of the terms in the product

are one for certain regions of the integration to break the region of integration

into sections. If we sort the terms by increasing dℓ, we can handle the

conditional terms in the product by breaking the integration up into K + 1

possibly empty intervals, doing the integration separately on each interval.

Recall that ψ is a bijective mapping such that dψ(1) ≤ dψ(2) ≤ · · · ≤
dψ(K). Then the boundaries of these regions are given by

Am =

{
dψ(m)/dj m ∈ {1, ...,K}
∞ m = K + 1

(3.34)

The intervals to integrate over are then

(0, A1] ∩ [1,∞) , (A1, A2] ∩ [1,∞) , ..., (AK , AK+1 =∞) ∩ [1,∞) .

As Am = dψ(m)/dj ≤ 1 for m < ψ−1(j), the first ψ−1(j) of these intervals

are empty. Thus the integration becomes
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φLE
j =

K∑

k=ψ−1(j)

∫ Ak+1

Ak

θje
−θj(λj−1)

k∏

m=1
ψ(m) 6=j

e−θψ(m)(A
−1
m λj−1)dλj (3.35)

=

K∑

k=ψ−1(j)

∫ Ak+1

Ak

θj exp

[
−

k∑

m=1

θψ(m)(A
−1
m λj − 1)

]
dλj (3.36)

where we’ve used the fact that Aψ−1(j) = 1 to simplify the expression. The

integral can now be easily evaluated:

φLE
j =

K∑

k=ψ−1(j)

θj exp

[
k∑

m=1

θψ(m)

]∫ Ak+1

Ak

exp

[
−
(

k∑

m=1

θψ(m)A
−1
m

)
λj

]
dλj

(3.37)

=
K∑

k=ψ−1(j)


θj

exp
[∑k

m=1 θψ(m)

]

∑k
m=1 θψ(m)A

−1
m

exp

[
k∑

m=1

θψ(m)A
−1
m λj

]∣∣∣∣∣∣

λj=Ak

λj=Ak+1

(3.38)

If we collect similar terms and use the given definitions of C and D, this can

be expressed as:

φLE
j =

θj
dj

K∑

k=ψ−1(j)

1

Bk
(Ck − Ck+1) (3.39)

Now the C terms may be quite close, so for better numerical stability we

can re-express equation (3.39) to avoid working with the difference of two

similar numbers:

φLE
j =

θj
dj

[
Cψ−1(j)

Bψ−1(j)
−
Cψ−1(j)+1

Bψ−1(j)
+
Cψ−1(j)+1

Bψ−1(j)+1
−
Cψ−1(j)+2

Bψ−1(j)+1
+ · · ·+ CK

BK

]

(3.40)

where the arguments to φLE
j , B, and C are implied. Now for better numerical

stability – needed here as Bk−1 and Bk are likely to be close together –
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B−1
k−1 −B−1

k can be expressed as

1

Bk−1
− 1

Bk
=

1

Bk−1
−
[
Bk−1 +

θψ(k)

dψ(k)

]−1

(3.41)

=

[
Bk−1

(
Bk−1

dψ(k)

θψ(k)
+ 1

)]−1

(3.42)

Putting this back into equation (3.40) gives:

φLE
j =

θj
dj


Cψ−1(j)

Bψ−1(j)
−

K∑

k=ψ−1(j)+1

Ck

[
Bk−1

(
Bk−1

dψ(k)

θψ(k)
+ 1

)]−1

 (3.43)

=
θj
dj

[
Cψ−1(j)

Bψ−1(j)
−Dψ−1(j)

]
(3.44)

which completes the theorem.

We can precompute common terms to create an efficient and accurate

algorithm, which we present in algorithm (1). The running time of this algo-

rithm is linear inK save for the call to argsort (d) to sort the distances, which

runs in O(K logK) time. Thus the overall running time is O(K logK).

3.3.2 Analytic Calculation of ∂φLE
j /∂θℓ

As we discussed previously, we need to find the optimum value for θ by

maximizing the difference between the averaged pointwise stability of the

clustering and that of the null distance matrix. While there are algorithms

that do not require the gradient or first derivative of the function, these can

take a very long time, especially in higher dimensions. This relates directly

to the APW, as
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Algorithm 1: Calculation of scaled distance perturbations with a
location exponential prior.

Input: A vector d of distances and a vector θ of prior parameters.
Output: A probability vector φLE of partial memberships.

K ← lengthd, ψ ← argsort (d)

Initialize ds, θs, B, C, D, r as vectors of length K.

for j = 1 to K do dsj ← dψ(j), θsj ← θψ(j), rj ← θsj/d
s

j

B1 ← r1, t ← 0, C1 ← 1
for j = 2 to K do

Bj ← Bj−1 + rj
t ← t+ θsi−1

Cj ← exp
(
t−Bj−1d

s

j

)

end

DK ← 0
for j = K − 1 to 1 step −1 do

Dj ← Dj+1 + Cj+1/
[
Bj
(
Bjrj+1 + 1

)]

end

for j = 1 to K do φLE

ψ(j) ← rj
(
Cj/Bj −Dj

)

return φLE

∂

∂θℓ
APW = mean

i

∂

∂θℓ
PW i (3.45)

∂

∂θℓ
PW i =

∂φLE
ihi

∂θℓ
−
∂φLE

igi

∂θℓ
(3.46)

(3.47)

where

hi = argmax
k

aik (3.48)

gi = argmax
ℓ6=hi

φik (3.49)
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To make the optimization process more efficient, we present here the deriva-

tion for ∂φLE
j /∂θℓ .

As ∇θ AR⋆ and ∇θ VI⋆ depend on the partial derivatives of φLE with

respect to θ, we here derive an algorithm to calculate
[
∂φLE

j /∂θℓ

]
in amor-

tized constant time. For simplicity, we assume in our derivations that the

d’s are already in sorted order; when we give the final algorithm we return

to using the sorted index map. Then, using φLE from equation (3.28), we

have

∂φLE
j

∂θℓ
=

∂

∂θℓ

θj
dj

[
Cj
Bj
−Dj

]
(3.50)

=
θj
dj

(
∂

∂θℓ

Cj
Bj
− ∂Dj

∂θℓ

)
+

1

dj

(
Cj
Bj
−Dj

)
1ℓ=j (3.51)

Now as everything builds on previous derivatives, let’s start with the

derivatives of Bj , Cj :

∂Bj
∂θℓ

=
∂

∂θℓ

j∑

m=1

θψ(m)

dψ(m)
=

1

dℓ
1ℓ≤j (3.52)

∂Cj
∂θℓ

=
∂

∂θℓ
exp

[
−
(
Bj−1dj +

j−1∑

m=1

θm

)
1j≥2

]
(3.53)

= Cj

(
1− dj

dℓ

)
1ℓ<j (3.54)

⇒ ∂

∂θℓ

Cj
Bj

=
Cj
Bj

(
1− dj

dℓ

)
1ℓ<j −

Cj
B2
j dℓ

1ℓ≤j (3.55)

∂

∂θℓ
Dj =

∂

∂θℓ

K∑

k=j+1

Ck
Ek

=
K∑

k=j+1

1

Ek

∂Ck
∂θℓ
− Ck
E2
k

∂Ek
∂θℓ

(3.56)
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Algorithm 2: Calculation of ∂
∂φj

θℓ for scaled distance perturbations

with a location exponential prior and different prior parameters for
each K.

Input: A vector d of distances and a vector θ of prior parameters.

Output: A K ×K matrix R giving
∂φLEj
∂θℓ

.

K ← length(d), ψ ← makeSortingIndexMap(d)

Initialize ds, θs, B, C, D, E, F, G, H, L, r as vectors of length K.
Initialize R as a 2d array of size K ×K.

for j = 1 to K do dsj ← dψ(j), θsj ← θψ(j), rj ← θsj/d
s

j

// Some common terms to simplify the computation.

B1 ← r1, t ← 0, C1 ← 1, H1 ← 1/r1
for j = 2 to K do

Bj ← Bj−1 + rj
t ← t+ θsj−1

Cj ← exp
(
t−Bj−1d

s

j

)

Ej ← Bj−1(Bj−1/rj + 1)
Lj ← Cj/Ej
Gj ← LjB

2
j−1/Ejrjθ

s

j

Hj ← Cj/Bj
end

// Now the terms that build on each other.

DK ← 0, FK ← 0
for j = K − 1 to 1 step −1 do

Dj ← Dj+1 + Lj+1

Fj ← Fj+1 + Lj+1

[
dsj+1 + (2Bj/rj+1 + 1)/Ej+1

]

end

// Finally, calculate R.

for m = 1 to K do
Rψ(m),ψ(m) ← rm[Fm/d

s

m −Dm −Hm/Bmd
s

m] + (Hm −Dm)/dsm
for n = m+ 1 to K do

Rψ(m),ψ(n) ← rm(Fn/d
s

n −Dn −Gn)
Rψ(n),ψ(m) ← rn

[
Fn/d

s

m −Dn +
(
Hn/d

s

m

)(
dsm − dsn − 1/Bn

)]

end

end

return R
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where Ek =
(
B2
k−1 dk/θk +Bk−1

)
1k≥2 . Continuing:

∂Ek
∂θk

=
∂

∂θℓ

[
Bk−1

(
Bk−1

dk
θk

+ 1

)]
(3.57)

=

(
2Bk−1dk

θk
+ 1

)
1

dℓ
12≤ℓ<k −

B2
k−1dk

θ2
k

12≤ℓ=k (3.58)

⇒ ∂Dj

∂θℓ
=

K∑

k=j+1

Ck
Ek

[
1− 1

dℓ

(
dk+

2Bk−1dk
Ekθk

+
1

Ek

)]
1ℓ<k +

B2
k−1Ckdk

θ2
kE

2
k

1ℓ=k

(3.59)

=
K∑

k=j+1





Ck
Ek

[
1− dk

dℓ
− 1

Ekdℓ

(
2Bk−1dk

θk
+ 1
)]

ℓ < k

CkB
2
k−1dk

θ2
k
E2
k

ℓ = k

0 ℓ > k





(3.60)

Grouping terms dependent only on k together allows us to express this in a

form that can be calculated in constant time per j, ℓ:

∂

∂θℓ
Dj =





Dj − Fj
dℓ

ℓ ≤ j
CℓB

2
ℓ−1dℓ

θ2
ℓ

+Dℓ − Fℓ
dℓ

ℓ > j
(3.61)

where

Fj =
K∑

k=j+1

Ck
Ek

[(
1 +

2Bk−1

Ekθk

)
dk +

1

Ek

]
(3.62)

and can be computed beforehand. The final algorithm is then given in

algorithm (2). Calculating all the intermediate arrays takes only O(K)

time, and any sorting is only O(K logK), so the algorithm takes O
(
K2
)

time overall. Obviously, much of the calculation overlaps with algorithm (1)

and in practice the two should be calculated together.
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Algorithm 3: Calculation of scaled distance perturbations with a tied
location exponential prior.

Input: A vector d of distances and a scalar parameter θ giving the
prior.

Output: A probability vector φLE of partial memberships and a
vector R giving ∂φLE

j /∂θ .

K ← lengthd, ψ ← argsort (d)

Initialize ds, B, C, D, E, F, G, H, and R as vectors of length K.

for j = 1 to K do dsi ← dψ(i),

B1 ← 1/ds0, D1 ← 1, E1 ← ds1
for j = 2 to K do

Bj ← Bj−1 + 1/dsj
Cj ← j − dsjBj−1

Dj ← exp[θCj ]
Ej ← Dj/Bj

Fj ← Dj/
(
Bj−1(d

s

jBj−1 + 1)
)

end

GK ← 0
for j = K to 2 step −1 do Gj−1 ← Gj + Fj

for j = 1 to K do φLE

ψ(j) ← (Ej −Gj)/dsj ,

// The rest of the code calculates ∂φLE

ψ(j)/∂θ.
HK ← 0,
for j = K to 1 step −1 do Hj−1 ← Hj + CjFj

for j = 1 to K do Rj ← (CjEj −Hj)/d
s

j

3.3.3 Analytic Calculation of φLE and ∂φLE
j /∂θ for Tied θ

In many cases we want to tie the prior hyperparameters together, so θℓ = θ

and all K perturbation parameters have the same prior. In this case, we can

simplify some aspects of the calculation. The derivations are very similar

to the ones for multiple θ, thus we leave out the tedious detains. Instead

presenting the final algorithm to calculate both versions in algorithm (3). As

can be seen with a quick comparison – especially the part which calculates

the first derivative – is quite simple compared to the part for multiple θ’s.
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Algorithmically, though, the running time is the same for calculating

φLE , O(K logK). This is again because of the call to argsort; everything else

has linear running time. Calculating ∂φLE
j /∂θ , however, is now linear in K

instead of quadratic, so that gives us a significant speedup.

In the end, ΦLE with tied prior hyperparameters is our preferred method,

and we illustrate in chapter 5 that its performance is indeed comparable with

many other leading methods.

3.4 Scaled Distance Perturbations with a Shifted

Gamma Prior

In this section, we slightly extend the results for the location exponen-

tial distribution described in section 3.3 by using a shifted version of the

Gamma(α = 2, β) prior:

π(λ|α, β) = Z(α, β)(λ− 1)α−1e−β(λ−1)1λ≥1 (3.63)

= ShiftedGamma(λ|α, β) (3.64)

where Z(α, β) is a normalizing constant. This simple addition significantly

complicates the final equations, raising the overall time complexity toO
(
nK3

)
.

Additionally, because of numerical instability issues, we are forced to to use

arbitrary precision variables in evaluating the final algorithm. One way

around this, which also has its downsides, is to use the Monte Carlo in-

tegration method outlined in section 3.5. This method is still reasonably

efficient, however, for small K, so we present it here. The derivations are

straightforward, albeit messy.

3.4.1 Analytic Calculation of φSG

As in the derivation with the location exponential prior, we drop all the i’s

for notational convenience; this calculation happens once per data point i.

We begin the derivation by noting that
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φSG
j =

∫
I[djλj ≤ dℓλℓ ∀ ℓ 6= j]

∏

ℓ

ShiftedGamma(λℓ;αℓ, βℓ)dλ (3.65)

=

∫
I[djλj + dj ≤ dℓλℓ + dℓ ∀ ℓ 6= j]

∏

ℓ

Gamma(λℓ;αℓ, βℓ)dλ (3.66)

=

∫
I[βdjλj + dj ≤ βdℓλℓ + dℓ ∀ ℓ 6= j]

∏

ℓ

Gamma(λℓ;αℓ, 1)dλ. (3.67)

We eventually derive the case for αℓ = α = 2 (recall that the α = 1 case

is the location exponential prior); other values would be better handled by

using Monte Carlo integration.

Now assume that the d’s are in sorted order, so

d1≤d2≤· · ·≤dK . (3.68)

This can be accomplished by mapping the indices before and remapping

them afterwords. For conciseness, we here omit the explicit index mapping

used in the derivations of the location exponential prior, but the principle

is the same.

Recall from the derivation of φLE that we can rewrite an indicator function

using a Dirac delta function. This function is defined such that
∫ b
a δ(x− t)dt

equals one if a ≤ x ≤ b and zero otherwise, so 1a≤b =
∫∞
0 δ(b − a − t)dt,

and f(x) =
∫
f(t)δ(x− t)dt [AWR96]. Thus equation (3.65) becomes:

φSG
j =

∫ ∏

ℓ

π(λℓ|α, β)δ((λℓβℓdℓ + dℓ)− (λjβjdj + dj)− tℓ)dtℓdλ. (3.69)

Using the Dirac delta function again,

φSG
j =

∫
π(λj)

∏

ℓ6=j

∫
π

(
1

βℓdℓ
(tℓ + βjdjλj + dj − dℓ)

)
1

βℓdℓ
dtℓdλj (3.70)

We set the shape parameter α to 2 to make the derivation tractable while

59



still preserving the desired shape. At this point, we set α = 2, so π(λℓ) is

π(λℓ) = λℓe
−λℓ . (3.71)

Defining

Bjℓ(λ) =
βjdjλj + dj − dℓ

βℓdℓ
(3.72)

for convenience, we have

φSG
j =

∫
λje

−λj
∏

ℓ6=j
[tℓ +Bjℓ(λ)] e−tℓ−Bjℓ(λ)

I[tℓ +Bjℓ(λ) ≥ 0] dtℓdλj (3.73)

=

∫
λje

−λj
∏

ℓ6=j

[
(1 +Bjℓ(λ))e−Bjℓ(λ)

]I[Bjℓ(λ)≥0]
dλj (3.74)

To evaluate the integral, we can use the division points at

Bjℓ(λ) = 0⇔ λj =
dℓ − dj
βjdj

(3.75)

to break it up into at most K + 1 discrete regions and integrate each sepa-

rately. Let

Aℓj =
dℓ − dj
βjdj

(3.76)

denote the division points (recall that d· is in sorted order), and for con-

venience, let AK+1
j = ∞. Note that Ajj = 0, so we only need to integrate

between the division points Ajj , A
j+1
j , ..., AK+1

j to calculate φSG
j :

φSG
j =

K∑

m=j

∫ Am+1
j

Amj

λje
−λj

m=K∏

ℓ=1
ℓ6=j

(1 +Bjℓ(λ))e−Bjℓ(λ)dλj (3.77)

We use
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Cj = βjdjλj + dj (3.78)

to transform the variable of integration, yielding, after some straightforward

but tedious algebra:

φSG
j =

K∑

m=j

∫ dm+1

dm

m=K∏

ℓ=1
ℓ6=j

[
1− 1

βℓ
+

Cj
βℓdℓ

] [
Cj − dj
βjdj

]
e
−Pm

ℓ=1

Cj−dℓ
βℓdℓ

1

βjdj
dCj

(3.79)

=
1

βjdj

K∑

m=j

∫ dm+1

dm

[
Pm(Cj)− Pm(Cj)

βjdj
βjdj − dj + Cj

]
e
−

Pm
ℓ=1

Cj−dℓ
βℓdℓ dCj

(3.80)

where Pm(y) is a polynomial, equal to

Pm(y) =
m∏

ℓ=1

[
1− 1

βℓ
+

y

βℓdℓ

]
(3.81)

=
m∑

k=0

pmk y
k. (3.82)

We can evaluate the integral by first calculating the coefficients pmk using

recursion. We then need to integrate the difference of two polynomials times

an exponential, so the result is in the same form:

∫ m∑

k=0

(
pmk −

βjdjp
m
k

βjdj − dj + y

)
yke−

y
Em dy =

m∑

k=0

(
qmk − rjmk

)
yke−

y
Em (3.83)

where

Em =

[
m∑

ℓ=1

1

βℓdℓ

]−1

. (3.84)
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We can calculate qmk and integrating successively lower powers of Cj , result-

ing in another recurrence. Likewise, the division and integration on rjmk can

be expressed as a recurrence. Finally, we have

φSG
j =

1

βjdj


Gj,ℓ=j(dj)e−Fj +

K∑

ℓ=j+1

(Gjℓ(dℓ)−Gj,ℓ−1(dℓ))e
−Fℓ


 (3.85)

where

Gjm(y) =
m∑

k=0

(
qmk − rjmk

)
yk (3.86)

Fℓ =
ℓ∑

m=1

dm − dℓ
βℓdℓ

(3.87)

and

pmk =





βmd
−1
m

[
pm−1
k−1 + dm(βm−1)pm−1

k

]
0 ≤ k ≤ m, 1 ≤ m ≤ K

1 m = k = 0

0 otherwise

(3.88)

qmk =

{
Em

[
(k + 1)qmk+1 + pmk

]
0 ≤ k ≤ m, 1 ≤ m ≤ K

0 otherwise

(3.89)

rjmk =





[Em(k+1)− dj(βj−1)] rjmk+1+Emdj

[
(βj−1)(k+2)rjmk+2 + βjp

m
k+1

]

0 ≤ k ≤ m− 1, 1 ≤ m ≤ K
0 otherwise

(3.90)

For the general case, evaluating Gjim(·) takes O(K) time per m for

O
(
K2
)

time per i, j pair and O
(
nK3

)
overall. Note that calculating pmk
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once per i is sufficient.

In practice, this recursion is subject to several points of numerical failure

due to taking differences between similar terms. For our calculations, we

wrapped the result in a routine that verifies that the sum of the entries was

sufficiently close to 1, and that all of the individual entries were between

0 and 1. All the numerical errors we detected would cause these tests to

fail. If they did, we reran the algorithm again, doubling the precision. This

approach was quick and accurate enough for all the experiments we ran

using it.

3.5 General Monte Carlo Algorithm

Algorithm 4: Monte Carlo Calculation of φ.

Input: A vector d of distances and a vector θ of prior parameters
and sample size N .

Output: A probability vector φ of partial memberships and matrix
R giving ∂φj/∂θℓ .

K ← length(d), Np ← length(θ)
φ ← 0K , R ← 0K×Np

for n = 1 to N do
draw λ from π(θ)
for j = 1 to K do

φj ← φj + fj(λ,d)
for ℓ = 1 to Np do

Rjℓ ← Rjℓ + fj(λ,d)

[
∂ log π

(
λ′,θ

)

∂θℓ

∣∣∣∣∣
λ′=λ

end

end

end

φ ← φ/N , R ← R/N
return φ, R

In this section, we develop a more general Monte Carlo algorithm to

calculate φij when the priors πℓ(λℓ), ℓ = 1, 2, ...,K, can be sampled from, but

when analytically evaluating equation (2.3) is impossible or computationally

63



Algorithm 5: Monte Carlo Calculation of φ for Scaled Distance Per-
turbations.

Input: A vector d of distances and a vector θ of prior parameters
and sample size N .

Output: A probability vector φ of partial memberships and matrix
R giving ∂φj/∂θℓ .

K ← length(d), Np ← length(θ)
φ ← 0K , R ← 0K×Np

for n = 1 to N do
draw λ from π(θ)
k ← argminj djλj
φk ← φk + 1
for ℓ = 1 to Np do

Rkℓ ← Rkℓ +

[
∂ log π

(
λ′,θ

)

∂θℓ

∣∣∣∣∣
λ′=λ

end

end

φ ← φ/N , R ← R/N
return φ, R

prohibitive.

The simple Monte Carlo algorithm we propose can be applied to any

equations for φ of the form:

φj =

∫
fj(λ,d)π(λ|θ)dλ. (3.91)

In the case where we perturb the distance metric as described in section 3.1,

we would have

fj(λ,d) = I[λjdj ≤ λℓdℓ ∀ ℓ 6= j] (3.92)

Fortunately, evaluating equation (3.91) using Monte Carlo is a simple

application of importance sampling. Because
∑

j φj = 1, we sidestep the

issue that importance sampling can only yield unnormalized answers simply

by normalizing φ at the end. Thus, to approximate φ, we repeatedly:
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1. Sample a vector of K parameters λ̃ from the prior.

2. Evaluate
[
f1

(
λ̃
)
, f2

(
λ̃
)
, ..., fK

(
λ̃
)]

.

3. Add it to the vector φ.

4. Repeat steps 1 to 3 N times.

5. Normalize φ.

Once we have repeated this N times, we can normalize φ to get the final

answer. Alternately, we can use the assumption that
∑

j fj(λ,d) = 1 and

simply divide the entries of φ by N .

For the optimization step, we can calculate the derivative of φ with

respect to one of the hyperparameters of the prior – something advantageous

when optimizing for the best hyperparameters – using the same technique

on a similar expression:

∂φj(d,θ)

∂θℓ
=

∫
f(λ,d)

∂

∂θℓ
π(λ,θ)dλ (3.93)

=

∫
f(λ,d)

[
∂ log π(λ,θ)

∂θℓ

]
π(λ,θ)dλ (3.94)

We can thus sample from π(λ) and weight the sample by f(λ,d)
[
∂ log π(λ,θ)

∂θℓ

]
,

again taking the average of N samples to get our estimate of the derivative.

This approach motivates the general Monte Carlo algorithm for calculating

the distance metrics outlined in algorithm (4). In algorithm (5), we apply

this using equation (3.92) for f , giving a slightly more efficient algorithm.

3.6 Approximation Algorithms

In many practical clustering validation problems, especially in dealing with a

large number of clusters, a number of terms in the partial membership vector

will probably be negligibly small. Being able to exclude these irrelevant clus-

ters from consideration beforehand may vastly improve computation speed

65



and numerical accuracy, especially when using the shifted Gamma prior be-

cause of its O
(
nK3

)
running time. We present here an accurate and easily

computed bound that can be used exclude distances whose resulting value

in φ will negligibly small.

The central idea, presented formally in lemma 3.6.1, is to use the fact

that the priors discussed above have support only for λ ≥ 1 to lower bound

the value of φj with the integral over the region where djλj has nonzero

probability but dℓλℓ does not. After presenting the formal idea in the fol-

lowing lemma, we apply it to the location exponential prior and the shifted

Gamma prior.

Lemma 3.6.1. Suppose, for ℓ = 1, 2, ...,K, that πℓ(λℓ) = 0 ∀λℓ < 1. Let

S ⊂ {1, ...,K} and j /∈ S, and let

κ = argmin
k∈S

dk. (3.95)

Then ∑

k∈S
φLE
k ≤

∫ ∞

dκ/dj

πj(λj)dλj (3.96)

Proof. Now Sc = {1, ...,K} − S. Then, for each k ∈ S,
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φLE
k =

∫
πk(λk)

∏

ℓ6=k
πℓ(λℓ)1{dkλk<dℓλℓ} dλℓdλk (3.97)

=

∫
πk(λk)πj(λj)1{dkλk<djλj} dλj

∏

ℓ∈S\k
πℓ(λℓ)1{dkλk<dℓλℓ} dλℓ

×
∫ ∏

m∈Sc\j
πm(λm)1{dkλk<dmλm} dλmdλk (3.98)

≤
∫
πk(λk)πj(λj)1{dkλk<djλj} dλj

∏

ℓ∈S\k
πℓ(λℓ)1{dkλk<dℓλℓ} dλℓ

×
∫ ∏

m∈Sc\j
πm(λm)dλmdλk (3.99)

=

∫
πk(λk)πj(λj)1{dkλk<djλj} dλj

∫ ∏

ℓ∈S\k
πℓ(λℓ)1{dkλk<dℓλℓ} dλℓdλk

(3.100)

where the inequality holds as integration over the removed indicator func-

tions can only increase the area of integration and thus increase the area of

integration. Now none of the priors has support on (−∞, 1), so mink′∈S dk′ ≤
mink′∈S dk′λk′ ≤ dkλk ∀ k ∈ S, so

∑

k∈S
φLE
k ≤

∑

k∈S

∫
πk(λk)πj(λj)1{dkλk<djλj} dλj

×
∏

ℓ∈S\k
1{dkλk<dℓλℓ} πℓ(λℓ)dλℓdλk (3.101)

≤
∑

k∈S

∫
πk(λk)πj(λj)I[dκ < djλj ]dλj

×
∫ ∏

ℓ∈S\k
1{dkλk<dℓλℓ} πℓ(λℓ)dλℓdλk. (3.102)

We can now separate the integral:
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∑

k∈S
φLE
k ≤

[∫
πj(λj)I[dκ < djλj ]dλj

]

×
[∑

k∈S

∫

∩ℓ∈S\k{λS : dkλk<dℓλℓ}

∏

ℓ∈S
πℓ(λℓ)dλℓ

]
(3.103)

where λS = (λk1 , λk2 , ..., λk|S|) for S =
{
k1, k2, ..., k|S|

}
. The derivation is

complete if the second term is ≤ 1, which we now show. We do by showing

that the area of integration of each of the integrals under sum is disjoint

from all the other integrals, giving us an upper bound of one for the sum.

Formally ∀ k1, k2 ∈ S, k1 6= k2,

(
∩ℓ∈S\k1 {λS : dk1λk1 < dℓλℓ}

)
∩
(
∩ℓ∈S\k2 {λS : dk2λk2 < dℓλℓ}

)
(3.104)

⊆ {λS : dk1λk1 < dk2λk2} ∩ {λS : dk2λk2 < dk1λk1} (3.105)

= ∅ (3.106)

Because each area of integration is mutually disjoint, we can incorporate the

sum over k directly into the integral as a union of the sets. Thus

∑

k∈S
φLE
k (d,θ) ≤

∫
πj(λj)I[dκ < djλj ]dλj

×
∫

∪k∈S∩ℓ∈S\k{λS : dkλk<dℓλℓ}

∏

ℓ∈S
πℓ(λℓ)dλℓ (3.107)

≤
∫
πj(λj)I[dκ < djλj ]dλj

∫ ∏

ℓ∈S
πℓ(λℓ)dλℓ (3.108)

=

∫
πj(λj)I[dκ < djλj ]dλj (3.109)

=

∫ ∞

dκ/dj

πj(λj)dλj , (3.110)

which completes the proof.
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3.6.1 Error Bounds for the Location Exponential Prior

Lemma 3.6.1 allows us to easily upper bound the probability mass in a

subset of the elements of φ when the corresponding distances are sufficiently

large. In essence, we are arguing that the error from setting a sufficiently

large distance to infinity, and thus ignoring it, is negligible.

Theorem 3.6.2. Let πℓ(λℓ) = LocExp(1, βℓ), ℓ = 1, 2, ...,K, and suppose

ε > 0. Let j ∈ {1, 2, ...,K}. If

S =

{
k : dk ≥ dj

(
1− log ε

θj

)}
, (3.111)

then

∑

k∈S
φLE
k ≤ ε (3.112)

Proof. Let

κ = argmin
k∈S

dk. (3.113)

From lemma 3.6.1 we have that

∑

k∈S
φLE
k ≤

∫ ∞

dκ/dj

πj(λj)dλj (3.114)

Now
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dκ ≥ dj
(

1− log ε

θj

)
(3.115)

⇒ θj

(
dκ
dj
− 1

)
≥ − log ε (3.116)

⇒ exp

[
−θj

(
dκ
dj
− 1

)]
≤ ε (3.117)

⇒
∫ ∞

dκ/dj

πj(λj)dλj ≤ ε (3.118)

⇒
∑

k∈S
φLE
k ≤ ε (3.119)

3.6.2 Error Bounds for the Shifted Gamma Prior

Theorem 3.6.3. Let πℓ(λℓ) = LocExp(1, βℓ), ℓ = 1, 2, ...,K, and suppose

ε > 0. Let j ∈ {1, 2, ...,K}. If

S =
{
k : dk ≥ djF−1

Ga
(1− ε) + 1

}
, (3.120)

where F−1
Ga

is the inverse cdf of the Gamma distribution, then

∑

k∈S
φSG
k ≤ ε (3.121)

Proof. Let

κ = argmin
k∈S

dk. (3.122)

Let F−1
SG be the inverse cdf of the shifted Gamma distribution, defined in

equation (3.64). Then
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dκ
dj
≥ F−1

Ga (1− ε) + 1 = F−1
SG (1− ε) (3.123)

⇒ 1− FSG
dκ
dj
≤ ε (3.124)

From lemma 3.6.1 we have that

∑

k∈S
φSG
k ≤

∫ ∞

dκ/dj

πj(λj)dλj (3.125)

= 1− F−1
SG

(
dκ
dj

)
, (3.126)

so the theorem is proved.

These theorems allow us to maintain a guaranteed level of accuracy

while, in some cases, asymptotically improving the running time. Many

flavors of k-means for large scale clustering use data structures like kd-trees

to avoid computing distances from points to irrelevant centroids. In such

cases, the above bound allows us to worry only about the centroids within

a specified radius – often called a range query – which kd-trees are easily

able to handle.

3.7 Additional Properties of the Pointwise

Stability

Sometimes it may be easier to directly calculate the pointwise stability in-

stead of the entire partial membership. This can be particularly true if, for

instance, the integration has to be done numerically using more expensive

approximation methods such as those described in chapter 7. Using the

theorems we present here, a good estimate of the pointwise stability can be

obtained quite easily.

Additionally, and perhaps more importantly, this theorem can be used

to prove other desirable properties of the pointwise stability measure. We
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thus present an additional theorem using this one that shows the pointwise

stability behaves as one would expect if one of the distance measures changes.

3.7.1 Differences Between two Pointwise Stability Terms

We derive results for the slightly more general case of the difference between

any two points; the pointwise stability is then just a special case. Note

that in practice it will probably easier to just evaluate this directly from

the averaged assignement matrix; however, this version is useful as a tool to

prove several theorems later on.

Theorem 3.7.1. Suppose dj < dk. Then

ψj(d, θ)− ψk(d, θ) =

∫

Rjk(d)
π(λ, θ)dλ (3.127)

where

Rjk(d) =

{
λ :

dj
dk
λk ≤ λj ≤

dℓ
dj
λℓ ∀ ℓ 6= j

}
(3.128)

Proof. We begin by combining the common terms in the integral:

ψj(d, θ)− ψk(d, θ) =

∫
π(λ) I{djλj ≤ dℓλℓ ∀ ℓ 6= j}dλ

−
∫
π(λ) I{dkλk ≤ dℓλℓ ∀ ℓ 6= k}dλ (3.129)

=

∫
π(λ)

[
I{djλj ≤ dℓλℓ ∀ ℓ 6= j}

− I{dkλk ≤ dℓλℓ ∀ ℓ 6= k}
]
dλ (3.130)

To translate the indicator functions into sets, we define
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Sjk = {λ : djλj ≤ dℓλℓ ∀ ℓ 6= j, k} (3.131)

⇒ Skj = {λ : dkλk ≤ dℓλℓ ∀ ℓ 6= j, k} (3.132)

Tjk = {λ : djλj ≤ dkλk} (3.133)

⇒ Tkj = {λ : dkλk ≤ djλj} (3.134)

We can express the indicator functions in equation (3.130) using these sets:

ψj(d, θ)− ψk(d, θ) =

∫
π(λ)

(
1Sjk∩Tjk − 1Skj∩Tkj

)
dλ (3.135)

Our intent now is to isolate the regions of Sjk ∩Tjk and Skj ∩Tkj where the

integral will return the same answer. We begin by breaking Sjk ∩ Tjk apart

as follows. Recall that dk ≥ dj , so we can split T , which upper bounds λj

at dℓ/dj , along λj by breaking it at dℓ/dk :

Sjk ∩ Tjk =

{
λ : λj ≤

dℓ
dj
λℓ ∀ ℓ 6= j, k

}
∩
{
λ : λj ≤

dk
dj
λk

}
(3.136)

=

[{
λj ≤

dℓ
dk
λℓ ∀ ℓ 6= j, k

}
∪
{
dℓ
dk
λℓ ≤ λj ≤

dℓ
dj
λℓ ∀ ℓ 6= j, k

}]

∩
{
λj ≤

dk
dj
λk

}
(3.137)

=

[{
λj ≤

dℓ
dk
λℓ ∀ ℓ 6= j, k

}
∩
{
λj ≤

dk
dj
λk

}]

∪
[{

dℓ
dk
λℓ ≤ λj ≤

dℓ
dj
λℓ ∀ ℓ 6= j, k

}
∩
{
λj ≤

dk
dj
λk

}]
.

(3.138)

We split the second set using the same technique:
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Sjk ∩ Tjk =

[{
λj ≤

dℓ
dk
λℓ ∀ ℓ 6= j, k

}

∩
({

λj ≤
dj
dk
λk

}
∪
{
dj
dk
λk ≤ λj ≤

dk
dj
λk

})]

∪
[{

dℓ
dk
λℓ ≤ λj ≤

dℓ
dj
λℓ ∀ ℓ 6= j, k

}
∩
{
λj ≤

dk
dj
λk

}]

(3.139)

=

[{
λj ≤

dℓ
dk
λℓ ∀ ℓ 6= j, k

}
∩
{
λj ≤

dj
dk
λk

}]

∪
[{
λj ≤

dℓ
dk
λℓ ∀ ℓ 6= j, k

}
∩
{
dj
dk
λk ≤ λj ≤

dk
dj
λk

}]

∪
[{

dℓ
dk
λℓ ≤ λj ≤

dℓ
dj
λℓ ∀ ℓ 6= j, k

}
∩
{
λj ≤

dk
dj
λk

}]
.

(3.140)

We can simplify and combine the second and third line:

Sjk ∩ Tjk =

[{
λj ≤

dℓ
dk
λℓ ∀ ℓ 6= j, k

}
∩
{
λj ≤

dj
dk
λk

}]

∪
[({

dj
dk
λk ≤ λj ≤

dℓ
dk
λℓ ∀ ℓ 6= j, k

}

∪
{
dℓ
dk
λℓ ≤ λj ≤

dℓ
dj
λℓ ∀ ℓ 6= j, k

})

∩
{
λj ≤

dk
dj
λk

}]
(3.141)

=

[{
λj ≤

dℓ
dk
λℓ ∀ ℓ 6= j, k

}
∩
{
λj ≤

dj
dk
λk

}]

∪
{
dj
dk
λk ≤ λj ≤ min

(
dℓ
dj
λℓ,

dk
dj
λk

)
∀ ℓ 6= j, k

}
(3.142)

=

[{
λj ≤

dℓ
dk
λℓ ∀ ℓ 6= j, k

}
∩
{
λj ≤

dj
dk
λk

}]

∪
{
dj
dk
λk ≤ λj ≤

dℓ
dj
λℓ ∀ ℓ 6= j

}
. (3.143)
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The lemma follows directly from observing that

∫
n

λj≤ dℓ
dk
λℓ ∀ ℓ6=j,k

o

∩
n

λj≤
dj
dk
λk

o

π(λ)dλ

=

∫
n

λk≤
dℓ
dk
λℓ ∀ ℓ6=j,k

o

∩
n

λk≤
dj
dk
λj

o

π(λ)dλ (3.144)

as the variables of integration λj and λk can be switched without affecting

the value of the integral. Thus we have that

∫
π(λ)

(
1Sjk∩Tjk − 1Skj∩Tkj

)
dλ (3.145)

=

∫

R(d)
π(λ)dλ

+

∫

{(· · · , λj , · · · , λk, · · · ) : (· · · , λk, · · · , λj , · · · ) ∈ Skj ∩ Tkj}
π(λ)dλ

−
∫

Skj∩Tkj
π(λ)dλ (3.146)

=

∫

R(d)
π(λ)dλ, (3.147)

which completes the proof.

The result of theorem 3.7.1 is most useful if it can apply to arbitrary φj

and φk, without the restriction that dj ≤ dk. To cover this case, we present

the following corollary.

Corollary 3.7.2. Suppose dj ≥ dk. Then

ψj(d, θ)− ψk(d, θ) = −
∫

Rkj(d)
π(λ, θ)dλ (3.148)

where

Rkj(d) =

{
λ :

dk
dj
λj ≤ λk ≤

dℓ
dk
λℓ ∀ ℓ 6= k

}
(3.149)
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Proof. Trivially, note that

ψj(d, θ)− ψk(d, θ) = − [ψk(d, θ)− ψj(d, θ)] . (3.150)

Thus we can apply the result of theorem 3.7.1, taking the negative of

the result to get the corollary.

3.7.2 Behavior of the Pointwise Stability

In this section, we investigate how the pointwise stability changes given

changes in the distances between points and centroids. These proofs, in

essence, are a sanity check that what it measures is sensible. In particular,

we prove that if the distance to centroid j decreases while all the other

distances remain fixed, then the difference between φj and any of the other

φ·’s increases or remains constant. This is what we would expect, given that

such a move should only increase the stability of a point. Similarly, if the

distance to another centroid k, k 6= j, is decreased, than φj − φℓ decreases

or stays the same for ℓ 6= j. We present these formally in the following

theorems.

Theorem 3.7.3. Let d = (d1, d2, ..., dK) be a vector of centroid-to-point

distances, and let ψ be any stability measure based on scaled distance per-

turbations. Let j, k be any index in {1, 2, ...,K} such that dj < dk. Suppose

0 < ε < dj, and let

d′ = (d1, ..., dj − ε, ..., dK). (3.151)

Then

ψj(d
′, θ)− ψk(d′, θ) ≥ ψj(d, θ)− ψk(d, θ) (3.152)

Proof. The proof follows directly from theorem 3.7.1. By theorem 3.7.1, we

have that
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[
ψj(d

′, θ)− ψk(d′, θ)
]
− [ψj(d, θ)− ψk(d, θ)]

=

∫

Rjk(d
′)
π(λ|θ)dλ−

∫

Rjk(d)
π(λ|θ)dλ (3.153)

where

Rjk(d) =

{
λ :

dj
dk
λk ≤ λj ≤

dℓ
dj
λℓ ∀ ℓ 6= j

}
(3.154)

Rjk(d
′) =

{
λ :

dj − ε
dk

λk ≤ λj ≤
dℓ

dj − ε
λℓ ∀ ℓ 6= j

}
(3.155)

Now dk > 0, so

dj − ε
dk

<
dj
dk
. (3.156)

Similarly, dℓ > 0 so

dℓ
dj − ε

>
dℓ
dj

(3.157)

Thus

Rjk(d) ⊂ Rjk(d′) (3.158)

This allows us to combine the two integrals in equation (3.153):

[
ψj(d

′, θ)− ψk(d′, θ)
]
− [ψj(d, θ)− ψk(d, θ)] =

∫

Rjk(d
′)−Rjk(d)

π(λ|θ)dλ.

(3.159)

However, π(λ|θ) ≥ 0 ∀λ, so the value of the integral is nonnegative. Thus

[
ψj(d

′, θ)− ψk(d′, θ)
]
− [ψj(d, θ)− ψk(d, θ)] ≥ 0, (3.160)

proving the theorem.
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This method of proof can be repeated to get additional inequalities that

cover all the possible cases where a single distance metric changes. Together,

this gives a fairly solid sanity check that the pointwise stability is not going

to do anything too surprising.

Note also that the converse of all of these theorems apply as well for

sufficiently small ε; while we discuss specifically the cases for shrinking a

distance metric by a value ε, the reverse inequality holds for the case of

increasing the distance metric as well. For the above theorem, we present

this as another corollary.

Corollary 3.7.4. Let d = (d1, d2, ..., dK) be a vector of centroid-to-point

distances, and let ψ be any stability measure based on scaled distance per-

turbations. Let j, k be any index in {1, 2, ...,K} such that dj < dk. Suppose

dj < ε < dk, and let

d′ = (d1, ..., dj + ε, ..., dK). (3.161)

Then

ψj(d
′, θ)− ψk(d′, θ) ≤ ψj(d, θ)− ψk(d, θ) (3.162)

Proof. This theorem is simply a restatement of theorem 3.7.3. If we swap

the prime notation on the distance vectors and assume we were given dj + ε

instead of dj , we have theorem 3.7.3 exactly. The proof of that theorem is

sufficient.

We can now continue with the other 2 cases, changing k and changing

ℓ 6= j, k.

Theorem 3.7.5. Let d = (d1, d2, ..., dK) be a vector of centroid-to-point

distances, and let ψ be any stability measure based on scaled distance per-

turbations. Let j, k be any index in {1, 2, ...,K} such that dj < dk. Suppose

dj < ε < dk, and let

d′ = (d1, ..., dk − ε, ..., dK). (3.163)
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Then

ψj(d
′, θ)− ψk(d′, θ) ≤ ψj(d, θ)− ψk(d, θ) (3.164)

Proof. Again, the proof follows directly from theorem 3.7.1. By theorem

3.7.1, we have that

[ψj(d, θ)− ψk(d, θ)]−
[
ψj(d

′, θ)− ψk(d′, θ)
]

=

∫

Rjk(d
′)
π(λ|θ)dλ−

∫

Rjk(d)
π(λ|θ)dλ (3.165)

where

Rjk(d) =

{
λ :

dj
dk
λk ≤ λj ≤

dℓ
dj
λℓ ∀ ℓ 6= j

}
(3.166)

Rjk(d
′) =

{
λ :

dj
dk − ε

λk ≤ λj ≤
dℓ
dj
λℓ ∀ ℓ 6= j

}
(3.167)

Now dk > 0, so

dj
dk − ε

<
dj
dk
. (3.168)

Thus

Rjk(d
′) ⊂ Rjk(d) (3.169)

This allows us to combine the two integrals in equation (3.165):

[ψj(d, θ)− ψk(d, θ)]−
[
ψj(d

′, θ)− ψk(d′, θ)
]

=

∫

Rjk(d)−Rjk(d′)
π(λ|θ)dλ.

(3.170)

However, π(λ|θ) ≥ 0 ∀λ, so the value of the integral is nonnegative. Thus

[ψj(d, θ)− ψk(d, θ)]−
[
ψj(d

′, θ)− ψk(d′, θ)
]
≥ 0, (3.171)
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proving the theorem.

Corollary 3.7.6. Let d = (d1, d2, ..., dK) be a vector of centroid-to-point

distances, and let ψ be any stability measure based on scaled distance per-

turbations. Let j, k be any index in {1, 2, ...,K} such that dj < dk. Suppose

0 < ε, and let

d′ = (d1, ..., dk + ε, ..., dK). (3.172)

Then

ψj(d
′, θ)− ψk(d′, θ) ≥ ψj(d, θ)− ψk(d, θ) (3.173)

Proof. Again, this theorem is simply a restatement of theorem 3.7.5. If we

swap the prime notation on the distance vectors and assume we were given

dk + ε instead of dk, we have theorem 3.7.5 exactly. The proof of that

theorem is sufficient.

Theorem 3.7.7. Let d = (d1, d2, ..., dK) be a vector of centroid-to-point

distances, and let ψ be any stability measure based on scaled distance per-

turbations. Let j, k be any index in {1, 2, ...,K} such that dj < dk, and let

m be any index other than j or k. Suppose 0 < ε < dm, and let

d′ = (d1, ..., dm − ε, ..., dK). (3.174)

Then

ψj(d
′, θ)− ψk(d′, θ) ≤ ψj(d, θ)− ψk(d, θ) (3.175)

Proof. Again, the proof follows directly from theorem 3.7.1. By theorem

3.7.1, we have that

[ψj(d, θ)− ψk(d, θ)]−
[
ψj(d

′, θ)− ψk(d′, θ)
]

=

∫

Rjk(d
′)
π(λ|θ)dλ−

∫

Rjk(d)
π(λ|θ)dλ (3.176)
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where

Rjk(d) =

{
λ :

dj
dk
λk ≤ λj ≤

dℓ
dj
λℓ ∀ ℓ 6= j,m and λj ≤

dm
dj
λm

}
(3.177)

Rjk(d
′) =

{
λ :

dj
dk
λk ≤ λj ≤

dℓ
dj
λℓ ∀ ℓ 6= j,m and λj ≤

dm − ε
dj

λm

}

(3.178)

Note that we have explicitly highlighted the terms with m. Now dj , dm > 0,

so

dm − ε
dj

<
dm
dj
. (3.179)

Thus

Rjk(d
′) ⊆ Rjk(d) (3.180)

This allows us to combine the two integrals in equation (3.176):

[ψj(d, θ)− ψk(d, θ)]−
[
ψj(d

′, θ)− ψk(d′, θ)
]

=

∫

Rjk(d)−Rjk(d′)
π(λ|θ)dλ.

(3.181)

However, π(λ|θ) ≥ 0 ∀λ, so the value of the integral is nonnegative. Thus

[ψj(d, θ)− ψk(d, θ)]−
[
ψj(d

′, θ)− ψk(d′, θ)
]
≥ 0, (3.182)

proving the theorem.

Corollary 3.7.8. Let d = (d1, d2, ..., dK) be a vector of centroid-to-point

distances, and let ψ be any stability measure based on scaled distance per-

turbations. Let j, k be any index in {1, 2, ...,K} such that dj < dk, and let

m be any index other than j or k. Suppose 0 < ε, and let

d′ = (d1, ..., dm + ε, ..., dK). (3.183)
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Then

ψj(d
′, θ)− ψk(d′, θ) ≥ ψj(d, θ)− ψk(d, θ) (3.184)

Proof. Again, this theorem is simply a restatement of theorem 3.7.7. If we

swap the prime notation on the distance vectors and assume we were given

dm + ε instead of dm, we have theorem 3.7.7 exactly. The proof of that

theorem is sufficient.

3.8 Extensions to Other Indices

We wrap up this chapter by tying up some loose connections to chapter

2. As mentioned in section 2.2.3, we can naturally incorporate other sta-

bility indices into our method. We continue this extension in this section

by deriving the gradient of each of these indices with respect to the prior

parameters. This allows us to efficiently tune the priors using these methods

as well should we desire to use them.

3.8.1 Optimizing AR⋆ and VI⋆ over θ

In finding the θ that maximizes AR⋆ (or VI⋆), or a linear combination

thereof, it speeds the computation up immensely if we know the gradient

of AR⋆ (VI⋆) with respect to θ. Knowing this allows us to use much more

sophisticated and powerful optimizers. In this section, we calculate the gra-

dient of AR⋆ and VI⋆. Ultimately, both of these depend on first calculating

∂φLE
j /∂θℓ

∣∣∣
θℓ=θ

′
ℓ

for each row of φ; we derive an algorithm in the next section

to do this efficiently in amortized constant time per j, ℓ pair.

For the Hubert-Arabie Adjusted Rand Index,

∇θ AR⋆ = ∇θ

∑
j

∑
ℓ p

2
jℓ −

(∑
j p

2
j

)(∑
ℓ p
⋆
ℓ
2
)

1
2

[(∑
j p

2
j

)
+
(∑

ℓ p
⋆
ℓ
2
)]
−
(∑

j pj
2
)(∑

ℓ p
⋆
ℓ
2
) (3.185)

= ∇θ

A−BB⋆
1
2(B +B⋆)−BB⋆ (3.186)
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where, to make the calculation easier, we’ve defined the following terms:

A =
∑

j

∑
ℓ
p2
jℓ (3.187)

B =
∑

j
p2
j (3.188)

B⋆ =
∑

ℓ
p⋆ℓ

2 (3.189)

Continuing:

∇θ AR⋆ =
1

1
2(B +B⋆)−BB⋆

[
∇θ A−

(
B +

(
1

2
−B

)
AR⋆

)
∇θ B

⋆

]

(3.190)

Now

∇θ A =
∑

j

∑

ℓ

∇θ p
2
jℓ =

1

n

∑

j

∑

ℓ

2pjℓ∇θ pjℓ (3.191)

∇θ B
⋆ =

∑

ℓ

∇θ p
⋆
ℓ
2 =

1

n

∑

ℓ

2p⋆ℓ∇θ p
⋆
ℓ (3.192)

where

∇θ pjℓ =
∑

i:aij=1

∇θ φiℓ (3.193)

∇θ p
⋆
ℓ =

∑

i

∇θ φiℓ (3.194)

Thus we can calculate ∇θ AR⋆ given the partial derivatives of φj with

respect to the prior parameters θℓ.

The Variation of Information is similar:
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∇θ VI⋆ = ∇θ


−

∑

j

pj log pj −
∑

ℓ

p⋆ℓ log p⋆ℓ − 2
∑

j

∑

ℓ

pjℓ log
pjℓ
pjp⋆ℓ




(3.195)

= −
∑

ℓ

(
log p⋆ℓ + 1 +

K

p⋆ℓ

)
∇θ p

⋆
ℓ − 2

∑

j

(
log

pjℓ
pjp⋆ℓ

+ 1

)
∇θ pjℓ

(3.196)

Again, using equations (3.193) and (3.194), this can be calculated easily

given ∂φLE
j /∂θℓ .
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Chapter 4

Synthetic Data for Cluster

Validation Tests

Recall from section 1.2.1 that the canonical way to compare cluster valida-

tion procedures is to test how well they predict the true number of clusters

in a known dataset. Such an analysis, however, has limits. One is that it

depends on the type of data. Another is that it depends on the quality of

data. Issues such as missing data, truncated features, and contaminations

points, and the methods used to control them, can have a significant influ-

ence on the results. We thus propose a method to control these issues and

abstract them, as much as possible, from the process of testing clustering

validation methods.

Many of the papers proposing or describing cluster validation methods

only compare them on a handful of datasets. This is largely due to two fac-

tors. First, there are few robust methods for generating “difficult” synthetic

data with a known number of clusters, and many of these do not work in

high dimensions. Second, most real datasets are for classification purposes;

while sometimes people ignore the labels and compare methods based on

how well they recreate the known partitions, most of these datasets do not

have classes that separate well into clusters. We thus felt a method to gen-

erate non-Gaussian, “difficult” datasets with a known number of clusters

would be a valuable and useful tool for the clustering community.
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A reasonable collection of synthetic datasets used to compare the accu-

racy of clustering validation techniques should meet several requirements.

First, each dataset should have Ktrue distinct clusters. Second, it should

contain datasets with a variety of types – i.e. cluster shapes1 that deviate

non-trivially from a “nice” Gaussian distribution.

We thus propose a procedure to create a multimodal distribution from

which such synthetic datasets can be drawn. The procedure takes as input

the dimension of the space, the desired number of modesKtrue, and a handful

of interpretable tuning parameters that control the separation and shape of

the modes. Our procedure also includes a verification step that ensures, with

reasonably high probability, that there are exactly Ktrue distinct modes in

the mixture model.

At a high level, our procedure consists of five steps, each of which we

will outline in more detail in the following sections.

1. Choose input parameters. These include a closeness index β governing

the required separation between components and parameters govern-

ing the shape of the component distributions.

2. Set the locations and average variance of the mixture components

based on the specified dimension, number of components, and required

separation between components.

3. Draw the individual weights and variances of each component based

on the average variance and input parameters governing the spread of

the weights and variances.

4. Shape each component using a sequence of randomly drawn, invertible

transforms. The distribution of each component is based on a sym-

metric Gaussian distribution; this set of transforms scales, rotates,

and translates the coordinate system the distribution is based on to

reshape the component distribution. This allows significant diversity

1By shape, we mean a level set or contour curve of the joint distribution. A Gaussian,
for example, would have a hyperspherical or hyperelliptical shape.
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in component shapes while preserving the modal structure of the mix-

ture model.

5. Adjust the components to ensure that all Ktrue(Ktrue − 1) pairs of

component distributions are sufficiently well separated.

In the following sections, we begin by discussing several other procedures

for generating synthetic data and how our method is distinctive. We then

define some of the basic notation and equations used throughout the proce-

dure. Section 4.3 describes creating the base component distributions (steps

2-3), and section 4.4 describes shaping these components (step 4). In sec-

tion 4.5 we describe the verification process (step 5). Section 4.6 describes

sampling from the mixture model produced by these steps. We end with a

summary of the input parameters to the procedure and a brief description

of each.

4.1 Related Work

While numerous papers mention generating synthetic data from mixture

models, the vast majority sample data from a mixture model of standard

distributions and with visual inspection or no checking at all to ensure the

components are not overlapping.

The one exception we found was a synthetic data generator implemented

by Pei and Zaiane [PZ]. To generate synthetic data with a specified number

of components, they start with complex shapes – e.g. letters, sqaures, etc.

– and then locate them in the space, ensuring they do not overlap. These

shapes are then filled with a uniform sampling of points. Additionally, clus-

ters can come from Gaussians, and noise points can be added. They provide

five levels of difficulty determined by geometric configurations and cluster

shapes.

Our method has several advantages over this approach. The first is that

in using a random transformation approach coupled with a verification and

adjustment process, the complex shapes of our method are more random and

arguably more representative of real data than those in [PZ]. Furthermore,
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the pdf of our method can easily be realized, while this is more difficult in

their method. Finally, the cluster shaping and difficulty are continuously

tunable parameters, so the user has more control over the resulting mixture

model.

4.2 Definitions

The general procedure of our algorithm is to start with a base distribution

– here a standard Normal – and reshape it using a sequence of non-linear

transformations. The base distribution, which we denote here as g, is com-

mon between all the components. The transformation sequence – which we

compose into a single function denoted by Tj – varies between components.

Likewise, the component variance σj , component location µj , and compo-

nent weight wj also vary between components. Putting all these together,

we can define the final pdf for mixture component j as

hj(x) = Dx(Tj)gj
(
Tj
(

x− µj
σj

))
(4.1)

Combining all these together into the pdf of the full mixture model gives us

h(x) =

Ktrue∑

j=1

wjhj(x). (4.2)

where wj are the weights assigned to each component.

4.2.1 Component Separation and Proximity

As mentioned, one of the distinctive features of our procedures is that the

user specifies the difficulty of the problem in part by specifying the mini-

mum separation between components. We quantify this in terms of a prox-

imity index Sjk, where a proximity of 0 indicates maximal separation and

a proximity of 1 indicates that the modes of the two components are indis-

tinguishable. The user sets the separation parameter β, and our procedure

guarantees that all component pairs have a proximity index of at most β.

We define the proximity Sjk between components j and k in terms of
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the probability density on the line between the two components. Formally,

Sjk =

∫ 1

0
min

{
1,
h′jk
(
uµj + (1− u)µk

)

γjk

}
du (4.3)

where the mixture pdf hjk of the jth and kth components is

h′jk(x) =
wjhj(x) + wkhk(x)

wj + wk
. (4.4)

γjk is the minimum between the values of the pdf at the two centroids, given

by

γjk = min
{
h′jk
(
µj
)
, h′jk(µk)

}
(4.5)

Note that Sjk = 0 requires the pdf between the the j and k mixture com-

ponents to be identically 0. We assume that µj is the mode of component j

– our procedure is designed to ensure this – so Sjk = 1 indicates that there

are not two distinct modes in h′jk(x).

Formally, the condition we guarantee our cluster distribution to have in

the end is

min
j,k
Sjk ≤ β (4.6)

We do this by first setting the variances of each of the components so this

condition is met. Then, after we shape the components – a procedure which

may result in component pairs violating equation (4.6) – we iteratively shrink

the variances of subsets of the components until the resulting mixture model

satisfies it.
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4.3 Stage 1: Pretransformed Component

Distributions

The base distribution of each component is a normal2 with a randomly

drawn variance and a location determined by a random process described

below. The primary challenge is to choose the component locations and

average cluster variance in a way that packs the components together in a

geometrically reasonable way.

By geometrically reasonable, we mean avoiding a component configu-

ration in which two components are so close relative to the rest that it is

conceptually ambiguous whether data drawn from them should be regarded

as one cluster or two. In this ambiguous case, while the variance of the

two close components can be adjusted to ensure they are well separated, it

makes the separation parameter less meaningful as a summary of the over-

all structure of the mixture model since it refers to an isolated case. As an

analogy, one could argue that the minimum value out of a set of samples

carries more information about the distribution if the sampling distribution

is known not to generate outliers. Ideally, then, we want a configuration

in which the many of the cluster pairs have a separation close the required

separation parameter.

4.3.1 Choosing Locations for the Components

Practically, there are several options. One viable option is to generate a

random dataset from a single normal distribution, then cluster it using k-

means with the desired number of centroids. The resulting cluster locations

would then be the new component centers. This would ensure that the

clusters are positioned with reasonably good separation. However, this may

also tend to position the components too evenly, a possibly undesirable

effect (though one could severely limit the number of iterations, or number

of points in the test dataset, to prevent it).

The current version of our software chooses the cluster centers by it-

2While we use the normal as our base distribution, in theory any symmetric, unimodal
distribution would work.
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eratively refining a set of candidate component centers. It starts with a

list M1 =
{
M11,M12, ...,M1Nb

}
of Nb candidate sets M1i, where M1i =

{µ1i1, µ1i2, ..., µ1iK} with each element consisting of K centers drawn from

a spherical normal distribution. The algorithm then iteratively refines this

list a specified number of times using a type of max-min criteria. At each

iteration, it chooses the set of centers from the list having the largest min-

imum distance between centers, then forming a new list of sets of centers

based on that set.

Let Mt =
{
Mt1,Mt2, ...,MtNb

}
be the list of sets at iteration t. We

then choose a set M⋆
t from this as

M⋆
t = argmax

M∈Mt

min
µ1,µ2∈Mt

‖µ1 − µ2‖2 (4.7)

Mt+1 = M⋆
t ∪ newCentersSetList (M⋆

t ) (4.8)

where newCentersSetList generates a new list of sets of centers by randomly

replacing one of the centers in the pair of two closest points – breaking that

pair – with a new point randomly drawn.

By choosing the next M⋆
t+1 from the union of a new, randomly generated

list and M⋆
t , we ensure that at each iteration our locations of centers do

not get any worse. Furthermore, if the smallest inter-center distance is a

significant outlier, the probability that an iteration increases this statistic is

quite high as it is easy to find an alternate location. We repeat this iterative

step a specified number of times.

4.3.2 Setting the Mean of the Initial Cluster Variance

Distribution

Recall that the mean cluster variance is not one of the user specified param-

eters; rather, this must be determined by the user-set minimum separation

parameter β. We choose the variance of the clusters by initially setting all

base components – at this stage, they are symmetric Normals – to a com-

mon variance determined by distance between the two closest points and
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the minimum separation parameter given by the user.

From equation (4.6), this means we set σavg such that

S ′jk = β where j, k = argmin
j′,k′

‖µj′ − µk′‖2 (4.9)

where S ′jk is the separation parameter of symmetric Normals with variances

equal to σavg and locations given by µj and µk. Formally, this translates

into determining σavg by numerically solving the following equation for σavg:

1− 2F
(
− d
σavg

)

d
σavg

(
f(0) + f

(
− d
σavg

)) = β (4.10)

where d is the distance between the two components, f is the pdf and F

is the cdf of the standard normal distribution. Practically, this is done

numerically using an iterative bisection algorithm.

Once the mean of the cluster variance distribution is set, we sample the

variance of individual components as described in the next section. Note

that these variances may be further tuned to ensure that the condition given

in equation (4.6) holds for the final mixture model.

4.3.3 Individual Mixture Component Settings

There are two input parameters that control the spread of the individual

component weights and variances, sw and sσ. After the component locations

and σ2
avg are set, we draw the individual cluster variances from a distribu-

tion indexed by σ2
avg and an input parameter, sσ, that governs the spread

around σ2
avg of the individual component variances. Likewise, the compo-

nent weights are drawn from a distribution indexed by an input parameter

sw that governs the standard deviation of the component weights around

1/Ktrue.

The input parameter sσ governs the spread of the component variances.

Formally, we use the model σj = σavgσ
′
j , where σj is a random variable from

a Gamma distribution with Eσj = 1 and Var σj = s2σ. Formally,
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(σ′j1, σ
′
j2
, ..., σ′jK) iid∼ Gamma

(
1

s2σ
, s2σ

)
(4.11)

[σ1, σ2, ..., σK ] = σavg[σ
′
1, σ

′
2, ..., σ

′
K ] (4.12)

Similarly, the input parameter sw governs the spread of the component

weights around the mean weight, 1/Ktrue. Practically, we draw the weights

from a Gamma distribution with mean 1 and variance s2w and then normalize

the resulting distribution. However, this is the same as a Dirichlet theorem,

as it can be proved that if

Yi ∼ Gamma(αi, 1) (4.13)

and

V =
n∑

i=1

Yi (4.14)

then

(
Y1

V
,
Y2

V
, · · · , Yn

V

)
∼ Dirichlet(α1, α2, ..., αn) (4.15)

Here, then, drawing the weights is formally the same as drawing them from

a Dirichlet distribution with parameters [Ktrue/s
2
w, ...,Ktrue/s

2
w]. Thus

(w1, w2, ..., wKtrue) ∼ Dir

(
Ktrue

s2w
, · · · , Ktrue

s2w

)
(4.16)

Unlike the component variances, which may be adjusted later, the pa-

rameters drawn here are the final weights for the mixture components.

4.4 Stage 2: Shaping the Components

While other methods use complex base shapes to get complex structure in

the resulting distribution, our approach is to generate a sequence of invert-

ible transformation functions that each operate on one or two dimensions
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of the input vector. There are three classes of transformations, rotation,

scaling, and translation. Rotations rotate the two components a random

amount; scaling transformations scale one component, and translations add

a value determined by one component to the other. These pair of dimensions

that each of these transformations is applied to is chosen at random, and the

output of one transformation is fed to the next. Shaping the components

using these methods is a distinctive of our method, and we describe each of

them in detail below.

The four user parameters governing this process are τrotation, τscaling,

τtranslation, and α. These are, respectively, the average number of rotations,

scalings, and translations per dimension component. Recall that p denotes

the dimension. Specifically, there are τrotationp/2 rotations, τscalingp scaling

transformations, and τtranslationp translations in total. The order and the

components that each operate on are chosen randomly. Each of these trans-

formation types (except rotations) take a severity parameter, α, that ranges

between 0 and 1. When α = 0, the transformations have no effect on the

component shapes, but higher values of α cause increasing changes in the

shape.

4.4.1 Formal Notation

Formally, the entire operation can be seen as a sequence of nested func-

tions. For notational conciseness, we omit the index of the mixture model

component. The composite transformation function T (x) is given by

T (x) = Tr(Tr−1(· · ·T2(T1(x)) · · · )) (4.17)

= (Tr ◦ Tr−1 ◦ · · · ◦ T2 ◦ T1)(x) (4.18)

where Tt is the tth transformation function. The distribution function after

this set of transformations is then

94



h(x) = DxT (x)g(T (x)) (4.19)

= Dyr−1
(Tr) ·Dyr−2

(Tr−1) · · ·Dy1
(T2) ·Dx(T1)g(T (x)) (4.20)

= Dx(T )g(T (x)) (4.21)

where Dz(f) is the determinant of the Jacobian of f evaluated at z, yt is

the location of the current value after the first t evaluations in T , i.e.

yt = (Tt ◦ Tt−1 ◦ · · · ◦ T2 ◦ T1)(x) (4.22)

and Dx(T ) collects the sequence of Jacobians into a single term.

4.4.2 Acceptable Transformation Functions

Obviously, choosing classes of transformation functions must be done care-

fully. Perhaps the most important criteria is that our aggregate transfor-

mation function needs to preserve the unimodal structure of the distribu-

tion; otherwise, the final mixture model will not have the correct number of

modes. Second, the reshaping operation must not be undesirably severe.

Our method ensures that the first criteria is met by drawing each indi-

vidual transformation from classes that will preserve the unimodal structure

of the distribution and, with reasonably high probability, cannot yield a se-

quence or ordering that destroys the unimodal structure of the component.3

We meet the second criteria by admitting only transformations that pass

several tests. Denote the composite transformation sequence at step t as

Tt = Tt ◦ Tt−1 (4.23)

= Tt ◦ Tt−1 ◦ · · · ◦ T2 ◦ T1. (4.24)

A proposed transformation function T ′ passes the test if it keeps a set of 2p

3We believe that it is impossible to sequence the possible set of transformations in such
a way, but have not proved this rigorously.
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points located at {±ê1,±ê2, ...,±êp} within rmax of the origin, where êq is

the unit vector of the qth dimension.

The second test is similar, except that T ′ passes the test if T ′ ◦ Tt−1

keeps the same set of points within rmax of the origin. The main idea of

these transformations is to prevent the transformations from overly spread-

ing apart the central mode of the components.

Optionally, if more cluster consistency is required, T ′ must pass a second

pair of tests similar to the first pair, except these ensure that the set of points

{±2ê1,±2ê2, ...,±2êp} stays within 2rmax of the origin. This second round

of tests place more severe restrictions on some of the translation functions,

as many of these apply a much larger translations to points farther from the

center.

When constructing the sequence of transformations, we fix initially how

the specified number of each type is ordered. However, when setting the

parameters for one particular transformation, we redraw the component(s)

and transformation parameters until it passes the required tests.

Figure 4.1 show three plots of the pdf of a 5 component mixture model.

The input parameters are identical except for the use of these tests. The left

one shows the mixture model with no tests, the middle with transformations

filtered using the first pair of tests, and the right plot with transformations

filtered using both pairs of tests.

4.4.3 Rotation

A rotation function Trotation rotates two components m1 and m2 of the the

imput vector yt by θ. In choosing a function from this class, we choose

m1,m2 ∼ Un{1,...,p},m1 6= m2 and θ ∼ Un [0,2π), then the two entries in the

point vector would be

[
yt+1,m1

yt+1,m2

]
=

[
cos θ sin θ

− sin θ cos θ

][
yt,m1

yt,m2

]
(4.25)

The full transformed point would then be:
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(a) the pdf of a mixture model
with no transformation checks.
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(b) the pdf of a mixture model
with only first order transforma-
tion checks.
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(c) the pdf of a mixture
model with both transformation
checks.

Figure 4.1: Example plots of three 2d mixture models when there are no
checks on the transforms, first order checks, and both first and second
order checks. Note that with no transformation checks, exceedingly
long and thin cluster shapes are much more likely.

Trotation(y) = [y1, y2, ..., ym1−1, ym1 cos θ + ym2 sin θ, ...,

− ym1 cos θ + ym2 sin θ, ym2+1, ..., yp]
T (4.26)
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Note that rotation does not affect the normalizing constant of the dis-

tribution, so Dyt(Trotation) = 1. The inverse, needed for the sampling stage,

is also easily calculated by inverting the rotation.

4.4.4 Coordinate Translation

A translation function Ttranslation takes one dimension component and uses

it to determine the amount of translation for another component. It is

determined by choosing a scalar function f randomly from the set listed

below, a base component b of y, a separate mapping component m, and a

term A drawn from a Gamma distribution indexed by user input parameters.

It then maps ym to ym + f(yb). Thus

Tb(y) = [y1, y2, ..., ym−1, ym + f(yb, A), ym+1, ..., yp]
T (4.27)

We chose the list below as a non-exhaustive set of function classes that

will, with a reasonably high probability, fulfill the criteria given in section

4.4.2. Additionally, the input parameter, α dictates the expected severity

of the transformation; α = 0 has no expected effect and α = 1 has a severe

expected effect (recall that all the distributions before the transformation

stage have a variance of 1).

1. f1(z,A) = Az

2. f2(z,A) = Az2, A ∼ Gamma(α, 1)

3. f3(z,A) = Az3, A ∼ Gamma(α, 1)

4. f4(z,A) = eAz − 1, A ∼ Gamma(α, 1)

where A ∼ Gamma(α, 1) is the severity of the effect and α is a user in-

put parameter. Note that the Gamma function is parameterized so EA =

Var A = α.

The Jacobian in this case is the detriment of the identity matrix with

one non-zero off-diagonal and is thus 1. The inverse is easy to compute:

T
−1
b (y) = [y1, y2, ..., ym−1, ym − f(yb), ym+1, ..., yp]

T (4.28)
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4.4.5 Coordinate Scaling

A function Tscaling chooses a random component m of y and scales it by an

amount A. Thus

Tt(y) = [y1, y2, ..., ym−1, Aym, ym+1, ..., yd]
T (4.29)

The scaling factor A is drawn from a Gamma distribution parameterized

so that EA = 1 and Var A = α. Thus α = 0 again denotes no expected

effect and α = 1 denotes relatively severe expected effect.

We are only modifying one component, so the Jacobian for this function

is just

∣∣∣DyTscaling

∣∣∣ = A (4.30)

The inverse is also trivial:

T−1
scaling(y) =

[
y1, y2, ..., ym−1,

ym
A
, ym+1, ..., yd

]T
(4.31)

4.4.6 Example Cluster Shaping Parameters

We show in Figure 4.2 mixture models, with corresponding samples, having

values of the transformation severity parameter α set at 0.1, 0.2, 0.4, and

0.75. The number of components is 5, and both sσ and sw were set to 1. As

can be seen, this parameter has a significant effect on the type of mixture

model produced.

In Figure 4.3, we show the pdf and corresponding samples for a 5 compo-

nent mixture models as a function of the number of transformations applied

per dimension component. This parameter, along with α, has the most in-

fluence over the component shapes. In general, the more transformations,

the less the components resemble Gaussian distributions.
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(a) A 2d mixture model with corresponding samples and α = 0.1
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(b) A 2d mixture model with corresponding samples and α = 0.2

Figure 4.2: 2d mixture models with corresponding samples (2000) as a
function of the transform severity parameter α

4.5 Stage 3: Adjusting the Proposed Cluster

Distribution

One postcondition of the model generated by our procedure is that all com-

ponents are sufficiently well separated, i.e.

Sjk ≤ β ∀ j, k (4.32)

The first step in ensuring this condition is met was to set the mean of the

cluster distribution. However, when drawing the component variances from
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(c) A 2d mixture model with corresponding samples and α = 0.4
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(d) A 2d mixture model with corresponding samples and α = 0.75

Figure 4.2: 2d mixture models with corresponding samples (2000). The
severity of the transformations is far greater than the previous two in
Figure 4.2.

a distribution with nonzero variance and shaping the components, there is

no guarantee that this is enough. Thus to meet the condition, we selectively

shrink the variances of the components until equation (4.32) is satisfied.

Recall that the shaping procedure is independent of the variance, so the rest

of our process is unaffected.

To shrink this, we give every component a score based on how severely

it contributes to violating equation (4.32). Specifically, the score Sj for

component j is
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(a) A 2d mixture model with corresponding samples and no transforms
per dimension.
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(b) A 2d mixture model with corresponding samples and 2 transforms
per dimension.

Figure 4.3: 2d mixture models with corresponding samples (2000) as a
function of the number of transformations per dimension. The sever-
ity of the transformations was set to 0.4, and all the types had equal
representation.

Sj =
∑

k 6=j
max {0,Sjk − β}, (4.33)

We then shrink the component with the highest score until its score is 0.

This causes all the component pairs that component j is a member of to

satisfy equation (4.32). This, of course, will also reduce the score of other
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(c) A 2d mixture model with corresponding samples and 5 transforms
per dimension.
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(d) A 2d mixture model with corresponding samples and 12 transforms
per dimension.

Figure 4.3: 2d mixture models with corresponding samples (2000) as a
function of the number of transformations per dimension.

components. We then recalculate the scores as needed and repeat the pro-

cedure, stopping when there are no violations.

4.6 Sampling from the Distribution

The only remaining process to describe is how to sample a set of N points

(X1,X2, ...,Xn from h(x). There are two aspects to this process; the first

is choosing the number of points to draw from each component, and the
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second is sampling from a given component.

4.6.1 Determining Component Sample Sizes

We draw the number of points for the clusters from a type of truncated

multinomial distribution where an input parameter, nmin, specifies the min-

imum number of points drawn from each component. Allowing this as an

input parameter helps ensure that all the modes of the distribution are rep-

resented, in some way, in the final dataset. In this section, we present the

algorithm we use to generate the cluster sizing information.

We ensure that at least nmin points are drawn from each component using

a simple recursive algorithm that is guaranteed to produce the number of

points to be drawn from each cluster provided that nminKtrue ≤ N . The

main idea is simple. We start with a vector n = (n1, n2, ..., nK) drawn from

a multinomial distribution with weights set as describe in section 4.3.3. If

any of the cluster sizings have less than nmin points, we set these to nmin

and then randomly decrease the sizes of clusters that have more than nmin

points so that the total number of points is still n. We then repeat this until

all the clusters have size nmin or greater. We present the algorithm more

formally in algorithm (6).

4.6.2 Sampling from the Components

Now all that is left is to sample nj points from hj(x) for each cluster j. We

can do this easily by drawing samples from the base distribution gj and then

transforming them by inverting the transformation functions. Formally, we

have that

X ∼ g(x) (4.34)

hj(y) ∝ g
(
Tj
(

y − µj
σj

))
(4.35)

so if X ∼ gj(x),
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Algorithm 6: Determining the number of points to assign to draw
from each mixture model component.

Input: The total number of points N , the minimum number of
points nmin, and a vector w = (w1, w2, ..., wK) giving the
weighting of each component.

Output: A vector n = (n1, n2, ..., nK) giving the number of points to
be drawn from each component.

assert N ≥ nmin ∗K (n1, n2, ..., nK) ← Multinomial (N,w)
while ∃ i s.t. ni < nmin do

A ← {i : ni < nmin}
B ← {i : ni ≥ nmin + 1}
m ← ∑

i∈A nmin − ni
for i ∈ A do ni = nmin

d ← Multinomial (m, [max {0, ni − nmin}/
∑

i max {0, ni − nmin}])
for i ∈ B do ni ← ni − di

end

return n

Y = σjT −1
j (X) + µj ∼ hj(y) (4.36)

Because each of the transforms described in section 4.4 is invertible, we are

able to efficiently sample from the distribution and thus easily create the

dataset.

4.7 User Set Parameters

Our procedure has a collection of tunable parameters that control the shape

of the mixture model components, how well separated they are, and, in

general, the difficulty of a sampled dataset for both clustering algorithms

and validation procedures. Most of the parameters indexing the difficulty

take values between 0 and 1, with larger values indicating a more difficult

problem.

We summarize the parameters in the tables below:
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Mixture Model Properties

Ktrue The number of mixture components.

p The dimension of the space.

β The minimum separation between modes, as defined in

equation (4.3). If β = 0, the components are maximumly

separated (reducing the components to delta functions),

and β = 1 denotes no separation required.

sσ Controls the spread of the cluster variances as outlined

in section 4.3.3.

sw Controls the spread of the cluster weights around 1/Ktrue

as described in section 4.3.3.

nmin The minimum number of points in a cluster; if any cluster

has fewer points than this, the weights and number of

points in the clusters are redrawn.

Mixture Component Properties

τrotation The average number of rotation operations affecting each

entry in the point vector.

τscaling The average number of scaling operations affecting each

entry in the point vector.

τtranslation The average number of translation operations affecting

each entry in the point vector.

α The expected severity of each transformation. If α = 0

there is no change; α = 1 indicates a severe expected

transformation.

4.8 Conclusion

Now that we have outlined a reasonably reliable way of generating synthetic

data for testing clustering and cluster validation procures. In particular,

while our method can produce data with regular Gaussian components, its

strength is in producing data with clusters that can not easily be modeled

by any of the standard distributions. We are now ready to compare our
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method with all the others using this data.
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Chapter 5

Testing and Verification

We show that our approach compares quite favorably to other leading meth-

ods. We tested our method extensively on two classes of data, ANOVA data

with symmetric Gaussian mixture components, and shaped data, where the

data was non-Gaussian and shaped by the procedure presented in chapter

4.

We found that our method outperformed all the other methods when

the data was shaped, and outperformed the data perturbation methods and

was nearly comparable to the gap statistic when the points were drawn from

spherical Gaussians. This was the expected behavior, as the squared-error

cost function in the gap statistic would work far better when the clusters

were symmetric than when they were shaped. Our method makes only weak

modeling assumptions and thus performs significantly better on data that

does not fit the modeling assumptions made by other methods. We also

tested three varieties of data perturbation methods, and found them to all

work fairly well across both ANOVA and shaped data, consistently proving

to be decent but slightly less accurate than our method.

We first present in more detail each of the methods tested in section 5.1.

We describe the setup of the tests in the next section. Then, in section 5.3,

we present a detailed analysis of the results, and in section 5.4 we conclude

with a summary discussion.
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5.1 Methods Tested

We compare three classes of cluster validity estimation techniques. The first

is our method, which has several variants depending on the type of baseline

distance matrix, summary statistic, and prediction method. The second is

the gap statistic, described in detail in section 1.3. Finally, we compare three

different types of data perturbation using both the Hubert-Arabie adjusted

Rand index and the Variation of Information. These methods are variants

of one of the more popular data perturbation methods, subsampling. While

our tests against data perturbation methods are far from exhaustive – such a

comparison would be quite difficult – we believe the results on these methods

are indicative of many other data stability approaches. All of these methods

are outlined in more detail in the following sections.

Each of the techniques above is a method to get a stability estimate

for a single clustering. To use these clusterings to predict the number of

clusters in a dataset, we generate a set of candidate clusterings of the data,

corresponding to a range of possible numbers of clusters, and calculate the

specified validity indices of each. We then use this set of validity estimates

to predict the number of clusters; this stage is discussed in section 5.1.4.

5.1.1 Bayesian Cluster Validation Methods

From our method, we estimate the validity of a clustering using the averaged

pointwise stability as described in section 2.2.2. We use this in combination

with scaled distance perturbations (section 3.1) with a location exponential

prior (section 3.3). The stability of the clustering is the difference in average

pointwise stability between the given data and a null baseline clustering.

We tested the three different baseline types described in section 3.2.3: a

reclustered uniform sampling in the bounding box of the data, which we label

as APW-RC, a similar uniform sampling but recycling the cluster centers

of the clustered data (APW-U), and a baseline distance matrix formed by

permuting the original (APW-Perm). Between these three, we found that in

the lower dimensions and data with simpler models, the APW-RC tended to

work best followed by the APW-U and APW-Perm, but, as the dimension
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or model complexity increased, APW-Perm tended to dominate.

5.1.2 Gap Statistic

The second method we tested was gap statistic, described in detail in section

1.3. It uses a reclustered uniform distribution in the bounding box of the

data as its baseline.1 Given the gaps for each k, we test the method using

two predictors. First is the one the authors propose, and the second picks

the smallest k within a standard deviation of the best. These will be be

described more in section 5.1.4.

5.1.3 Data Perturbation

We chose to compare our method against three variants of the subsampling

techniques described in section 1.2.1. Recall that subsampling, closely re-

lated to bootstrapping, draws n separate datasets from the original data,

each containing a subset of the original points. Running each method con-

sists of cluster a set of subsampled datasets, comparing each to the un-

perturbed clustering using the index, and taking the average as the final

stability estimate.

All of the methods below use one of the similarity indices described in

section 1.2.2 to compare the perturbed clustering with the original cluster-

ing. The first is the Hubert-Arabie adjusted Rand index and the second is

the Variation of Information. In general, we found the second to perform

better.

In the first method, we randomly draw a subset of the data, recluster it,

and compare the resulting labeling against the labeling of the same points

in the unperturbed data set. We compared this using 10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%, and 90% of the original points, for 9 stability indices

in total. The final stability index vk is the average of these, and sk is the

population standard deviation. We label this method as SS-SizeRange.

The second method is more careful about which points it chooses. For it,

1We did attempt to use the gap statistic with the other two baseline types described in
in reference to our method, but doing this causes it to perform horribly so we omit those
results.
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we break the data into 10 non-overlapping folds and cluster the data from 9

of these folds at each run, leaving out a different fold each time for 10 total

runs. Each of these runs is then evaluated based on how well they predict

the labels on the original data. Again, the final stability index vk is the

average of these, and sk is the population standard deviation. This method

we call SS-Folds.

The third method is similar to SS-SizeRange, but differs in that there

are 10 independent draws of n/2 points each rather than a variety of subset

sizes. The rational here, like bootstrapping, is that we’re simulating multiple

samples of the same data set. The final stability index vk and standard

deviation vk are set the same way. We’ll call this method SS-Draws later on,

and, since we present more detailed analysis that involves the two different

similarity indices, we refer to the one using the Hubert-Arabie adjusted

Rand index as SS-Draws-AR and the one using the Variation of Information

as SS-Draws-VI.

5.1.4 Predictors

Each of the above techniques yields a list of validity estimates,2 where each k

tested has a validity index vk. Additionally, recall that each validity estimate

has an associated standard deviation sk. Given the list of validity indices

and standard deviations, we test several predictors for each method, where

here a predictor is simply a way to extract an estimate K̂ for the number

of clusters from the lists vk and sk. For each validation method, we present

results from all the predictors that work reasonably well on at least some of

the datasets.

Estimating the number of clusters is done using one of three methods,

though not all combinations of K̂ estimator and validity estimation work.

The first method is to simply choose the k that has the best validity estimate

(we refer to this estimation method as BestK).

The first predictor, which we call BestK, is an obvious first choice.

It chooses K̂ as the k that has the highest validity index vk. This ap-

2While the perturbation based methods produce stability indices, we here use validity

indices to include the gap statistic, which is not stability based.
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proach tended to work best for the data perturbation approaches, but lost

to StdBeforeBest when used with our method.

The second predictor, which we label StdBeforeBest, is a standard method

in machine learning. For it, we estimate k as the smallest k that is within

one standard deviation of the best, i.e.

K̂ = min {k : vk ≥ vℓ − sℓ} , where ℓ = argmax
ℓ

vℓ (5.1)

This method usually outperformed BestK with our method, but lost on the

data perturbation methods. It is the recommended method for our cluster

validation approach.

The third method, proposed as part of the original gap statistic, looks for

the place in the curve where the validity index levels off and stops improving

with increasing k. Specifically,

K̂ = min {k : vk ≥ vk+1 − sk+1} (5.2)

This prediction method only worked in combination with the gap statistic,

so we omit results using it in combination with the other methods.

5.2 Test Setup

As we discuss in chapter 1, the canonical test for cluster validation meth-

ods is how well they predict the true number of clusters in a given dataset.

While this method is somewhat artificial – often, in real data, it is difficult

to even say what the true number of clusters is – it does allow for some help-

ful comparisons. However, in much of the literature, the tests on synthetic

data (and on real data) have been on only a handful of datasets and thus

the comparisons have revealed limited information about the methods. Our

simulation is massive by comparison; in total we compare the performance

of each of the methods on 22,500 datasets of differing type, dimension, num-

ber of true clusters, sample size, and cluster shape. These help reveal the

strengths and weaknesses of each method.
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5.2.1 Data Types

As mentioned, we test the methods using two types of data, the first being

ANOVA style data with spherical cluster centers, and the second being non-

Gaussian data shaped according to the method described in chapter 4. For

each of these types, we generate datasets having 2, 10, 20, 50, and 100

dimensions and having 2 through 16 true clusters Ktrue. For each type,

dimension, and Ktrue, we do 100 runs with 750 points and 50 runs with

100 points to test both medium and small sized data sets. Thus there are

2× 5× 15× 150 = 22500 datasets total.

Parameters for Shaped Data

Recall from chapter 4 that a handful of parameters govern the shape and

“difficulty” of the generated mixture model as a clustering problem and a

cluster validation problem. We found that the relative performance of our

methods were not very sensitive to these input parameters; we thus adjusted

them so that the high score on each data type indicated good but not perfect

performance (in the 7-10 range according to the scoring system described

below).

5.2.2 Clustering

We used a slight variation on vanilla k-means as our primary clustering

algorithm. Our results could potentially be limited by the accuracy of the

clustering algorithm, as an incorrectly clustering a data set Ktrue clusters

withKtrue centroids should not be any more stable than clustering it into the

incorrect number of clusters. Thus, to minimize this potential problem and

ensure that each run gave excellent results, our clustering function returns

the best clustering out of 20 runs of k-means as measured by the k-means

cost function. This seemed to give excellent results.

5.2.3 Quantitative Evaluation

We present the results for each method in several ways. The first scores each

method according to its cumulative accuracy on each type and dimension of
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data, summarizing how closely it predicts Ktrue on each run and each Ktrue

in a given set, normally 2-16. This presentation provides a good summary

of how well each method works. The second way we present the results is as

a so-called confusion table that shows how many clusters K̂ a given method

predicts as a function of the true number of clusters Ktrue.

We observed that when a method incorrectly predicts a value K̂ for

Ktrue, often the predicted value is way off and becomes essentially random

across all the possible values of K̂. To keep such estimates from skewing the

results, we constructed a scoring function that is a discrete variant of the

Smoothly Clipped Absolute Deviation (SCAD) loss function [FL01, Fan97],

where we give each estimate K̂ a score as follows:

|K̂ −Ktrue| Score

0 10
1 5
2 1
> 2 0

Table 5.1: The possible scores of the cluster validation methods.

The final score of a method is the average score across all 100 runs and the

possible values of Ktrue.

To present a more detailed picture of how a certain method behaves, we

will also present a table giving how often the method predicted the a given

number of versus the true number of clusters. In such a table, a perfect

method would have 1’s along the diagonal where K̂ = Ktrue, and zeros

elsewhere. This type of table reveals significantly more about the behavior

of each of the methods. For example, some methods perform well whenKtrue

is small (< 8) but break down when Ktrue is larger (> 10). We present and

describe such results in more specific detail later in this chapter.
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5.3 Results

The results of our simulation, were, overall, quite favorable toward our

method. Using the difference in average pointwise stability between a base-

line distance matrix and data performed comparable to the gap statistic and

the data perturbation methods on most cases, and in many cases performed

substantially better.

In the next four sections, we present the results for two classes of data,

ANOVA and shaped, with two different sample sizes, 750 points and 100

points. The ANOVA data, which allows one to make much stronger model-

ing assumptions, is perhaps easier. Our shaped data does not readily fit any

simple models and thus makes things more much more difficult for model

based methods such as the gap statistic. In general, our methods beat the

gap statistic and data perturbation approaches while generally matching the

gap statistic on ANOVA data.

Each entry in the tables described in sections 5.3.1 - 5.3.4 represents the

average score of that method across 100 runs at each of 2-16 true mixture

components, for an average over 1500 datasets in total. The test k ranges

from 2 through 20 clusters on each dataset. In these tables, boldface entries

denote the best performing method, and darker shades of blue (gray) denote

higher scores.

In section 5.3.5, we present a more comprehensive and detailed analysis

of how each method performs by showing histogram-like tables of how many

times each of the methods predicted a given K̂ when the true number of

clusters was Ktrue. This reveals more insight into the various methods, e.g.

whether they tend to predict too high or too low or whether they are better

at higher or lower k. Finally, in section 5.4, we summarize the important

points of the results.

5.3.1 ANOVA Data, Medium Sample Size

We begin with the easiest data type, given in Table (5.2). This table shores

how different methods scored on ANOVA type data of varying dimension

and 750 points in each dataset. The separation index, as given by equation
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Type Subtype Predictor 2D
A

n
ov

a

10
D

A
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ov

a

20
D
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n
ov

a

50
D
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n
ov

a

10
0D

A
n
ov

a

APW

Perm
Best 9.23 9.88 9.44 9.38 8.86

Std Before Best 9.42 9.88 9.44 9.40 8.86

RC Uniform
Best 9.63 9.88 9.44 9.38 8.87

Std Before Best 9.62 9.88 9.43 9.37 8.86

Uniform
Best 9.22 9.87 9.44 9.40 8.90

Std Before Best 9.59 9.88 9.44 9.39 8.87

Gap
Regular 4.39 9.88 9.44 9.38 8.89

Std Before Best 9.61 9.88 9.40 9.34 8.76

SS

Draws
Best AR 7.10 9.64 9.13 8.95 8.32

Best VI 6.84 9.65 9.35 9.20 8.71

Folds
Best AR 5.05 8.81 6.83 7.59 6.84

Best VI 4.88 8.76 7.81 8.44 7.92

SizeRange
Best AR 6.36 9.66 8.94 8.91 8.12

Best VI 6.22 9.62 9.25 9.20 8.59

Table 5.2: Score results for ANOVA type data with 750 points. Boldface
numbers indicate the best performing method(s) one each data type,
and darker shades of blue (gray) indicate higher scores.

(4.3), was 0.6. In this particular case, our methods do quite well, with one

flavor of APW beating or matching all other methods at every dimension

tested.3

5.3.2 ANOVA Data, Small Sample Size

The results change slightly when the sample size is sufficiently small. In

particular, one flavor of the gap statistic has the best score in 3 out of

3The astute reader will observe that in 10 and 2o dimensions many of the methods
received the same score. This may be due to wrong clusterings with the correct k, which
can definitely occur. If they do, then it’s possible that all the methods get 100% on the
runs with a clustering for the correct k but predictably fail on the clusterings in which it
is wrong. Future analysis will deal more directly with this issue.
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Type Subtype Predictor 2D
A

n
ov

a

10
D

A
n
ov

a

20
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a

50
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n
ov

a

10
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A
n
ov

a

APW

Perm
Best 2.74 4.93 7.62 5.79 7.68

Std Before Best 6.24 7.65 8.34 6.91 7.87

RC Uniform
Best 8.10 8.00 8.49 7.39 8.18

Std Before Best 6.92 6.64 8.11 6.80 8.04

Uniform
Best 2.30 3.29 6.91 4.39 7.71

Std Before Best 6.26 6.58 8.06 6.48 8.12

Gap
Regular 3.05 6.43 8.04 6.78 8.26

Std Before Best 8.24 8.27 8.10 6.91 7.60

SS

Draws
Best AR 5.02 6.66 7.53 7.14 7.73

Best VI 5.72 6.69 7.88 6.41 8.19

Folds
Best AR 3.39 5.75 6.53 6.21 6.61

Best VI 3.45 5.54 6.97 6.40 7.32

SizeRange
Best AR 3.94 6.41 7.24 6.63 7.30

Best VI 4.42 6.53 7.61 6.47 7.82

Table 5.3: Score results for small sample size, ANOVA type data with
several predictors.

5 of the dimensions. Several flavors of our method, though, were strong

contenders; APW-RC-Best in particular, was consistently close or better.

We suspect that the good performance of the gap statistic here is indica-

tive of its strong modeling assumptions. These assumptions hold perfectly

in this case and play more of a role because of the small sample size. On the

shaped data where these assumptions do not hold, however, the gap statistic

performs significantly worse.

It’s also noteworthy that with regards to the APW-RC method, simply

predicting the most stable k wins over picking the one that is within one

standard deviation of the best. This is the one case we observed where the

latter is better than or matches the former.
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5.3.3 Shaped Data, Medium Sample Size

Type Subtype Predictor 2D
S
h
ap

ed

10
D

S
h
ap

ed

20
D

S
h
ap

ed

50
D

S
h
ap

ed

10
0D

S
h
ap

ed

APW

Perm
Best 6.06 7.31 7.64 6.79 7.21

Std Before Best 7.84 8.55 8.57 7.80 7.26

RC Uniform
Best 8.56 7.54 7.79 7.12 7.46

Std Before Best 8.80 8.29 8.33 7.54 7.46

Uniform
Best 6.64 7.90 8.04 7.12 7.45

Std Before Best 8.04 8.26 8.40 7.52 7.45

Gap
Regular 5.48 6.65 6.23 5.47 6.91

Std Before Best 7.38 1.34 0.77 0.46 1.46

SS

Draws
Best AR 5.49 7.33 7.30 6.59 6.30

Best VI 5.40 7.46 7.87 7.28 7.10

Folds
Best AR 3.40 5.45 5.02 4.70 4.47

Best VI 3.45 5.63 6.04 6.18 5.93

SizeRange
Best AR 4.69 7.08 7.22 6.30 6.17

Best VI 4.66 7.20 7.72 7.02 6.94

Table 5.4: Score results for Shaped data with several predictors.

When the data is shaped and the clusters are no longer Gaussian, the

story changes. As shown in Table (5.4), the best method is always within

our proposed class of validation methods. Most notably, in 2 and 100 di-

mensions, every variant of our approach wins over all the data perturbation

methods and the standard version of the gap statistic. If we restrict our-

selves to using the StdBeforeBest predictor – note that it outperforms BestK

in every case – the same is true at every dimension. Within our method,

APW-Perm, the fastest one computationally, is the best in 10, 20, and 50

dimensions, and APW-RC is the best on the other two sets.4

4We suspect that APW-Perm would also be the best at 100 dimensions as well if that
generated data was more shaped. However, when we ran these tests, some optimizations
in the clustering generation code were not in place and thus we weren’t able to apply as
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The data perturbations methods, in this case, consistently outperformed

the gap statistic but did not match our method. Except in 2 dimensions,

results using the Variation of Information were better than results using

the Hubert-Arabie adjusted Rand index. Also, note that the best method

tended to be SS-Draws; we examine this in more detail later.

The proposed version of the gap statistic performed fairly well, outper-

forming some of the data perturbations methods on some counts but never

winning over any of our methods. The one case where the Gap statistic was

able to beat all the data perturbation methods and the worst of our meth-

ods was in 2 dimensions when using the StdBeforeBest predictor. Note,

however, that this predictor performs horribly on the other dimensions.

5.3.4 Shaped Data, Small Sample Size

Having a smaller sample size (Table (5.5)) shifts the results slightly, though

the relative performance between the classes is largely the same. In this case,

APW-RC, instead of APW-Perm, is usually the best (with the exception of

the runs in 50 dimensions, where SS-Draws-VI wins). This is somewhat

expected – APW-Perm, in building the baseline on permutations of the

original distance matrix, is the least parametric of the methods and thus

requires more data to achieve accuracy comparable to methods that make

more assumptions.

The gap statistic and data perturbation methods tended to have similar

relative scores to the results in the previous section. We don’t have a good

explanation for why SS-Draws-VI was best on the 50 dimensional data; this

remains an open question.

5.3.5 Detailed Comparison

While the tables in the previous sections offer an excellent summary of

the performance of each approach. Knowing whether a method tends to

overestimate or underestimate the number of clusters, or whether it performs

many transformations to the mixture components as would have been ideal. Thus that
data could reasonably be viewed as half way between the shaped data and the ANOVA
data.
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Type Subtype Predictor 2D
S
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APW

Perm
Best 1.19 2.89 5.81 6.74 6.86

Std Before Best 4.59 6.23 7.56 7.36 7.00

RC Uniform
Best 7.15 6.95 7.61 7.54 7.56

Std Before Best 7.97 7.04 7.68 7.74 7.62

Uniform
Best 1.16 2.09 4.91 6.75 7.13

Std Before Best 4.91 5.18 6.85 7.27 7.30

Gap
Regular 3.84 5.96 6.55 6.38 7.19

Std Before Best 5.27 0.99 0.85 0.72 1.68

SS

Draws
Best AR 5.25 6.62 7.17 7.40 7.24

Best VI 5.94 6.31 7.33 7.87 7.58

Folds
Best AR 2.72 4.65 5.51 5.87 6.01

Best VI 3.01 4.62 5.92 6.57 6.90

SizeRange
Best AR 3.90 5.87 6.46 6.90 6.95

Best VI 4.46 5.85 6.87 7.35 7.54

Table 5.5: The score results for Shaped data with several predictors.

well only when Ktrue is small, is valuable information. Therefore, in this

section, we present histogram-like tables that give this information. We

refer to these results as sampling distributions.

Due to space constraints, we present tables for only a subset of the pos-

sible combinations of method, predictor, data type, and dimensions. These

are to highlight various properties of the methods and what issues one must

be aware of. In general, we try to look at the extremes that most illustrate

the tendencies of the various methods. Thus we restrict ourselves to 2 and

100 dimensional data but examine the different combinations within these

dimensions more thoroughly. Also, we found that the sampling distribution

of SS-Draws-VI was generally representative of the other data perturbation

methods, so we restrict ourselves to examining it.
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2D ANOVA, 750 Points

The first case we examine is the 2d ANOVA data with 750 points per dataset.

This data is fairly easy to cluster, and many of the methods had no problem

distinguishing the correct number of clusters.

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 · 1 · · · · · · · · · · · · · · · · ·

4 · · 1 · · · · · · · · · · · · · · · ·

5 · · · 1 · · · · · · · · · · · · · · ·

6 · · · · 1 · · · · · · · · · · · · · ·

7 · · · · · 1 · · · · · · · · · · · · ·

8 · · · · · · 1 · · · · · · · · · · · ·

9 · · · · · · · 1 · · · · · · · · · · ·

10 · · · · · · · · 1 · · · · · · · · · ·

11 · · · · · · · · · .98 .02 · · · · · · · ·

12 · · · · · · · · · .03 .95 .01 .01 · · · · · ·

13 · · · · · · · · · · .13 .84 .03 · · · · · ·

14 · · · · · · · · · · · .11 .78 .11 · · · · ·

15 · · · · · · · · · · · .01 .11 .75 .13 · · · ·

16 · · · · · · · · · · · · .01 .25 .57 .17 · · ·

(a) APW-RC

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 .05 .94 .01 · · · · · · · · · · · · · · · ·

4 .02 .02 .89 .03 .02 .01 · · · · · · · · · · · · .01

5 · · .03 .97 · · · · · · · · · · · · · · ·

6 · · · .01 .99 · · · · · · · · · · · · · ·

7 · · · · .03 .97 · · · · · · · · · · · · ·

8 · · · · · .01 .98 .01 · · · · · · · · · · ·

9 · · · · · · .03 .97 · · · · · · · · · · ·

10 · · · · · · · .01 .99 · · · · · · · · · ·

11 · · · · · · · · .06 .92 .02 · · · · · · · ·

12 · · · · · · · · .01 .04 .91 .02 .02 · · · · · ·

13 · · · · · · · · · · .09 .82 .09 · · · · · ·

14 · · · · · · · · · · · .05 .76 .18 .01 · · · ·

15 · · · · · · · · · · · · .10 .71 .18 .01 · · ·

16 · · · · · · · · · · · · · .17 .56 .25 .02 · ·

(b) APW-Perm

Table 5.6: Sampling distribution of APW-RC and APW-Perm on 2D
ANOVA data with 750 points using StdBeforeBest.

In Table (5.6), we compare APW with two different baselines. The first

is the reclustered uniform distribution on the PCA bounding box of the data.

Recall that this is the same baseline that the gap statistic uses. In lower
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dimensions, and with small sample sizes, this seems to work better than the

other two baselines. Possibly, this is because the structure in the original

data has less influence on this baseline than using a uniform distribution

but recycling the cluster centers or simply permuting the distance matrix.

However, note that in only one case the prediction is far wrong from the

truth.

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 .12 .88 · · · · · · · · · · · · · · · · ·

4 .19 · .81 · · · · · · · · · · · · · · · ·

5 .10 .03 · .87 · · · · · · · · · · · · · · ·

6 .15 .02 · · .83 · · · · · · · · · · · · · ·

7 .13 .03 .01 · · .83 · · · · · · · · · · · · ·

8 .14 .05 · · · · .81 · · · · · · · · · · · ·

9 .15 .01 · · · · · .84 · · · · · · · · · · ·

10 .10 .09 .06 .01 · · · · .74 · · · · · · · · · ·

11 .16 .09 .06 .04 · · · · · .65 · · · · · · · · ·

12 .16 .08 .10 .02 .01 · .01 · · · .61 .01 · · · · · · ·

13 .17 .19 .05 .09 .03 .01 .01 · · · .03 .39 .03 · · · · · ·

14 .23 .09 .10 .05 .05 .03 · · · · · .01 .31 .13 · · · · ·

15 .34 .13 .07 .03 .05 .04 .01 · · · · .01 · .23 .09 · · · ·

16 .27 .21 .13 .06 .04 · · · · · · · · .02 .17 .10 · · ·

Table 5.7: Sampling distribution of SS-Draws-VI on 2D ANOVA data
with 750 points.

In contrast, the prediction distribution of the data perturbation method

using SS-Draws and a Variation of Information index, which we show in

Table (5.7), tended to be way off if it got the result wrong. This indicates

there are effects in the data that can significantly confuse this method. While

it is likely that the data perturbation methods could be further tweaked to

give substantially better results, such a step would require careful thought

when the ground truth is not known.

On this particular set of data, the gap statistic (Table (5.8)), where the

prediction was done using StdBeforeBestrule does remarkably well, matched

in this case only by APW-RC. However, the original rule of the gap statistic

performs horribly.

122



K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 · 1 · · · · · · · · · · · · · · · · ·

4 · · 1 · · · · · · · · · · · · · · · ·

5 .01 · · .99 · · · · · · · · · · · · · · ·

6 .05 .32 · · .63 · · · · · · · · · · · · · ·

7 .02 .48 · · · .50 · · · · · · · · · · · · ·

8 .10 .52 · · · · .38 · · · · · · · · · · · ·

9 .12 .56 .02 · · · · .30 · · · · · · · · · · ·

10 .07 .65 .05 .01 · · · · .22 · · · · · · · · · ·

11 .11 .63 .03 .02 · · · · · .21 · · · · · · · · ·

12 .18 .59 .02 .04 .01 · · · · .01 .15 · · · · · · · ·

13 .12 .67 .04 .04 .01 .01 · · · · · .11 · · · · · · ·

14 .17 .68 · .05 .01 .03 · · · · · .03 .03 · · · · · ·

15 .24 .66 .01 .03 · .03 · · · · · · .01 .02 · · · · ·

16 .21 .66 .03 .04 · · · · .01 · · · .01 .04 · · · · ·

(a) Gap statistic.

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 · 1 · · · · · · · · · · · · · · · · ·

4 · · 1 · · · · · · · · · · · · · · · ·

5 · · · 1 · · · · · · · · · · · · · · ·

6 · · · · 1 · · · · · · · · · · · · · ·

7 · · · · · 1 · · · · · · · · · · · · ·

8 · · · · · · 1 · · · · · · · · · · · ·

9 · · · · · · · 1 · · · · · · · · · · ·

10 · · · · · · · · 1 · · · · · · · · · ·

11 · · · · · · · · · .98 .02 · · · · · · · ·

12 · · · · · · · · · · .95 .04 .01 · · · · · ·

13 · · · · · · · · · · · .87 .13 · · · · · ·

14 · · · · · · · · · · · · .79 .19 .02 · · · ·

15 · · · · · · · · · · · · .01 .76 .22 .01 · · ·

16 · · · · · · · · · · · · · .01 .57 .36 .06 · ·

(b) Gap statistic, prediction with StdBeforeBest.

Table 5.8: Sampling distributions of the Gap statistic using two predic-
tion rules on 2D ANOVA data with 750 points.

2D ANOVA, 100 Points

There are several features of the ANOVA data with a lower sample size

(100 points) that are noteworthy. The first is that one flavor of the gap

statistic is the winner in 3 our of 5 of the cases. More specifically, the gap

using StdBeforeBest seems to do the best out of all the methods in 2 and 10

dimensions but gets steadily worse; the regular Gap improves, beating all

other methods in 100 dimensions but performing poorly on 2 dimensional
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data. The other interesting feature is that, contrary to the norm, APW-

RC-Best beats APW-RC. In the following tables, we discuss these results in

more detail. In addition, we describe this effect and furthermore compare

APW-RC and APW-RC-Best to APW-Perm.

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 · 1 · · · · · · · · · · · · · · · · ·

4 · · 1 · · · · · · · · · · · · · · · ·

5 · · .04 .96 · · · · · · · · · · · · · · ·

6 .02 · .02 .06 .90 · · · · · · · · · · · · · ·

7 · · .02 .04 .18 .76 · · · · · · · · · · · · ·

8 · · · · .06 .28 .66 · · · · · · · · · · · ·

9 · · · · · · .54 .46 · · · · · · · · · · ·

10 · · · .02 · · .14 .38 .44 .02 · · · · · · · · ·

11 · · · · · · .04 .24 .46 .26 · · · · · · · · ·

12 · · · · · · · .06 .16 .34 .36 .08 · · · · · · ·

13 · · · · · · .02 .04 .04 .34 .32 .10 .12 .02 · · · · ·

14 · · · · · · · · · .10 .38 .34 .14 .04 · · · · ·

15 · · .02 · · · · · · .08 .12 .40 .22 .10 .04 .02 · · ·

16 · · · · · · · · · · .02 .06 .40 .24 .12 .08 .06 · .02

(a) APW-RC, prediction using StdBeforeBest.

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 · 1 · · · · · · · · · · · · · · · · ·

4 · · 1 · · · · · · · · · · · · · · · ·

5 · · · .98 .02 · · · · · · · · · · · · · ·

6 · · · · 1 · · · · · · · · · · · · · ·

7 · · · · .04 .94 .02 · · · · · · · · · · · ·

8 · · · · .02 .02 .92 .04 · · · · · · · · · · ·

9 · · · · · · .06 .94 · · · · · · · · · · ·

10 · · · · · · .02 .14 .76 .08 · · · · · · · · ·

11 · · · · · · · .06 .18 .58 .16 .02 · · · · · · ·

12 · · · · · · · · · .16 .50 .24 .08 .02 · · · · ·

13 · · · · · · · · · .04 .22 .34 .20 .12 .04 .02 · · .02

14 · · · · · · · · · · .08 .28 .20 .30 .12 .02 · · ·

15 · · · · · · · · · .02 .02 .12 .20 .18 .22 .18 .04 .02 ·

16 · · · · · · · · · · · .04 .10 .14 .28 .14 .10 .14 .06

(b) APW-RC, prediction using BestK.

Table 5.9: Sampling distribution of APW-RC on 2D ANOVA data with
100 points.

Table (5.9) compares two methods of prediction using the best perform-

ing of all our methods. As can be seen by comparing Table (5.9a) and Table

(5.9b), APW-RC, with the StdBeforeBest rule, tends to choose one or two
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K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .88 .02 · · · · · · · · · · · .04 .02 .02 · · .02

3 · .46 .04 .02 · · · .02 .02 · .02 .04 .06 .02 .06 .12 .06 .04 .02

4 · · .48 .02 · .02 · · .02 .04 .06 .04 .04 .08 .10 · .04 .04 .02

5 · · .08 .56 .04 .04 .04 · .02 .02 · · · .02 .02 .06 .06 .04 ·

6 · · · .06 .70 .04 · · .04 · .02 · .06 .02 · · .02 · .04

7 · · · .02 .10 .70 .14 .02 · · .02 · · · · · · · ·

8 · · · · · .12 .70 .04 .08 · .02 · · · · · .02 .02 ·

9 · · · · · .02 .32 .52 .02 .02 .02 .02 · · .02 .02 · .02 ·

10 · · · · · · .02 .36 .46 .08 · .02 · · · .02 .04 · ·

11 · · · · · · .02 .04 .28 .44 .10 .02 .02 · .04 · .04 · ·

12 · · · · · · · .02 · .30 .34 .14 .08 .06 · .04 .02 · ·

13 · · · · · · · · · .08 .22 .26 .16 .12 .06 .08 · .02 ·

14 · · · · · · · · · .02 .12 .28 .18 .16 .12 .04 .04 .02 .02

15 · · · · · · · · · · .02 .14 .14 .30 .24 .14 .02 · ·

16 · · · · · · · · · · · · .06 .20 .30 .20 .14 .04 .06

Table 5.10: Sampling distribution of APW-Perm, StdBeforeBest, on
2D ANOVA data with 100 points.

k’s too small. This could be because the sample size does not provide a

reliable baseline, but the exact cause is difficult to determine.

Regardless, we note that the number of times APW-RC is significantly

far off is still quite small. APW-Perm, however, tended to greatly overesti-

mate the number of clusters when it got it wrong, as seen in Table (5.10).

Even though APW-Perm achieves a reasonable score – 6.24 compared to

6.92 for APW-RC – its predictions are significantly less reliable. This is

likely due to the permutation being unable to mask the significant structure

present in the original distance matrix. This would be more of a problem

on this type of data than any other.

The results for the gap statistic are shown in Table (5.11). One note-

worthy fact is that the prediction rule proposed as part of the gap statistic

performs horribly in this case, failing to get any correct on some of the

datasets with many clusters and consistently underestimating the number

of clusters in the data. However, using the gap statistic with StdBeforeBest

as the prediction rule works quite well. Why this is the case is more difficult

to say, but it is something to keep in mind when using the gap statistic in

practice.

125



K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 · 1 · · · · · · · · · · · · · · · · ·

4 .08 · .92 · · · · · · · · · · · · · · · ·

5 .18 .10 · .72 · · · · · · · · · · · · · · ·

6 .30 .20 .02 · .48 · · · · · · · · · · · · · ·

7 .26 .36 .04 .02 .02 .30 · · · · · · · · · · · · ·

8 .46 .42 .06 .02 · · .04 · · · · · · · · · · · ·

9 .50 .38 .06 .04 · · · .02 · · · · · · · · · · ·

10 .52 .34 .04 .02 .04 · · .04 · · · · · · · · · · ·

11 .42 .46 .04 .02 .02 · · · .02 .02 · · · · · · · · ·

12 .48 .38 .06 .06 · · · · · · .02 · · · · · · · ·

13 .58 .38 .02 · .02 · · · · · · · · · · · · · ·

14 .62 .36 · · .02 · · · · · · · · · · · · · ·

15 .68 .28 .04 · · · · · · · · · · · · · · · ·

16 .68 .32 · · · · · · · · · · · · · · · · ·

(a) Gap statistic.

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 · 1 · · · · · · · · · · · · · · · · ·

4 · · 1 · · · · · · · · · · · · · · · ·

5 · · · 1 · · · · · · · · · · · · · · ·

6 · · · · 1 · · · · · · · · · · · · · ·

7 · · · · .06 .92 .02 · · · · · · · · · · · ·

8 · · · · · .10 .90 · · · · · · · · · · · ·

9 · · · · · · .08 .90 .02 · · · · · · · · · ·

10 · · · · · · .04 .10 .76 .10 · · · · · · · · ·

11 · · · · · · · · .28 .62 .10 · · · · · · · ·

12 · · · · · · · · .02 .16 .48 .28 .02 .02 .02 · · · ·

13 · · · · · · · · · .04 .32 .32 .24 .06 · .02 · · ·

14 · · · · · · · · · · .06 .24 .20 .36 .14 · · · ·

15 · · · · · · · · · · · .04 .20 .22 .36 .12 .06 · ·

16 · · · · · · · · · · · · .08 .24 .26 .16 .14 .12 ·

(b) Gap statistic using StdBeforeBest for prediction.

Table 5.11: Sampling distribution of the gap statistic on 2D ANOVA
data with 100 points using the StdBeforeBest prediction rule.

2D Shaped

On the 2 dimensional shaped data, the most interesting cases occur in the

low sample size datasets. We here examine a sampling of the most interesting

cases.

With APW-RC (Table (5.12)), prediction using with StdBeforeBest per-

forms better than prediction using BestK, which, in this case, tends to over-

estimate the number of clusters. This is contrary to the analogous ANOVA
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K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .86 .10 .04 · · · · · · · · · · · · · · · ·

3 · .88 .12 · · · · · · · · · · · · · · · ·

4 · · .96 .02 .02 · · · · · · · · · · · · · ·

5 · · · .86 .14 · · · · · · · · · · · · · ·

6 .02 · · · .82 .10 .04 .02 · · · · · · · · · · ·

7 · · · .02 · .76 .18 .04 · · · · · · · · · · ·

8 · · · · · .02 .86 .10 · · .02 · · · · · · · ·

9 · · · · · · .04 .64 .26 .04 .02 · · · · · · · ·

10 · · · · · · · .02 .64 .20 .10 .04 · · · · · · ·

11 · · · · · · · · .06 .46 .28 .16 .04 · · · · · ·

12 · · · · · · · · · .14 .30 .22 .30 .02 .02 · · · ·

13 .02 · · · · · · · · · .02 .36 .32 .10 .12 .04 .02 · ·

14 · · · · · · · · · · .06 .02 .28 .26 .18 .12 .04 .02 .02

15 · · · · · · · · · · · · .10 .16 .34 .22 .14 .02 .02

16 .02 · · · · · · · · · · · · .08 .08 .18 .20 .28 .16

(a) APW-RC using BestK for prediction.

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .94 .06 · · · · · · · · · · · · · · · · ·

3 · .94 .06 · · · · · · · · · · · · · · · ·

4 · · .98 .02 · · · · · · · · · · · · · · ·

5 · · .02 .96 .02 · · · · · · · · · · · · · ·

6 .02 · · .02 .94 .02 · · · · · · · · · · · · ·

7 · · · .02 .10 .84 .04 · · · · · · · · · · · ·

8 · · · · · .08 .92 · · · · · · · · · · · ·

9 · · · · · · .16 .78 .06 · · · · · · · · · ·

10 · · · · · · .04 .24 .66 .06 · · · · · · · · ·

11 · · · · · · · .06 .44 .44 .06 · · · · · · · ·

12 · · · · · · · .02 .06 .36 .40 .12 .04 · · · · · ·

13 .02 · · · · · · · · .06 .18 .40 .24 .08 .02 · · · ·

14 · · · · · · · · · · .08 .32 .32 .14 .08 .06 · · ·

15 · · · · · · · · · · · .06 .26 .18 .34 .10 .04 · .02

16 .02 · · · · · · · · · · .02 .08 .20 .22 .28 .08 .06 .04

(b) APW-RC using StdBeforeBest for prediction.

Table 5.12: Sampling distributions of APW-RC with two different pre-
dictors on 2D ANOVA data with 100 points.

results. In this case, using the StdBeforeBest prediction rule is quite justi-

fied; not only is the predictor more accurate, but the method does not tend

to underestimate.

Tables (5.13a) and (5.13b) illustrate the accuracy of using as the base-

line distance matrix a permutation of the original. In the low sample size

case, the effects of the original structure would be harder to mask with the

permutation, and this is illustrated here. While both tend to overestimate
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K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .30 .06 .02 .02 .02 · · · .04 .02 · .04 .08 .04 .08 .10 .08 .04 .06

3 · .20 .10 .02 .02 · .02 .04 .04 .04 .06 .02 .12 .06 .06 .08 .06 .02 .04

4 · · .38 .04 .06 · · .04 .02 .02 .06 .08 .02 .12 · .06 .08 .02 ·

5 · · · .34 .20 .08 .02 .02 .06 .02 .04 .02 · .06 .08 · .04 .02 ·

6 · · · · .32 .14 .08 .04 · .04 .04 .04 .12 .02 .06 .04 .04 · .02

7 · · · · .02 .52 .14 .08 .04 .02 .06 .02 · · · .06 .02 .02 ·

8 · · · · · .04 .52 .12 .02 .06 .02 .02 .06 .02 .02 .04 .02 .02 .02

9 · · · · · · .10 .48 .10 .02 .02 .06 .06 .04 .02 .06 .04 · ·

10 · · · · · · · .02 .48 .24 .06 .06 .04 .02 · .06 .02 · ·

11 · · · · · · .02 · .10 .30 .26 .10 .10 · .04 .02 .06 · ·

12 · · · · · · · · · .04 .24 .16 .20 .06 .12 .06 .06 .04 .02

13 · · · · · · · · · · .08 .28 .26 .12 .06 .08 .04 .02 .06

14 · · · · · · · · · · · .04 .32 .26 .20 .10 .04 · .04

15 · · · · · · · · · · · · .04 .18 .38 .22 .14 .02 .02

16 · · · · · · · · · · · · .02 .10 .20 .30 .20 .16 .02

(a) APW-Perm with 100 points per dataset

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .87 .06 · .01 · · · · · · · .01 .02 .02 .01 · · · ·

3 · .59 .17 .06 .04 .02 .02 .01 .02 .01 · · · .01 .01 .02 .01 · .01

4 · · .64 .09 .06 · · .02 .01 · .03 .03 .01 .02 .02 .02 .02 .01 .02

5 · · · .76 .18 .03 .01 · .01 · · .01 · · · · · · ·

6 · · · · .74 .16 .04 .01 .03 · .01 · · · · · · .01 ·

7 · · · · · .83 .11 .03 .01 .01 .01 · · · · · · · ·

8 · · · · · .02 .79 .13 .03 .01 .01 · · · .01 · · · ·

9 · · · · · · · .84 .09 .04 .03 · · · · · · · ·

10 · · · · · · · · .79 .16 .01 .02 .01 · · · .01 · ·

11 · · · · · · · · .02 .79 .14 .03 .02 · · · · · ·

12 · · · · · · · · · .01 .72 .22 .03 .01 · .01 · · ·

13 · · · · · · · · · · .01 .55 .34 .05 .03 .01 .01 · ·

14 · · · · · · · · · · · .01 .53 .30 .07 .06 .02 .01 ·

15 · · · · · · · · · · · · .01 .37 .47 .10 .03 · .02

16 · · · · · · · · · · · · · .01 .34 .37 .18 .07 .03

(b) APW-Perm with 750 points per dataset

Table 5.13: Sampling distribution of APW-Perm, StdBeforeBest, on
2D Shaped data with various sample sizes.

the number of clusters, the accuracy when the sample size is higher is sub-

stantially better.

Again, we give the sampling distribution of SS-Draws-VI, as this repre-

sents the other data perturbation methods. We present the results for the

lower sample size in Table (5.14); they are indicative of the larger sample

size as well. As in the ANOVA case, it tends to significantly underestimate

the number of clusters.
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K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .98 .02 · · · · · · · · · · · · · · · · ·

3 .06 .92 .02 · · · · · · · · · · · · · · · ·

4 .08 · .86 .06 · · · · · · · · · · · · · · ·

5 .10 .04 .08 .72 .02 .04 · · · · · · · · · · · · ·

6 .08 .04 .08 .04 .68 .08 · · · · · · · · · · · · ·

7 .06 .04 .02 .04 .16 .64 .04 · · · · · · · · · · · ·

8 .10 .12 .02 .04 .02 .04 .48 .14 .04 · · · · · · · · · ·

9 .12 .10 .02 .02 · · .08 .52 .10 .04 · · · · · · · · ·

10 .10 .10 .08 .02 · · .08 .10 .32 .16 .04 · · · · · · · ·

11 .08 .18 .02 .02 .06 · .02 .06 .18 .30 .08 · · · · · · · ·

12 .14 .12 .02 .06 · .02 .02 · .12 .18 .18 .12 .02 · · · · · ·

13 .10 .06 .04 .04 · · · .02 .02 .02 .18 .24 .16 .10 .02 · · · ·

14 .14 .10 .04 .08 .02 · · · .02 .04 .14 .12 .14 .16 · · · · ·

15 .12 .08 .06 · · .02 .02 · · .02 .04 .12 .12 .22 .12 .06 · · ·

16 .08 .06 .02 .06 · .02 .02 · .02 · .04 .02 .24 .22 .14 .02 .04 · ·

Table 5.14: Sampling distribution of SS-Draws-VI on 2D Shaped data
with 100 points.

On this type of data, neither of the two prediction rules tested makes

the gap statistic perform well (Table (5.15)). If the proposed rule is used,

the method tends to underestimate the number of clusters. If, however,

StdBeforeBest is used for predicting K, the method tends to get more cor-

rect but overestimates the cases it gets wrong. Perhaps more sophisticated

predictors are possible, but selecting other rules would be a difficult task.

100D ANOVA

For the high dimensional case, we present the prediction distribution tables

for the ANOVA and shaped data with 100 points. In general, the results

we note here apply also to the 750 sample case, and we didn’t notice any

substantial difference between the results. For conciseness, we omit them.

In the higher dimensions, the permutation based methods performed sig-

nificantly better than in lower dimensions (Table (5.16)). This is likely due

to the fact that lower dimensional distributions tend to have a less homo-

geneous distribution of distance measures, which would make the original

structure harder to disguise using permutations.

In comparing APW-Perm with APW-RC, we note from Table (5.17)

that the sampling distribution for APW-Perm-Best and APW-RC-Best both
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K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .50 .10 .10 .02 .04 .04 .02 .04 .02 · .02 .02 .02 · .04 · .02 · ·

3 · .64 .02 · .02 .02 .04 .04 .02 .02 .02 .04 .06 .02 .04 · · · ·

4 · · .56 .06 · .02 .04 .02 .06 .02 .04 · .04 .06 · .04 .02 · .02

5 · · · .60 .06 .04 .02 .06 .02 .02 · .04 .02 .02 .02 .02 .02 .04 ·

6 · · · · .40 .14 · .10 .06 .06 .04 .02 .04 .06 .02 .02 .02 · .02

7 · · · · · .62 .10 · .02 .04 .02 .02 .02 .04 · .08 .02 .02 ·

8 · · · · · · .54 .22 .08 .02 .02 · .04 · · .02 .04 .02 ·

9 · · · · · · · .52 .14 .08 .04 .02 .02 .02 .02 .02 .10 .02 ·

10 · · · · · · · · .46 .20 .18 .08 .02 .02 · · · .04 ·

11 · · · · · · · · .02 .38 .26 .10 .12 · · .04 .04 .04 ·

12 · · · · · · · · · .04 .26 .28 .12 .08 .08 .06 .06 .02 ·

13 · · · · · · · · · · · .26 .30 .22 .06 .06 .10 · ·

14 · · · · · · · · · · · .02 .26 .32 .08 .12 .08 .08 .04

15 · · · · · · · · · · · · .02 .12 .48 .22 .14 .02 ·

16 · · · · · · · · · · · · · .04 .10 .26 .26 .26 .08

(a) Gap statistic.

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .80 .16 .02 · · .02 · · · · · · · · · · · · ·

3 · .90 .06 .04 · · · · · · · · · · · · · · ·

4 .02 · .92 .06 · · · · · · · · · · · · · · ·

5 .02 · · .90 .08 · · · · · · · · · · · · · ·

6 .16 .10 .02 · .62 .10 · · · · · · · · · · · · ·

7 .14 .28 .04 · · .50 .04 · · · · · · · · · · · ·

8 .32 .26 .02 · · .02 .38 · · · · · · · · · · · ·

9 .34 .32 .10 · · · .04 .20 · · · · · · · · · · ·

10 .30 .38 .04 .02 .02 .02 .02 .08 .12 · · · · · · · · · ·

11 .40 .44 .04 · · · .02 .02 .04 .04 · · · · · · · · ·

12 .58 .24 .12 .04 · · .02 · · · · · · · · · · · ·

13 .56 .26 .10 .04 · · · .02 · · · .02 · · · · · · ·

14 .52 .40 .04 .02 .02 · · · · · · · · · · · · · ·

15 .68 .30 .02 · · · · · · · · · · · · · · · ·

16 .68 .22 .08 · · · .02 · · · · · · · · · · · ·

(b) Gap statistic, prediction using StdBeforeBest.

Table 5.15: Sampling distribution on 2D shaped data with 100 points
using the gap statistic.

seem to do well. The main thing to note here, however, is that APW-Perm,

while achieving less accuracy than APW-RC, tends to get fewer far wrong.

On the contrary, APW-RC can significantly underestimate the number of

clusters when Ktrue is higher, whereas APW-Perm does not have this prob-

lem.

Note, furthermore, that comparison of the same method on two sample

sizes can be misleading, as the results are not standardized between the two.
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K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 · 1 · · · · · · · · · · · · · · · · ·

4 · · 1 · · · · · · · · · · · · · · · ·

5 · · · 1 · · · · · · · · · · · · · · ·

6 · · · · 1 · · · · · · · · · · · · · ·

7 · · · · · .96 .04 · · · · · · · · · · · ·

8 · · · · · · 1 · · · · · · · · · · · ·

9 · · · · · · · .92 .08 · · · · · · · · · ·

10 · · · · · · · .04 .80 .14 · .02 · · · · · · ·

11 · · · · · · · .02 .02 .56 .26 .08 .04 · · · · .02 ·

12 · · · · · · · · · .06 .34 .48 .08 .02 · .02 · · ·

13 · · · · · · · · · · · .44 .32 .12 .04 .04 .04 · ·

14 · · · · · · · · · · .02 .04 .14 .36 .26 .12 .06 · ·

15 · · · · · · · · · · · · · .12 .32 .28 .14 .12 .02

16 · · · · · · · · · · · · · .04 .22 .18 .24 .24 .08

(a) APW-Perm with 100 points per dataset

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 · 1 · · · · · · · · · · · · · · · · ·

4 · · 1 · · · · · · · · · · · · · · · ·

5 · · · 1 · · · · · · · · · · · · · · ·

6 · · · · 1 · · · · · · · · · · · · · ·

7 · · · · · 1 · · · · · · · · · · · · ·

8 · · · · · · .99 .01 · · · · · · · · · · ·

9 · · · · · · .01 .94 .04 · .01 · · · · · · · ·

10 · · · · · · · .03 .83 .14 · · · · · · · · ·

11 · · · · · · · · .03 .76 .21 · · · · · · · ·

12 · · · · · · · · .01 .02 .62 .34 .01 · · · · · ·

13 · · · · · · · · · · .07 .60 .30 .02 .01 · · · ·

14 · · · · · · · · · · .02 .12 .42 .42 .02 · · · ·

15 · · · · · · · · · · · .02 .12 .40 .34 .10 .02 · ·

16 · · · · · · · · · · · · .07 .22 .37 .23 .09 .01 .01

(b) APW-Perm with 750 points per dataset

Table 5.16: Sampling distribution of APW-Perm, StdBeforeBest, on
100D ANOVA data with various sample sizes.

Thus the comparisons between corresponding values in the histograms are

not justified, but qualitative patterns in the histograms are. We are focusing

here on the latter.

Also, although APW-RC performs better on both dataset sizes, the dif-

ferences between APW-RC and APW-Perm are more pronounced for lower

sample sizes, again consistent with what we’d expect. Note, however, that

normally APW-Perm tends to perform best in higher dimensions.
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K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 · 1 · · · · · · · · · · · · · · · · ·

4 · · 1 · · · · · · · · · · · · · · · ·

5 · · · 1 · · · · · · · · · · · · · · ·

6 · · · · 1 · · · · · · · · · · · · · ·

7 · · · · .04 .96 · · · · · · · · · · · · ·

8 · · · · · · 1 · · · · · · · · · · · ·

9 · · · · .02 · .06 .92 · · · · · · · · · · ·

10 · · · · · · · .20 .80 · · · · · · · · · ·

11 .02 · · · · · · · .38 .56 .04 · · · · · · · ·

12 · · · · · · · .02 .08 .50 .34 .06 · · · · · · ·

13 .02 · · · · · · · .02 .12 .34 .44 .06 · · · · · ·

14 .12 .02 · · · · · · · .04 .16 .42 .16 .08 · · · · ·

15 .22 · · · · · · · · · .04 .10 .42 .10 .08 .04 · · ·

16 .16 · · · · · · · · · .02 .02 .24 .26 .20 .08 .02 · ·

(a) APW-RC with 100 points per dataset

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 · 1 · · · · · · · · · · · · · · · · ·

4 · · 1 · · · · · · · · · · · · · · · ·

5 · · · 1 · · · · · · · · · · · · · · ·

6 · · · · 1 · · · · · · · · · · · · · ·

7 · · · · · 1 · · · · · · · · · · · · ·

8 · · · · · .01 .99 · · · · · · · · · · · ·

9 · · · · · · .06 .94 · · · · · · · · · · ·

10 · · · · · · · .17 .83 · · · · · · · · · ·

11 · · · · · · · .01 .23 .76 · · · · · · · · ·

12 · · · · · · · · .02 .36 .62 · · · · · · · ·

13 · · · · · · · · · .03 .36 .60 .01 · · · · · ·

14 · · · · · · · · · · .05 .48 .42 .05 · · · · ·

15 · · · · · · · · · · · .13 .43 .40 .03 .01 · · ·

16 · · · · · · · · · · · .01 .18 .36 .39 .05 .01 · ·

(b) APW-RC with 750 points per dataset

Table 5.17: Sampling distribution of APW-RC, StdBeforeBest, on 100D
ANOVA data with various sample sizes.

On the 100 dimensional ANOVA data with 100 points, SS-Draws-VI

performs fairly well, but the gap statistic beats it. As in other cases, it can

also significantly underestimate the number of clusters. The gap statistic

using StdBeforeBest, while usually fairly close, tends to overestimate the

number of clusters by one or two.
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K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 · 1 · · · · · · · · · · · · · · · · ·

4 · · 1 · · · · · · · · · · · · · · · ·

5 .02 · .02 .96 · · · · · · · · · · · · · · ·

6 · · · · 1 · · · · · · · · · · · · · ·

7 · · · · .02 .98 · · · · · · · · · · · · ·

8 · · · · · · 1 · · · · · · · · · · · ·

9 .02 · · · · · .12 .82 .04 · · · · · · · · · ·

10 · · · · · · · .18 .72 .10 · · · · · · · · ·

11 .02 · · · · · · .02 .20 .52 .20 .02 .02 · · · · · ·

12 · · · · · · · · .04 .32 .36 .26 .02 · · · · · ·

13 · · · · · · · · .02 .06 .24 .40 .26 .02 · · · · ·

14 .02 · · · · · · · · · .10 .26 .20 .30 .08 .04 · · ·

15 · · · · · · · · · · .02 .10 .38 .24 .12 .14 · · ·

16 .02 · · · · · · · · · · .02 .12 .28 .30 .12 .08 .04 .02

Table 5.18: Sampling distribution of SS-Draws-VI on 100D ANOVA
data with 100 points.

100D Shaped

The prediction tables for the 100 dimensional shaped data have many of

the same characteristics as the 2 dimensional shaped data. We present here

a few highlights. The data perturbation methods had similar distributions

to the lower dimensional cases, so we omit them here. Also, most of the

noteworthy characteristics we present also apply to the 100 dimensional

shaped data with 750 points.

In comparing APW-Perm with APW-RC, we note from Table (5.21) that

the sampling distributions for APW-Perm and APW-RC have similar char-

acteristics. Also, although APW-RC performs better on both dataset sizes,

the difference is more pronounced for lower sample sizes, again consistent

with what we’d expect (Note, however, that normally in shaped distributions

in higher dimensions, APW-Perm tends to perform best). It’s worthwhile

to note that APW-RC tends to underestimate, while APW-Perm tends to

overestimate.

The performance of APW-Perm and APW-RC are similar to the 2 di-

mensional case, with some minor variations. The first variation is the num-

ber of cases in which APW-RC was far wrong and significantly underes-

timated the number of clusters; this was not a problem in 2 dimensions.
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K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 · 1 · · · · · · · · · · · · · · · · ·

4 · · 1 · · · · · · · · · · · · · · · ·

5 · · · 1 · · · · · · · · · · · · · · ·

6 · · · · 1 · · · · · · · · · · · · · ·

7 · · · · .04 .96 · · · · · · · · · · · · ·

8 · · · · · · 1 · · · · · · · · · · · ·

9 · · · · · · .04 .92 .04 · · · · · · · · · ·

10 · · · · · · · .16 .82 .02 · · · · · · · · ·

11 · · · · · · · · .28 .56 .14 .02 · · · · · · ·

12 · · · · · · · · .04 .28 .40 .26 .02 · · · · · ·

13 · · · · · · · · · .10 .30 .52 .04 .04 · · · · ·

14 · · · · · · · · · .02 .22 .44 .14 .16 .02 · · · ·

15 · · · · · · · · · · .08 .22 .54 .10 .06 · · · ·

16 · · · · · · · · · · .02 .06 .28 .24 .32 .08 · · ·

(a) Gap statistic.

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .96 .02 · .02 · · · · · · · · · · · · · · ·

3 · .90 .04 .02 .02 · · · .02 · · · · · · · · · ·

4 · · .94 .06 · · · · · · · · · · · · · · ·

5 · · · .96 .02 .02 · · · · · · · · · · · · ·

6 · · · · .98 .02 · · · · · · · · · · · · ·

7 · · · · · .90 .08 .02 · · · · · · · · · · ·

8 · · · · · · .92 .08 · · · · · · · · · · ·

9 · · · · · · · .92 .08 · · · · · · · · · ·

10 · · · · · · · · .80 .18 .02 · · · · · · · ·

11 · · · · · · · · · .52 .36 .10 .02 · · · · · ·

12 · · · · · · · · · · .34 .52 .12 .02 · · · · ·

13 · · · · · · · · · · · .40 .32 .16 .12 · · · ·

14 · · · · · · · · · · · · .12 .44 .26 .10 .06 · .02

15 · · · · · · · · · · · · · .08 .38 .32 .12 .10 ·

16 · · · · · · · · · · · · · · .14 .16 .36 .28 .06

(b) Gap statistic, prediction using StdBeforeBest.

Table 5.19: Sampling distribution on 100D ANOVA data with 100
points using the gap statistic.

The flip side is the APW-Perm tended, when there were more clusters, to

overestimate the number of clusters slightly but was more reliable overall.

The data perturbation method illustrates some of the same patterns as

before; it seems to be fairly robust to changes in shape and dimension. The

gap statistic, however, performs less well, as as the modeling assumptions

it is based on do not hold. While it is still somewhat competitive with our

method, its accuracy is still less than that to APW-Perm which has far fewer
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K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .95 .05 · · · · · · · · · · · · · · · · ·

3 · .91 .08 .01 · · · · · · · · · · · · · · ·

4 · · .90 .08 .02 · · · · · · · · · · · · · ·

5 · · · .94 .06 · · · · · · · · · · · · · ·

6 · .01 · · .94 .04 · · · · .01 · · · · · · · ·

7 · · · · .02 .93 .04 · · · · · · · · .01 · · ·

8 · · · · · .07 .85 .06 .01 · · · · .01 · · · · ·

9 · · · · · .01 .20 .69 .09 .01 · · · · · · · · ·

10 · · · · · · .01 .39 .46 .13 .01 · · · · · · · ·

11 .01 .01 · · · · · .04 .29 .46 .17 .02 · · · · · · ·

12 · · .01 · · · · · .05 .34 .29 .26 .03 .01 .01 · · · ·

13 · .01 · · · · · · .02 .12 .33 .25 .15 .09 .02 · · .01 ·

14 .01 .01 · · · · · · · .04 .15 .27 .24 .17 .08 .03 · · ·

15 .02 .02 · · · · · · · .01 .11 .24 .14 .16 .15 .11 .03 .01 ·

16 .01 · · · · · · · · · .02 .08 .29 .24 .11 .12 .08 .05 ·

(a) APW-RC.

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .96 .04 · · · · · · · · · · · · · · · · ·

3 · .92 .06 .01 · · · · · · · · · .01 · · · · ·

4 · · .91 .06 .01 · · · · · · · · · .02 · · · ·

5 · · · .96 .04 · · · · · · · · · · · · · ·

6 · · · · .94 .04 · · · · · .01 · · · · · .01 ·

7 · · · · · .94 .04 .01 · · · · · · · .01 · · ·

8 · · · · · .01 .85 .11 .01 .01 · · · .01 · · · · ·

9 · · · · · · .02 .69 .24 .04 .01 · · · · · · · ·

10 · · · · · · .01 .06 .45 .39 .08 .01 · · · · · · ·

11 · · · · · · · .02 .08 .44 .34 .08 .03 · .01 · · · ·

12 · · · · · · · · .03 .15 .29 .39 .06 .04 .03 · .01 · ·

13 · · · · · · .01 · .02 .07 .15 .23 .21 .23 .04 · · .02 .02

14 · · · · · · · .01 .01 .05 .09 .19 .19 .19 .16 .07 .02 .01 .01

15 · · · · · · · · .01 .01 .06 .14 .10 .17 .20 .18 .07 .04 .02

16 · · · · · · · · · .01 .03 .08 .17 .17 .09 .14 .17 .09 .05

(b) APW-Perm.

Table 5.20: Sampling distribution of APW-RC and APW-Perm,
StdBeforeBest, on 100D Shaped data with 750 points.

computational issues.

5.4 Conclusions

In this chapter, we have demonstrated, in a large simulation, that our

method can perform on par with or better than previous methods. We

did this by testing our methods using a large simulation on two types of
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K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .98 .02 · · · · · · · · · · · · · · · · ·

3 · .98 · .02 · · · · · · · · · · · · · · ·

4 · · .98 .02 · · · · · · · · · · · · · · ·

5 .02 · · .94 .04 · · · · · · · · · · · · · ·

6 .02 · · · .96 .02 · · · · · · · · · · · · ·

7 .02 · · · .04 .94 · · · · · · · · · · · · ·

8 · · · · · .08 .86 .06 · · · · · · · · · · ·

9 · · · · · · .08 .82 .10 · · · · · · · · · ·

10 · .02 .04 · · · .04 .26 .40 .22 .02 · · · · · · · ·

11 · · · .02 · · · .02 .28 .44 .24 · · · · · · · ·

12 .02 · .04 .04 · · · · · .28 .24 .26 .08 .04 · · · · ·

13 · .02 · · · · · · · .04 .36 .10 .18 .22 .06 .02 · · ·

14 · .04 · · · · · · · · .08 .32 .28 .18 .08 .02 · · ·

15 .02 .02 · · · · · · · · · .10 .20 .20 .24 .12 .08 .02 ·

16 .04 · · · · · · · · · · · .08 .12 .28 .26 .12 .02 .08

(a) APW-RC.

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .98 .02 · · · · · · · · · · · · · · · · ·

3 · .98 · .02 · · · · · · · · · · · · · · ·

4 · · .98 .02 · · · · · · · · · · · · · · ·

5 · · · .88 .10 · · · · · .02 · · · · · · · ·

6 · · · · .94 .04 · .02 · · · · · · · · · · ·

7 · · · · · .92 .04 · .02 · · · · · · · · · .02

8 · · · · · .02 .86 .08 · .04 · · · · · · · · ·

9 · · · · · · .04 .82 .14 · · · · · · · · · ·

10 · · · · · · · .12 .40 .28 .10 · .06 .04 · · · · ·

11 · · · · · · · · .12 .44 .24 .08 .08 · .02 .02 · · ·

12 · · · · · · · · · .14 .20 .26 .22 .06 .04 .02 .02 · .04

13 · · · · · · · · · · .16 .06 .26 .22 .16 .12 .02 · ·

14 · · · · · · · · .02 · .02 .08 .14 .24 .18 .16 .12 .02 .02

15 · · · · · · · · · · · · .08 .10 .24 .20 .24 .12 .02

16 · · · · · · · · · · · · .06 .06 .16 .26 .14 .10 .22

(b) APW-Perm.

Table 5.21: Sampling distribution of APW-RC and APW-Perm,
StdBeforeBest, on 100D Shaped data with 100 points.

data, ANOVA and shaped, at several dimensions and sample sizes. We feel

this test demonstrated well how and when the methods tested break down

and when the appear to work well. We summarize the results here across

several categories.
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K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 · · · · · · · · · · · · · · · · · ·

3 .02 .96 .02 · · · · · · · · · · · · · · · ·

4 · · .98 .02 · · · · · · · · · · · · · · ·

5 .02 · · .98 · · · · · · · · · · · · · · ·

6 · · · .02 .94 .02 .02 · · · · · · · · · · · ·

7 · · · · .04 .94 .02 · · · · · · · · · · · ·

8 · · · · · .10 .84 .06 · · · · · · · · · · ·

9 · · · · · · .16 .78 .06 · · · · · · · · · ·

10 .04 .02 · · · · .06 .36 .40 .12 · · · · · · · · ·

11 .02 · · · · · · .06 .34 .44 .14 · · · · · · · ·

12 .10 · · · · · · .02 .18 .30 .30 .10 · · · · · · ·

13 .02 · · · · · · · · .26 .38 .22 .08 .04 · · · · ·

14 .04 · · · · · · · · .02 .20 .38 .28 .06 .02 · · · ·

15 .04 · · · · · · · · · .10 .26 .36 .20 .04 · · · ·

16 .02 · · · · · · · · · .04 .12 .28 .32 .20 .02 · · ·

Table 5.22: Sampling distribution of SS-Draws-VI on 100D Shaped data
with 100 points.

K̂ →
Ktrue ↓

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .84 .10 .06 · · · · · · · · · · · · · · · ·

3 · .82 .16 · .02 · · · · · · · · · · · · · ·

4 · · .70 .30 · · · · · · · · · · · · · · ·

5 · · · .72 .24 .02 · · · · .02 · · · · · · · ·

6 · · · · .82 .16 · .02 · · · · · · · · · · ·

7 · · · · .04 .80 .16 · · · · · · · · · · · ·

8 · · · · · .06 .76 .16 .02 · · · · · · · · · ·

9 · · · · · · .10 .76 .12 .02 · · · · · · · · ·

10 · · · · · · .02 .30 .38 .18 .08 · .02 .02 · · · · ·

11 · · · · · · · .04 .18 .52 .22 .02 · .02 · · · · ·

12 · · · .02 · · .02 · .06 .14 .40 .26 .08 .02 · · · · ·

13 · · · · · · .02 · .06 .12 .32 .22 .10 .12 .04 · · · ·

14 · · · · · · · · .02 .06 .08 .32 .20 .16 .14 .02 · · ·

15 · · · · · · · · · · .06 .24 .24 .14 .24 .06 .02 · ·

16 · · · · · · · · · · .02 .06 .28 .20 .24 .16 .04 · ·

Table 5.23: Sampling distribution of the gap statistic on 100D Shaped
data with 100 points.

5.4.1 Increasing Dimension

The methods that performed will in lower dimensions did not always perform

well as the dimension increased. Here are some sample observations:

Gap Statistic The predictor proposed with the gap statistic performs bet-

ter and better as dimension increases, but doesn’t work as well in lower

dimensions. However, in 2 dimensions, StdBeforeBest works much bet-
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ter but fails as the dimension increases.

APW APW-RC tended to perform quite well regardless of the dimension.

APW-Perm performed poorly in lower dimensions but better with in-

creasing dimension.

Data Perturbation Methods Data perturbation methods tended to be

fairly consistent in their accuracy, exhibiting the same problems and

strengths regardless of dimension. In only one case out of 20, though,

did one of the data perturbation methods win.

5.4.2 Cluster Shape

Cluster shape presented different challenges, most notably to the methods

making some modeling assumptions.

Gap Statistic The gap statistic undoubtedly is the most sensitive to clus-

ter shape. It performs best in lower dimensional, low sample size

ANOVA data, where its Gaussian modeling assumptions hold. In all

cases, it performs noticeably worse on the shaped data than on the

comparable ANOVA data relative to the other methods.

APW APW-RC seems to exhibit some dependence on the shape of the

mixture components in the generated data, something possibly implicit

in the reclustering stage of forming the baseline. APW-Perm, however,

seems to handle shaped data without any problems. In many such

cases, it is the winner.

Data Perturbation Methods Again, these methods seem fairly robust

against changes in the data shape. This is what would be expected,

as they make no modeling assumptions.

5.4.3 Sample Size

Gap Statistic The gap statistic performed better relative to the other

methods as sample size decreased if its modeling assumptions held
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(i.e. on ANOVA data), but performed worse if they didn’t (i.e. on

shaped data).

APW APW-RC tended to perform the same relative to everyone else in

decreasing sample size, but the performance of APW-Perm decreased.

This is to be expected, as the permutation tests in APW-Perm work

better with more data.

Data Perturbation Methods These methods, while performing slightly

worse, did not exhibit a substantial drop in performance.

5.4.4 Other Considerations

It is worth noting that we compared the analytically weakest tool from our

method – a scalar stability index – against the other methods. While our

method provides many more analysis tools such as the heatmap plot and

per-cluster stability indices, any additional tools from the other methods

provide limited additional useful information. Furthermore, while we did

not explicitly test the other stability statistics provided by our method,

the fact that the scalar statistic summarizing all of them performs so well

indicates that the more informative parts will as well.

Future work in this matter includes testing our method extensively on

real data. This includes analysis of several classification datasets where the

classification labels are hidden. A good clustering method combined with

a good cluster validation technique should be able to reproduce the labels

with a reasonable amount of accurately provided the original classes were

well separated.
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Chapter 6

Limits in High Dimensions

While developing a full theory surrounding our proposed approach to cluster

stability is a difficult task, several relevant results can be obtained. In

this chapter, we describe a number of results concerning the theoretical

properties of our method in high dimensions. In particular, we look at the

assymptotics of our method as p→∞. While not perhaps applicable to the

more common low dimensional uses, this gives us an idea about how our

method is likely to perform on high dimensional data.

The chapter is divided logically into two parts. The first concerns the

limits and properties clusterings based on the squared error cost function

as p → ∞. In particular, we show that in the presence of noisy data,

the empirical variance and covariance of the nonrandom components of the

points in the partition must grow at a minimum rate of Ω
(√
p
)

in order

for the cost function to be meaningful. The most telling corollary to this

result is that if there are only a finite number of meaningful, non-random

components, and the rest are noisy, feature selection must be employed.

Having established the limits of clustering as the dimension increases,

we then look at the properties of our method in the same situation. Our

general strategy is to show that when the clustering breaks down, so does

our method, and that our method may give reasonable results when the

clustering is meaningful.
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6.1 Limits of Clustering in High Dimensions

To investigate the limits of clustering in high dimensions, we use the widely

accepted model of real process where the true values of the data are obscured

by a noisy random variable, i.e. the observed variable Y is related to the

true value x by

Y = x+ ε (6.1)

where ε is a random variable having a distribution with a mean of zero and

non-zero variance. Using this model, we intend to show that clustering based

on the vanilla version of the cost function breaks down in high dimensions

unless the distance between the true data points grows at a rate of Ω
(√
p
)
.

In many contexts, this implies that feature selection is absolutely necessary

if a clustering of the data is going to be meaningful.

To prove this result, we first need formal definitions of partitions on the

data, the cost function, and the noise distribution ε.

6.1.1 Partitions

A partitioning, or clustering, on a set of n data points is just a grouping of

those points into K non-overlapping sets, or partitions. For our purposes,

we restrict ourselves to non-empty partitions, so each partition has at least

one point assigned to it. Also, as a matter of notation, our partitions are

defined in terms of the indices 1, 2, ..., n. We present this formally in the

next definition:

Definition 6.1.1. Partitioning

Given n points and a number of clusters K, a partitioning

P = {P1, P2, ..., PK} (6.2)

is a set of K subsets of {1, 2, ..., n} such that

A. ∀ k ∈ {1, 2, ...,K}, Pk 6= ∅.

B. ∀ i, j ∈ {1, 2, ...,K}, i 6= j, Pi ∩ Pj = ∅.

141



C. ∪Kk=1Pk = {1, 2, ..., n}.

In other words, the sets are non-empty, non-overlapping, and all indices are

in at least one set.

Definition 6.1.2. Class of Partitionings Let PnK be the set of all

partitionings P of n points into K partitions.

6.1.2 Properties of The Squared Error Cost Function

We use the same cost function that is used in many clustering algorithms,

namely the squared error cost function. Recall the definition of squared

error cost from section 1.1.3:

cost
(
X

(p)
)

=
n∑

i=1

‖xi − µ‖22 (6.3)

where

µ =
1

n

n∑

i=1

xi. (6.4)

The corresponding version for partitions is just

cost
(
X

(p),P
)

=
∑

k

cost
({

xi ∈X
(p) : i ∈ Pk

})
. (6.5)

This cost function is the basis for our investigation of clustering in high di-

mensions. To proceed, we need to first need to formally note a few properties

of the cost function. These provide the basis for our result of clustering in

high dimensions.

Theorem 6.1.3. Expected Cost Let E(p) = {ε1, ε2, ..., εn} be a set of n

points such that for i = 1, 2, ..., n,

A. E εi = 0.
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B. E ε2i = σ2, 0 < σ ≤ C <∞.

Suppose P ∈PnK . Then

E cost
(
E(p),P

)
= (n−K)σ2 (6.6)

Proof. Let

Mk =
1

|Pk|
∑

i∈Pk
εi (6.7)

be the mean of each partition. We proceed by expanding out the cost

function:

E cost
(
E(p),P

)
= E




K∑

k=1

∑

i∈Pk
(εi −Mk)

2


 (6.8)

=
K∑

k=1

∑

i∈Pk
E ε2i − 2 E [εiMk] + E

[
M2
k

]
. (6.9)

Since the partitions of P are disjoint, there are exactly n terms of the form

E ε2i in total, with total expected value nσ2:

E cost
(
E(p),P

)
= nσ2

K∑

k=1

∑

i∈Pk
−2 E [εiMk] + E

[
M2
k

]
(6.10)

Now for each partition Pk,
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E [εiMk] = E


ε

2
i +

1

|Pk|
∑

j∈Pk
j 6=i

εiεj


 (6.11)

= E ε2i +
1

|Pk|
∑

j∈Pk
j 6=i

( E εi)( E εj) (6.12)

= σ2 (6.13)

Furthermore,

E
[
M2
k

]
= E




 1

|Pk|
∑

i∈Pk
εi




 1

|Pk|
∑

j∈Pk
εj




 (6.14)

= E




1

|Pk|2
∑

i∈Pk


ε

2
i +

∑

j∈Pk
j 6=i

εiεj





 (6.15)

=
1

|Pk|2


∑

i∈Pk
E ε2i + 0


 (6.16)

=
1

|Pk|
σ2 (6.17)

Thus we have that

E cost
(
E(p),P

)
= nσ2 +

K∑

k=1

∑

i∈Pk

(
− 2σ2

|Pk|
+

σ2

|Pk|

)
(6.18)

= nσ2 +
K∑

k=1

(
−σ2

)
(6.19)

= (n−K)σ2 (6.20)

which completes the proof.
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Often, in our analysis, we are looking at the difference of two cost func-

tions. For that, we have the following handy corollary.

Corollary 6.1.4. Expected Difference of Cost Functions Let E(p) =

{ε1, ε2, ..., εn} be a set of n points such that for i = 1, 2, ..., n,

A. E εi = 0.

B. E ε2i = σ2, 0 < σ ≤ C <∞.

Suppose P,Q ∈PnK . Then

E

[
cost

(
E(p),P

)
− cost

(
E(p),Q

)]
= 0 (6.21)

Proof. The proof follows from the previous theorem.

E

[
cost

(
E(p),P

)
− cost

(
E(p),Q

)]
= (n−K)σ2 − (n−K)σ2 (6.22)

= 0 (6.23)

We have one final set of results concerning properties of squared error

cost of random variables. The following theorems, while perhaps intuitively

obvious, allow us to formally prove the impossibility theorem in the next

section. The main idea is to prove that the probability that the cost of two

nonrandom partitions over independent random variables is always less than

one. This is a necessary step in applying the central limit theorem as part

of the impossibility theorem.

Lemma 6.1.5. Let X (p) = x1, x2, ..., xn be a set of p points, and suppose

P,Q ∈PnK , P 6= Q. Then there exists a symmetric n×n matrix B = [bij ]

such that

cost
(
X

(p),P
)
− cost

(
X

(p),Q
)

= xTBx (6.24)

where x = (x1, x2, ..., xn).
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Proof. Recall that the squared error cost function can be expressed in terms

of the difference between points (theorem 1.1.5):

cost
(
E(p),P

)
=

1

2

∑

k

1

|Pk|
∑

i,j∈Pk
(xi − xj)2 (6.25)

=
∑

i

x2
i −

∑

k

1

|Pk|
∑

i,j∈Pk
xixj (6.26)

=
∑

i,j

aPijxixj (6.27)

where

aPij =





(|Pk| − 1)/ |Pk| i = j; i, j ∈ Pk
− 1/ |Pk| ∃ k s.t. i, j ∈ Pk, i 6= j

0 otherwise

(6.28)

The same is true for partition Q. We can re-express this above in matrix

form, where AP = aPij and likewise for AQ .

cost
(
E(p),P

)
= xTAP x (6.29)

cost
(
E(p),Q

)
= xTAQx (6.30)

Note that aPij = aPji, so AP and AQ are symmetric. The difference between

the two cost functions can then be expressed as:

cost
(
E(p),P

)
− cost

(
E(p),Q

)
(6.31)

= xTAP x− xTAQx (6.32)

= xT (AP −AQ )x (6.33)

Thus the theorem is proved.

Now that we have shown these basic properties of the squared error cost

146



function, we just need to formalize our notion of noisy data. We will then

be ready to present our main clustering impossibility theorem.

6.1.3 Noisy Data

In this section, we present a formal definition of noisy data, or, more cor-

rectly, the class of noise generating distributions.

Definition 6.1.6. Noise Generating Distributions

Let F be the set of all sequences of distributions F = (F1, F2, ...) that

satisfy the following properties:

A. ∀ q ∈ {1, 2, 3, ...}, if εq ∼ Fq, then E εq = 0.

B. ∀ q ∈ {1, 2, 3, ...}, if εq ∼ Fq, then E ε4q = ρq, 0 < Lq ≤ ρq ≤ Uq <∞.

The fourth moment is necessary to govern the convergence of the second

moment of the squared error cost function. Note that such a constraint

provides similar bounds on all the lower order moments.

One of the key steps in the theorem is showing that a sequence of simi-

larly defined random variables functions converges to a normal distribution

centered at 0. Such a result is significant in its own right, so we present it,

and another useful lemma, in the following section.

6.1.4 Lemmas Concerning the Central Limit Theorem

Lemma 6.1.7. Let Zq, q = 1, 2, ... be a sequence of random variables with

EZq = rq, where rq is a non-random sequence such that

1√
p

p∑

q=1

rq → 0 as p→∞. (6.34)

Suppose E
[
Z2
q

]
= σ2

q , 0 < L ≤ σq ≤ U < ∞. Let Sq = Z1 + Z2 + · · · + Zq

and c2q = σ2
1 + σ2

2 + · · ·+ σ2
q Then

Sn
cn

D−→ ϕ as n→∞ (6.35)

where ϕ is a random variable having a standard normal distribution.
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Proof. Let Fq be the distribution function of Zq − rq.
The proof follows from the Lindeberg-Feller conditions on the central

limit theorem [ADD99]. Let Fq be the distribution function of Zq, and let

µn =
n∑

q=1

rq (6.36)

If, ∀ ε > 0,

LFn =
1

c2n

n∑

q=1

∫

{x : |x−rq|≥εcn}
(x− rq)2dFq(x)→ 0 as n→∞, (6.37)

then Lindeberg’s theorem [ADD99] gives us

Sn − µn
cn

D−→ ϕ as n→∞ (6.38)

We later show that the µn term drops out in the limit.

The strategy now in showing that this condition is satisfied is to upper

bound the expression and show that this bound goes to zero.

Let s2n = mean
q∈{1,2,...,n}

σ2
q . Then

LFn =
1

s2nn

n∑

q=1

∫

{x : |x−rq |≥εsn
√
n}

(x− rq)2dFq(x) (6.39)

≤ 1

s2nn
n max
q∈{1,2,...,n}

∫

{x : |x−rq|≥εsn
√
n}

(x− rq)2dFq(x). (6.40)

Now we know that σq is bounded below by L, and the integral is always

positive, so

LFn ≤
1

L2
max

q∈{1,2,...,n}

∫

{x : |x−rq |≥εcn}
(x− rq)2dFq(x) (6.41)

≤ 1

L2
max

q∈{1,2,...,n}

∫

{x : |x−rq|≥εL
√
n}

(x− rq)2dFq(x) (6.42)
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Now for all rq, {x : |x− rq| ≥ εL
√
n} ց ∅ as n→∞, so ∀ q,

∫

{x : |x−rq|≥εL
√
n}

(x− rq)2dFq(x) → 0 as n→∞. (6.43)

Thus

1

L2
max

q∈{1,2,...,n}

∫

{x : |x−rq|≥εL
√
n}

(x− rq)2dFq(x) → 0 as n→∞. (6.44)

so

Sn − µn√
nsn

D−→ ϕ as n→∞. (6.45)

Note that this is equivalent to equation (6.38). However, by assumption,

1

sn

µn√
n
→ 0 as n→∞, (6.46)

so equation (6.45) reduces to

Sn
cn

D−→ ϕ as n→∞. (6.47)

proving the lemma.

Lemma 6.1.8. Let Zq be a sequence of random variables such that

p∑

q=1

Zq
σ
√
p

D−→ ϕ (6.48)

where ϕ ∼ N (0, 1) and σ is some constant. Then as p→∞,

P

(∑p

q=1
Zq ≥ 0

)
→ 1

2
. (6.49)

Proof. We can rewrite the expression in equation (6.49) as

P

(∑p

q=1
Zq ≥ 0

)
= P

(
1√
p

∑p

q=1
Zq ≥ 0

)
(6.50)
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However, by assumption,

p∑

q=1

Zq
σ
√
p

D−→ ϕ. (6.51)

Thus by definition of convergence in distribution,

P

(∑p

q=1
Zq ≥ 0

)
→ P(ϕ ≥ 0). (6.52)

But ϕ comes from a distribution that is symmetric about 0, so

P(ϕ ≥ 0) =
1

2
(6.53)

and the statement is proved.

We now have everything in place to present our clustering impossibility

theorem.

6.1.5 Impossibility Theorem for Clustering in High

Dimensions

We now present our result limiting the meaningfulness of clustering in high

dimensions in the following theorem.

Theorem 6.1.9. Limits of Clustering in High Dimensions.

Suppose X (p) = x
(p)
1 ,x

(p)
2 , ...,x

(p)
n , p = 1, 2, .... is a given sequence of

sets of n points with increasing dimension p and such that x
(p)
q = x

(r)
q for

all p 6= r and q ≤ min {p, r}.
Suppose there exists a sequence of points u(p) so that ∀ i, j ∈ {1, 2, ..., n},

(x
(p)
i − u(p))T (x

(p)
j − u(p)) ∈ o(

√
p) (6.54)

Next, suppose Fq ∈ F, q = 1, 2, ... is a sequence of noise generating distri-

butions. Let ε
(p)
iq ∼ Fq for i = 1, 2, ..., n, with ε

(p)
i = (εi1, εi2, ..., εip), and

define
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Y
(p)
i = x

(p)
i + ε

(p)
i (6.55)

Y
(p) = (Y

(p)
1 ,Y

(p)
2 , ...,Y(p)

n ). (6.56)

Finally, suppose P,Q ∈ PnK , P 6= Q, are two different partitions of n

points. Then

P

(
cost

(
Y

(p),P
)
≤ cost

(
Y

(p),Q
))
→ 1

2
(6.57)

as p→∞.

Proof. The structure of the proof is to show that the difference the cost

functions two cost functions divided by
√
p converges to a standard nor-

mal distribution as p → ∞. A random variable from this distribution has

equal probability of being negative or positive, so one cost function has a

probability of 1
2 of being greater than the other.

We begin by setting up the notation and re-expressing the difference in

cost functions, then show that the terms either drop out or together converge

in distribution to a normal.

Continuing, recall that

P = (P1, P2, ..., PK) (6.58)

Q = (Q1, Q2, ..., QK) (6.59)

Let u(p) be a sequence in p of p-dimensional points1 such that ∀ i, j ∈
{1, 2, ..., n},

(x
(p)
i − u(p))T (x

(p)
j − u(p)) ∈ o(

√
p), (6.60)

as guaranteed by the assumptions. For convenience, define

1The u
(p) terms here allow us to accomidate sequences of points with a non-zero mean.
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x′(p)
i = x

(p)
i − u(p) (6.61)

X
′(p) = x′(p)

1 ,x′(p)
2 , ...,x′(p)

n (6.62)

Y′(p)
i = x′(p)

i + ε
(p)
i (6.63)

Y
′q = (Y′(p)

1 ,Y′(p)
2 , ...,Y′(p)

n ) (6.64)

By corrolary 1.1.7, the cost function is invariant to such shifts, so

cost
(
Y

′q,P
)

= cost
(
Y

(p),P
)

(6.65)

cost
(
Y

′q,Q
)

= cost
(
Y

(p),Q
)

(6.66)

Thus proving the theorem for the shifted version is sufficient. Now, for

convenience, define the following terms:

nPk = |Pk| (6.67)

nQk = |Qk| (6.68)

MP
k = mean

i∈Pk
ε

(p)
i =

1

nPk

∑

i∈Pk
ε

(p)
i (6.69)

MQ
k = mean

i∈Qk
ε

(p)
i =

1

nQk

∑

i∈Qk
ε

(p)
i (6.70)

µP
k = mean

i∈Pk
x′(p)
i =

1

nPk

∑

i∈Pk
x′(p)
i (6.71)

µQ
k = mean

i∈Qk
x′(p)
i =

1

nQk

∑

i∈Qk
x′(p)
i (6.72)

By theorem 1.1.3, the cost function is separable into components. Further-

more, by assumption, these components are identical for different p. Thus

we can define a sequence of random variables Zq as the cost difference of the

qth component. Let
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Zq = cost
(
Y

′q
q,P

)
− cost

(
Y

′q
q,Q

)
. (6.73)

Note that given this definition, if we can show that P

(∑p
q=1 Zq ≥ 0

)
→ 0

as p → ∞, then P
(
cost

(
Y (p),P

)
≥ cost

(
Y (p),Q

))
→ 1

2 and the theorem

is proved. Our strategy is to do exactly this, relying heavily on lemma 6.1.7

and lemma 6.1.8.

Now lemma 6.1.5 allows us to re-express the differences in cost functions

as a matrix equation. Let B be a symmetric matrix such that

Zq =
(
y′
:q

)T
By′

:q = cost
(
Y

′q
q,P

)
− cost

(
Y

′q
q,Q

)
(6.74)

Note that B depends only on the partitioning, so it will be the same for all

q. We can expand this expression out:

Zq =
(
y′
:q

)T
By′

:q (6.75)

= (x′
:q + ε:q)

TB(x′
:q + ε:q) (6.76)

= x′
:q
T
Bx′

:q + εT:qBε:q − 2x′
:q
T
Bε:q (6.77)

We now show that Zq satisfies the assumptions of lemma 6.1.7 and the

theorem follows directly.

The expectation of Zq is just

EZq = x′
:q
T
Bx′

:q + E
[
εT:qBε:q

]
− 2x′

:q
T
B( E ε:q) (6.78)

(6.79)

Now

E
[
εT:qBε:q

]
= E

[
cost

(
E(p),P

)
− cost

(
E(p),Q

)]
= 0 (6.80)
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by corrolary 6.1.4. This leaves us with

EZq = x′
:q
T
Bx′

:q − 2x′
:q
T
B( E ε:q) (6.81)

= x′
:q
T
Bx′

:q (6.82)

as E εiq = 0 ∀ i, q. Now, to satisfy the conditions of lemma 6.1.7, we need

to show that

1√
p

p∑

q=1

x′
:q
T
Bx′

:q → 0 as p→∞. (6.83)

Now we have by assumption that

x′Tx′

√
p
→ 0 as p→∞ (6.84)

so also

(
max
i,j

bij

)
x′Tx′

√
p
→ 0 as p→∞. (6.85)

Thus equation (6.83) is proved. We now show that 0 < L ≤ E
[
Z2
q

]
≤ U <

∞, which is the other condition in lemma 6.1.7.

Since Var [X] = E
[
X2
]
− ( EX)2, showing that the variance is lower

and upper bounded is sufficient to say that the second moment is also upper

and lower bounded. This allows us to ignore the nonrandom x′
:q
T
Bx′

:q term

as it does not affect the variance.

Now

εT:qBε:q − 2x′
:q
T
Bε:q = (ε:q − 2x′

:q)
TBε:q (6.86)

=
∑

i,j

bij(εiq − 2xiq)εjq (6.87)

For i 6= j, εiq and εjq are independent, and Var [εiq] ≤ U < ∞ for all i and

q, so ∃U ′ such that
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Var [(εiq − 2xiq)εjq] ≤ U ′ <∞ (6.88)

If i = j and bij 6= 0, we have by assumption that E

[
ε2iq

]
≤ U <∞, so that

term is bounded.

Furthermore, B 6= 0, so bij 6= 0 for at least one pair of indices i and

j, and Var [εiq] ≥ L > 0 for all i and q. Because upper bounds exist for

each term in equation (6.87), and a lower bound exists for at least one term,

there exist bounds L′′ and U ′′ such that

0 < L′′ ≤ Var
[
εT:qBε:q − 2x′

:q
T
Bε:q

]
≤ U ′′ <∞ (6.89)

⇔ 0 < L′′ ≤ Var [Zq] ≤ U ′′ <∞ (6.90)

Thus the conditions of lemma 6.1.5 are satisfied.

From lemma 6.1.5, we thus have that

1√
p

p∑

q=1

Zq
sp

D−→ ϕ as p→∞ (6.91)

where s2p =
∑p

q=1 σ
q
q . This also satisfies the conditions of lemma 6.1.8; thus

P

(∑p

q=1
Zq ≥ 0

)
→ 1

2
. (6.92)

But

p∑

q=1

Zq = cost
(
Y

(p)
q ,P

)
− cost

(
Y

(p)
q ,Q

)
, (6.93)

so the theorem is proved.

To relate the above theorem to several practical situations, we also

present the following corollary:

Corollary 6.1.10. Let X (p) be a p dimensional dataset with n components

drawn from the same random process in which only a finite set of dimension
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components C ⊂ {1, 2, ...} are non-random. Let the components C have

no noise, and let the components CC be drawn from a noise generating

distribution. Let P be the optimal partitioning of the data considering only

the non-random components, and let Q be any other partitioning. Then

P

(
cost

(
X (p),P

)
− cost

(
X (p),Q

)
≤ 0
)
→ 1

2
(6.94)

as p→∞.

Proof. The proof follows directly from theorem 6.1.9. Because there are

only finitely many non-noisy components of X (p), we have trivially that

(
x

(p)
i

)T
x

(p)
j ∈ o(

√
p). (6.95)

for all x
(p)
i ,x

(p)
j ∈ X (p). Furthermore, by the Kolmogorov 0-1 law, setting

finitely many components of the sequence

cost
(
Y

(p),P
)
− cost

(
Y

(p),Q
)
, p = 1, 2, ... (6.96)

to 0 cannot affect the convergence of the series. The theorem is proved.

6.2 Behavior of the Averaged Assignment Matrix

This section concerns general results on the partial membership matrix, i.e.

what happens under various assumptions on the inputs.

For convenience, we sometimes use the functional notation for Φ (equa-

tion (3.6)). Restricting ourselves to hard clusterings, we have

φij = ψj(di, θ) =

∫
I{dijλj ≤ diℓλℓ ∀ ℓ 6= j}π(λ; θ)dλ (6.97)

Alternately, we extend some of our proofs to a more general form of Φ,

where
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φij = ψj(di,gi, θ) =

∫
I{dijλj + gij ≤ diℓλℓ + giℓ ∀ ℓ 6= j}π(λ; θ)dλ

(6.98)

The advantage of using this notation is that it can also apply when the

priors between different λℓ’s differ by a scaling parameter and a constant.

In other words, if

πℓ(λℓ)
D
= π

(
λℓ − cℓ
βℓ

)
(6.99)

for some constants βℓ and cℓ, then

∫
1djλj≤dℓλℓ ∀ ℓ6=j

∏

ℓ

πℓ(λℓ)dλℓ

=

∫
1djβjλj+cjdj≤dℓβℓλℓ+cℓdℓ ∀ ℓ6=j

∏

ℓ

π(λℓ)dλℓ (6.100)

which differs only notationally from equation (6.97). Thus the proofs that

use this form will also apply to the location exponential prior and the shifted

Gamma prior from chapter 3 where the slope or scale parameters differ

between clusters.

Because our proofs often treat di, the input vector of point-to-centroid

distances, as a random vector Di, we denote the random form of φij as Hij .

Formally,

Hij = ψ(Di,Gi, θ) (6.101)

Alternately, we generalize some of the results to the case when ψj takes both

a distance measure di and additive parameters gi.
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6.2.1 Convergence of Φ as a function of Random Variables

We present here a lemma proving that the entries of our partial member-

ship matrix Φ, as given by equation (3.1), converge asymptotically to non-

random values under mild assumptions on the inputs. We use more general

version of Φ:

Φ = [φij ]i=1,...,n;j=1,...,K

φij =

∫

Λ
I{dijλj + gij ≤ diℓλℓ + giℓ ∀ ℓ 6= j}π(λ)dλ (6.102)

For this lemma, we replace the d’s and g’s with converging sequences

of random variables and show that φij will also converge. For notational

conciseness, we omit the i index in the following proof; the result applies for

each row of Φ.

Lemma 6.2.1. Suppose Dj1, Dj2, ... and Gj1, Gj2, ..., j = 1, 2, ...,K, are

sequences of random variables such that

Djp

pα
P−→ δj (6.103)

Gjp −Gℓp
pα

P−→ γjℓ (6.104)

as p→∞ for some δj 6= 0, γjℓ ∈ RRR, and α ∈ RRR. Let

Hjp =

∫
I[λjDjp +Gjp ≤ λℓDℓp +Gℓp ∀ ℓ 6= j]π(λ)dλ. (6.105)

Then if 0 ≤ π(λ) ≤ C <∞ ∀λ ∈ RRRK ,

Hjp
P−→

∫
I[λjδj ≤ δℓλℓ + γjℓ ∀ ℓ 6= j]π(λ)dλ (6.106)

as p→∞.
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Proof. Let SSSj be the function taking two K × K matrices as input and

returning a set on RRRK that is defined by

SSSj
(
[yjℓ]j,ℓ=1,2,...,K , [zjℓ]i,j=1,2,...,K

)
= {λ : λj ≤ yjℓλℓ + zjℓ ∀ ℓ 6= j} .

(6.107)

We can rewrite the indicator function in the definition of Hjp to use this

function:

I{λjDjp +Gjp ≤ λℓDℓp +Gℓp}

= I

{
λj ≤ λℓ

Dℓp

Djp
+
Gℓp −Gjp

Djp

}
(6.108)

= I

{
λ ∈ SSSj

([
Dℓp

Djp

]
,

[
Gℓp −Gjp

Djp

])}
(6.109)

Let

Yp =

[
Dℓp

Djp

]

i,j=1,2,...,K

(6.110)

Zp =

[
Gℓp −Gjp

Djp

]

i,j=1,2,...,K

. (6.111)

Then

Hjp =

∫

λ∈SSSj(Yp,Zp)
π(λ)dλ. (6.112)

Now let

Y∞ = [δℓ/δj ] (6.113)

Z∞ = [γjℓ/δj ] (6.114)

Since Djp > 0 for j = 1, ...,K,
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Yp =

[
Dℓp

Djp

]
=

[
Dℓp/p

α

Djp/pα

]
P−→ [δℓ/δj ] = Y∞ (6.115)

as p→∞. Similarly,

Zp =

[
Gℓp −Gjp

Djp

]
=

[
(Gℓp −Gjp)/pα

Djp/pα

]
P−→ [γjℓ/δj ] = Z∞ (6.116)

as p→∞. Now π(λ) ≤ C <∞ ∀λ ∈ RRRK , so the function

f(Yp,Zp) =

∫

λ∈SSSj(Yp,Zp)
π(λ)dλ (6.117)

is a continuous function of the entries in Yp and Zp. Furthermore, since∫
π(λ)dλ = 1, Hjp ≤ 1. Thus we have

Hjp =

∫

λ∈SSSj(Yp,Zp)
π(λ)dλ P−→

∫

λ∈SSSj(Y∞,Z∞)
π(λ)dλ (6.118)

as p→∞, which completes the proof.

6.3 Asymptotic Behavior of Φ in High

Dimensions

In this section, we both show the theoretical limits of our measure in high

dimensions under certain conditions. Effectively, we argue that if the cluster-

ing is not sensible, then our method will produce a uniform result, indicating

no stability. Ultimately, we examine the case where we hold the number of

points n fixed as we let the dimension p in which the points are located

increase to infinity.

This type of assymptotics has received some attention in the literature

[HMN05, HAK00]; however, it is fairly limited. Perhaps the lack of attention

to this type of assymptotics is due in part to the fact that n points lie in

a subspace of dimension at most n − 1, which, in many cases, means the

results of such assymptotics is not applicable. However, in our case, we are

building our proofs on distances between points, so all of them hold under an
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arbitrary rotation of the coordinate system. This includes the PCA rotation,

which projects the original n p-dimensional points, where p ≥ n, into a n−1

dimensional subspace.

ANOVA Type Data

For these results, we make the ANOVA assumption. Specifically, we assume

that the data is distributed according to a mixture model of K Gaussians

defined by a set of centers µ1,µ2, ...,µK and a corresponding set of diagonal

covariance Σ1,Σ2, ...,ΣK matrices, where Σj = diag
(
σ2
j 1
, σ2

j 2
, ..., σ2

j p

)
and

p is the dimension of the space.

In examining the behavior of the partial membership matrix Φ as the

dimension p increases, we examine the best case scenario regarding the clus-

tering. We assume that the clustering algorithm perfectly partitions the

dataset – that is, we assume that every point in a particular partition ele-

ment has been drawn from the same mixture model component, and every

point drawn from the same component ends up in the same partition. Be-

cause of this one-to-one assumption, we refer to all the points drawn from

a component as a cluster. While both the ANOVA assumption and this are

fairly strong assumptions, and unrealistic in many contexts, they do allow

us to demonstrate some interesting properties of our stability measure.

Throughout this section, we use the notation defined in tables (6.1) and

(6.2). The first table defines general clustering notation, whereas the second

refers specifically to the ANOVA style mixture models we base our results

on.

6.3.1 Asymptotic Behavior of Φ with ANOVA-type

Mixture Models

The following theorems describe the asymptotic behavior of Φ under the

ANOVA assumption, described above, as p→∞. We assume the notational

definitions as given in tables (6.1) and (6.2). Also, for these results, we treat

the elements in Φ as random variables, so we define H
(p)
ij to be the result of
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p The dimension.

X
(p)
i A p-dimensional data point.

Xiq The qth component of X
(p)
i .

N The number of data points in total.
K The number of mixture model components.
Cj The set of the indices for all points drawn from com-

ponent j.
nj The number of points in cluster j.
C A mapping function that gives the index of the point

a cluster is assigned to, i.e. C(i) = j s.t. i ∈ Cj .
i Index used to index data points.
j, ℓ Indices used to index clusters or mixture model com-

ponents.

Table 6.1: Notational conventions used for asymptotic proofs of mixture
models in increasing dimension.

µ(p)
j The mean of the jth mixture component in the un-

derlying distribution.

µ
(p)
jq The mean of the qth dimension of jth mixture com-

ponent in the underlying distribution.
σ2
jq The variance of the qth dimension of the jth mixture

component.
τ2
jq The average variance of the first q dimensions of the

jth mixture component, equal to 1
q

∑q
q′=1 σ

2
jq′

τ2
j The limit of τ2

jq as q →∞.

X̄
(p)
j The empirical mean of the jth cluster in p dimensions,

equal to 1
nj

∑
i∈Cj X

(p)
j .

Table 6.2: Notational conventions used for asymptotic proofs of
ANOVA mixture models.

H
(p)
ij =

∫

λ∈RRRK

π(λ) I

{
λjD

(p)
ij ≤ λℓD

(p)
iℓ ∀ ℓ 6= j

}
dλ. (6.119)

where

D
(p)
ij = ‖X(p)

i − X̄
(p)
j ‖2 (6.120)
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is the distance between the ith data point and the jth cluster center, defined

as a random variable. We use the superscript (p) to indicate the dimension

of the vector. Furthermore, let νjℓ be the distance between the jth and ℓth

mixture component centers:

νjℓ = lim
p → ∞

‖µ(p)
j − µ

(p)
ℓ ‖2√

p
, (6.121)

and let δij be defined in terms of the component properties as follows:

δij =





√
τ2
C(i) − τ2

j /nj j = C(i)
√
τ2
C(i) + τ2

j /nj + ν2
j,C(i) j 6= C(i)

(6.122)

This factor plays a key role in our analysis.

Lemma 6.3.1. As p→∞,

D
(p)
ij√
p

P−→ δij (6.123)

Proof. By definition of the L2-norm, we can rewrite D
(p)
ij /
√
p:

D
(p)
ij√
p

=

√√√√
p∑

q=1

(
Xiq − X̄jq

)2

p
(6.124)

Now, by definition, we know that

Xiq ∼ N
(
µC(i),q, σ

2
C(i),q

)
(6.125)

⇒ X̄C(i),q ∼ N
(
µC(i),q, σ

2
C(i),q/nj

)
. (6.126)

Note that between values of q we have independence. Thus the strong law

of large numbers gives us
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p∑

q=1

(
Xiq − X̄jq

)2

p
P−→ lim

p → ∞

p∑

q=1

E
(
Xiq − X̄jq

)2

p
(6.127)

We will ultimately evaluate this as two cases, when xi is a member of cluster

j and when it is not; the result will be different in the two cases.

Now the square root is a continuous function, so the above implies that

√√√√
p∑

q=1

(
Xiq − X̄jq

)2

p
P−→ lim

p → ∞

√√√√
p∑

q=1

E
(
Xiq − X̄jq

)2

p
(6.128)

Now let

Yi = (Yi1, Yi2, ..., Yip) = X
(p)
i − µ

(p)
C(i) (6.129)

Zj = (Zj1, Zj2, ..., Zjp) = X̄
(p)
j − µ

(p)
j . (6.130)

We now need to worry about two cases – case 1, when j 6= C(i), and case 2,

when j = C(i).

Case 1: j 6= C(i)

Since j 6= C(i), X
(p)
i and µ

(p)
C(i) are independent from X̄

(p)
j . Thus

E
(
Xiq − X̄jq

)2
= E

(
µC(i),q + Yiq − µjq − Zjq

)2
(6.131)

=
(
µC(i),q − µjq

)2
+ 2
(
µC(i),q − µjq

)
( EYiq − EZjq)

+ E (Yiq − Zjq)2 (6.132)

=
(
µC(i),q − µjq

)2
+ EY 2

iq − 2 EYiq EZjq + EZ2
jq (6.133)

=
(
µC(i),q − µjq

)2
+ σ2

C(i),q + σ2
jq/nj (6.134)

We can use this to find the limit of equation (6.124).

164



⇒
D

(p)
ij√
p

P
=

√
1

p

∑p

q=1

(
Xiq − X̄jq

)2
(6.135)

P−→
√
σ2
C(i) + σ2

j /nj +
1

p

∑p

q=1

(
µC(i),q − µjq

)2
(6.136)

=
√
τ2
C(i) + τ2

j /nj + ν2
j,C(i) (6.137)

Case 2: j = C(i)

Now if j = C(i), then X
(p)
i and µ

(p)
j are not independent:

E
(
Xiq − X̄jq

)2
= E

(
Xiq − 1

nj

∑
i′∈Cj Xi′q

)2
(6.138)

= E

(
µjq + Yjq − 1

nj

∑
i′∈Cj µjq + Yi′q

)2
(6.139)

= E

(
Yjq − 1

nj

∑
i′∈Cj Yi′q

)2
(6.140)

= EY 2
jq + 1

nj
E

(∑
i′∈Cj Yi′q

)2
− 2 1

nj
E

[
Yiq
∑

i′∈Cj Yi′q
]

(6.141)

Now Yiq and Yi′q are independent for i 6= i′, and EYiq = 0, so many of these

terms drop out:

⇒ E
(
Xiq − X̄jq

)2
= EY 2

jq + 1
nj

E

[∑
i′∈Cj Y

2
i′q

]
− 2 E

1
nj
Y 2
iq (6.142)

= σ2
jq +

σ2
jq

nj
− 2

σ2
jq

nj
(6.143)

= σ2
C(i),q − σ2

jq/nj . (6.144)

Thus

D
(p)
i,C(i)√
p

P
=
√

1
p

∑p
q=1

(
Xiq − X̄C(i),q

)2
(6.145)

P−→
√
τ2
C(i) − τ2

j /nj . (6.146)
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We now have that

D
(p)
ij√
p

P−→ δij (6.147)

which completes the lemma.

Theorem 6.3.2. Suppose

H
(p)
j =

∫

λ∈RRRK

π(λ) I

{
λjD

(p)
j +G

(p)
j ≤ λℓD

(p)
ℓ +G

(p)
ℓ ∀ ℓ 6= j

}
dλ. (6.148)

Then, as p→∞,

H
(p)
j

P−→
∫

λ∈RRRK

π(λ) I{λjδj ≤ λℓδℓ + νjℓ ∀ ℓ 6= j}dλ (6.149)

Proof. From lemma 6.3.1, we have that Dij/
√
p P−→ δij . The theorem then

follows directly from lemma 6.2.1, and α = 0.5.

6.3.2 An Impossibility Theorem for Φ in High Dimensions

Using these lemmas, we can get a non-trivial impossibility theorem for our

stability measure, essentially saying that unless the distance between cluster

centers grows at a rate Ω
(√
p
)

as the dimension p increases, the partial point

assignment matrix decays to an uninformative uniform.

Theorem 6.3.3. If

‖µ(p)
j − µ

(p)
ℓ ‖2 ∈ o(

√
p) (6.150)

then

H
(p)
ij

P−→ 1

K
(6.151)

as p→∞ and nj →∞.

Proof. Let p→∞ first. We have, by definition, that
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νjℓ = lim
p → ∞

‖µ(p)
j − µ

(p)
ℓ ‖2√

p
= 0. (6.152)

By lemma 6.3.1,

D
(p)
ij√
p

P−→ δij (6.153)

where

δij =





√
τ2
C(i) − τ2

j /nj j = C(i)
√
τ2
C(i) + τ2

j /nj j 6= C(i)
. (6.154)

In the large sample limit, where nj →∞, this becomes

D
(p)
ij√
p

P−→ σ̄C(i) = σ̄ (6.155)

where for notational convenience we drop the i’s as they are constant through

the rest of the proof.

Now by theorem 6.3.2, we have that

H
(p)
ij

P−→
∫

λ∈RRRK

π(λ) I{λjδj ≤ λℓδℓ ∀ ℓ 6= j}dλ

= P(λjδj ≤ λℓδℓ ∀ ℓ 6= j)

= P(λj σ̄ ≤ λℓσ̄ ∀ ℓ 6= j)

= P(λj ≤ λℓ ∀ ℓ 6= j)

which is just the probability that λj is the lowest in a set of K i.i.d. random

variables. This probability is 1/K.
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6.4 Prior Behavior

Now that we have this result, we can make some useful observations relating

to the type of prior we should use. The next theorem shows that we can

design a prior capable of making the partial membership of the indicator

function sensible provided that the distances themselves are distinguishable.

Theorem 6.4.1. Suppose that dj < dℓ ∀ ℓ 6= j. Then ∀ η > 0, a prior π

exists such that

φi,C(i) − max
ℓ6=C(i)

φi,ℓ ≥ 1− ε (6.156)

for ε sufficiently small.

Proof. The proof follows directly from lemma 3.6.1.

Let π(λ) be the location exponential distribution. Recall that ∀ ε ∈
(0, 1) and S ⊂ {1, ...,K}, if j /∈ S and dk ≥ dj

(
1− log ε

θ

)
for all k ∈ S, then∑

k∈S φk(d,θ) ≤ ε. Thus, if we using the location exponential prior with

the slope θ set so

θ ≥ (− log ε)

(
1

dk
dj
− 1

)
, (6.157)

we have that

∑

ℓ6=j
φℓ(d,θ) ≤ ε (6.158)

If this is the case, we know that

φi,C(i) − max
ℓ6=C(i)

φi,ℓ ≥ 1− ε, (6.159)

which completes the proof.
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Chapter 7

Additional Relevant

Research

7.1 Validation Algorithms involving Reclustering

In this section we consider options for efficiently calculating equation (3.1)

when the perturbation introduced requires the data to be reclustered. In

this case, we present an algorithm that may enable such a calculation to

be computationally feasible. Our starting assumption is that the compu-

tational expense of initially creating a clustering solution greatly outweighs

the computational expense of modifying a clustering with a close value of

the perturbation hyperparameter. While the motivating case for the algo-

rithm we propose is from clustering, other functions in this class are easy

to imagine. For example, many can be evaluated only through an iterative

procedure where an approximate solution can quickly be refined to one with

a desired level of accuracy. Therefore, it makes sense to look at the general

formulation of the problem instead of the specific motivating example of

clustering.

The problem of calculating equation (3.1) is essentially the problem of

calculating the normalizing constant of a posterior distribution, which we

formulate as
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Z =

∫
s(θ)p(θ)dθ. (7.1)

The solution to this problem is a difficult problem, especially in high dimen-

sions, and it has received some attention in the Monte Carlo literature.

7.1.1 Monte Carlo Abstraction

As Monte Carlo methods are applied to increasingly complex and non-

standard functions, designing MC algorithms that take the complexities into

account are increasingly important. Additionally, one of the more challeng-

ing problems for which MC is used is evaluating normalizing constants in

high-dimensional space. Numerous techniques for doing so have been pro-

posed, including kernel density based methods, importance sampling meth-

ods, and using the harmonic mean [Dou07]. By and large, these meth-

ods break down in higher dimensions, but bridge sampling, path sampling

[GM98], and linked importance sampling [Nea05] have shown significant im-

provements. Even so, it is still an open problem and will likely remain so

for some time.

The algorithm we propose is a modification of path sampling. In section

section 7.1.2, we review path sampling and how the method can be used to

estimate the value of a normalizing constant. In section 7.1.2 we describe

sweep sampling as an extension to path sampling, present computational

results in 7.1.3, and discuss the strengths and limitations of path sampling

in 7.1.4.

7.1.2 Evaluating the Normalizing Constant

Of the many proposed Monte Carlo techniques for evaluating Z =
∫
γ(θ)dθ,

path sampling [GM98] remains one of the most robust. Most other methods,

including kernel-based methods, simple importance sampling, or harmonic

mean techniques, break down in high dimensions; often the variance of the

result increases exponentially with the number of dimensions.
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Path Sampling

The idea behind path sampling is to start from a distribution p0(θ), from

which we can readily sample and for which we know the normalizing con-

stant Z0. We then construct a smooth path from p0(θ) to the target dis-

tribution p1(θ), requiring the probability to be nonzero for all θ ∈ Θ and

α ∈ [αstart, αend]. For example, the geometric path – which we employ later

in this paper – is

γ(θ|α) = p0(θ)
1−αp1(θ)

α (7.2)

where we index the path by α ∈ [0, 1] and denote the (unnormalized) dis-

tribution along the path by γ(θ|α). Given such a path, the log ratio of the

two normalizing constants is given by the path sampling identity:

λ = log
Z(α = αend)

Z(α = αstart)
=

∫ αend

αstart

∫

Θ

[
d

dα
log γ(θ|α)

]
π(θ|α)dθ dα

=

∫ αend

αstart

G(α)dα (7.3)

where π(θ|α) = γ(θ|α)/Z(α) is the normalized version of γ(θ|α), i.e.

∫
π(θ|α)dθ = 1. (7.4)

Note that the geometric path as described in equation (7.2) uses αstart = 0

and αend = 1.

To estimate (7.3) using Monte Carlo, we first break the integral over α

into a set L discrete values:

A = {αstart = α(1) < α(2) < ... < α(L) = αend.} (7.5)

For most applications, a uniformly spaced grid is sufficient, though [GM98]

investigates sampling the α(j) from an optimal prior distribution p(α).
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Sampling

Given an α(j) ∈ A, we can estimate G(α(j)) in equation (7.3) by obtaining

N i.i.d. samples from π(θ|α = α(j)) and evaluating

Ĝ(α(j)) =
1

N

N∑

i=1

d

dα
log γ(θ(i)|α)

∣∣∣∣
α=α(j)

(7.6)

In general, we can only sample from p(θ|α = αstart), but we can obtain

i.i.d. samples for p(θ|α(j)) by constructing an MCMC chain from γ(θ|α =

αstart) to γ(θ|α = αend) that redistributes the samples from p(θ|α(j−1))

according to p(θ|α(j)) using a Metropolis-Hastings random walk [AdFDJ03].

We can then obtain an estimate of λ̂ by performing numerical integration

on the sequence Ĝ(α(1)), Ĝ(α(2)), ..., Ĝ(α(L)). Numerous possible methods

exist for doing this, e.g. trapezoidal or cubic spline integration.

Sweep Sampling

Here we propose here an extension to path sampling that allows for com-

putationally expensive distributions. We can divide the region Θ into R

distinct subregions Θ1,Θ2, ...,ΘR, allowing us write equation (7.3) as:

λ =
∑

r

∫ αend

αstart

∫

Θr

[
d

dα
log γ(θ|α)

]
π(θ|α)dθdα. (7.7)

where notationally, r indexes the regions. Furthermore, let ρ(θ) denote the

index of the region θ is in (i.e. ρ(θ) = r ⇔ θ ∈ Θr).

Informally, the idea behind sweep sampling is to hold the regions Θr

at the proposal distribution until the target distribution becomes computa-

tionally feasible. Initially, at α = αstart, we define Θ1 as a given collection

of one or more seed points where s(θ) has been solved. As soon as we define

Θr, we start the region on a path to the target distribution. We store a

solution to s(θ) for θ ∈ Θr, which allows s(θ) to be computationally feasible

for θ ∈ Θr+1. This “domino effect” causes the transition region to sweep

through Θ, hence the name.
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Formally we can thus define our terms (table 7.1):

P(α): The set of all regions still at the proposal distribution
(i.e. θ ∈ P(α)⇒ γ(θ|α) ∝ p(θ)).

Q(α): The set of all regions currently in transition from the
prior to the target.

T (α): The set of all regions that have arrived at the target dis-
tribution (i.e. θ ∈ T (α)⇒ γ(θ|α) ∝ s(θ)p(θ)).

tr: The value of α at which region r begins transitioning
from the proposal to the target.

αr: The local value of alpha, α− tr.
C(α): A global constant factor attached to the proposal, ad-

justed to regulate the flow of particles across the transi-
tion region (discussed in section 7.1.2).

cr: The value of C(α) when region r begins transitioning (i.e.
cr = C(tr)).

Table 7.1: The terms used in this paper.

Without loss of generality, we assume a path length of 1 for each indi-

vidual region; in other words, γ(θ ∈ Θr|α = tr) = crp(θ) and γ(θ ∈ Θr|α =

tr + 1) = s(θ)p(θ). Allowing each region to follow a geometric path from

proposal to target, we can define γ(θ|α) ∝ π(θ|α) as

γ(θ|α) =





C(α)p(θ) θ ∈ P(α)

s(θ)αrc1−αrr p(θ) θ ∈ Θr ⊆Q(α)

s(θ)p(θ) θ ∈ T (α)

(7.8)

By breaking Θ into the proposal, transition and post-transition regions

as and sliding the interval of the transition region to [0, 1], we can express

(7.3) as

λ =
∑

r

∫ 1

0
Gr(αr)dαr +

∫ tr

0
Hr(α)dα (7.9)

where d
da log γ(θ|α) = 0 in the post-transition region and
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Gr(αr) =

∫

Θr

log
s(θ)

cr
π(θ|α = αr + tr)dθ (7.10)

Hr(α) =

∫

Θr

[
d

dα
logC(α)

]
π(θ|α)dθ (7.11)

We can obtain a Monte Carlo estimate of (7.9) as described in section

(7.1.2) using the same technique as for regular path sampling. We construct

the sequence A = {α(1), α(2), ..., α(L)} as in equation (7.5) on the interval

[αstart, αend] = [0, 1+maxr tr]. At each value of α(j), we can estimate (7.10)

and (7.11) using MC:

Ĝr(αr) =
1

N

∑

i:θ(i)∈Θr

log
s(θ(i))

cr
(7.12)

Ĥr(α) =
Nr

N

d

da
logC(a)

∣∣∣∣
a=α

(7.13)

where Nr denotes the number of samples from Θr. We can then evaluate λ

by summing over the regions for each α(j) and numerically integrating the

resulting sequence.

Defining the Subregions

Because we do not know beforehand the precise behavior of the cost func-

tion and/or the geometry of the target distribution, we cannot, in general,

determine the regions Θ1, ...,ΘR beforehand. If we assume that the cost of

moving to closer points is usually less than or equal to the cost of moving to

further points, then we can define each region in terms of a set ϑr of fixed

points. Informally, a point θ is in region r if it is closer to at least one point

in ϑr than those of any other region. Formally,

θ ∈ Θr ⇔ argmin
φ∈ϑ1∪ϑ2∪...

d(θ, φ) ∈ ϑr (7.14)

where d(·, ·) is the distance metric. This will allow us to use Monte Carlo
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samples to define new regions. Specifically, ϑr can be a non-empty set such

that

ϑr ⊆ {θ(i) : θ(i) ∈ P(α), cost(θ(i), φ ∈ ϑ1:r−1) ≤ CMax} (7.15)

where the user-specified parameter CMax sets the maximum cost the algo-

rithm will consider between a current and a new evaluation of s(θ), θ(i) is

an existing MC particle, and ϑ1:r is shorthand for ϑ1 ∪ ϑ2 ∪ ... ∪ ϑr. In

our algorithm, we defined a new region at each α(j) using any particles not

previously reachable. Specifically,

ϑr+1 =

{
θ(i) : θ(i) ∈ P(α(j)),

∀φ ∈ ϑ1:r−1 cost(θ(i), φ) > CMax

∃φ ∈ ϑ1:r cost(θ(i), φ) ≤ CMax

}
.

(7.16)

If no such particles exist, we wait until some particles satisfy (7.16) to define

a new region. Furthermore, because we use a nearest neighbor search to

determine which region a particle is in, storing a solution to s(θ) for each

point in ϑr makes it efficient to calculate s(θ) for any MC particles in s(θ).

Calculating c(α)

While the vanilla version above method will work fine if s(θ)π(θ) is roughly

the same magnitude as π(θ), problems may arise if the target distribution is

several orders of magnitude different then the proposal. When this happens,

a disproportional number of samples will either leave or remain in P(α).

We thus propose the following adaptive method as an attempt to solve this

problem.

We can chose C(α), the scaling factor of the pre-transition region to

everything else, arbitrarily. We thus construct a function that attempts to

hold the average probability in the pre-transition region at roughly the same

value as that in the post-transition regions. Specifically, this means:
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1

|P(α)|C(α)

∫

P(α)
p(θ)dθ ≃ 1

|T (α)|

∫

T (α)
s(θ)p(θ)dθ (7.17)

where |A| =
∫
A dθ denotes size. Assuming P(α) 6= ∅ and T (α) 6= ∅, then

we can construct an online estimate C̃(α = a) from (7.17) as follows:

log C̃(α = a) = log
|T (a)|

∫
P(a) γ(θ|α = a)dθ

|P(a)|
∫
T (a) p(θ)dθ

(7.18)

= log

∫
P(a) γ(θ|α = a)dθ
∫
P(a) γ(θ|α = 0)dθ

+ log
|T (a)|
|P(a)|

∫
P(a) p(θ)dθ∫
T (a) p(θ)dθ

(7.19)

= λ(a) + ω(a) (7.20)

where

ω(a) = log
|T (a)|
|P(a)|

∫
P(a) p(θ)dθ∫
T (a) p(θ)dθ

(7.21)

and λ(a) is just the log ratio of the normalizing constants of the post-

transition region. Restricting equation (7.9) to T (a), we have

λ(a) =
∑

r:Θr⊆T (a)

∫ 1

0
Gr(αr)dα+

∫ tr

0
Hr(α)dα. (7.22)

Note that in (7.22) tr ≤ a−1 as all regions in T have reached the target. We

can thus estimate using values of Gr(αr) and Hr(α) already available. Fur-

thermore, we can estimate ω(α) by sampling N{U} particles from Un(()Θ)

and N{Pr} particles from Pr(Θ). An MC estimate for ω(a) is then:

ω̂(a) = log
N

{U}
P(a) + 1

N
{U}
T (a) + 1

N
{Pr}
T (a) + 1

N
{Pr}
P(a) + 1

(7.23)
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Dim N CMax True λ λ from PS SS λ (best) SS λ (avg) SS λ (worst)
2 400 0.1 -1.4794 -1.5711 -1.4927 -1.5182 -1.5409
3 600 0.15 -2.2191 -2.3301 -2.2699 -2.2953 -2.3109
5 1000 0.25 -3.6986 -4.0149 -3.886 -3.9502 -3.9865
8 1600 0.4 -5.9177 -6.6576 -6.3333 -7.1453 -9.4663
10 2000 0.5 -7.3972 -8.5057 -7.926 -10.3783 -12.9788
15 3000 0.75 -11.0957 -13.0993 -12.2428 -13.514 -17.2248
20 6000 2 -14.7943 -17.6714 -17.3069 -17.3296 -17.3556
30 9000 3 -22.1915 -26.7143 -25.5913 -25.6584 -25.7884

Table 7.2: The results for the target distribution with C(α) = 1.

where we add 1 to each term to make the ratio well defined if one quantity

goes to zero.

In estimating both the final λ̂ or λa, we can use simple numerical differ-

entiation on the sequence A to evaluate d
dαC(α).

7.1.3 Computational Results

To test the accuracy of sweep sampling, we started with a uniform distribu-

tion as the proposal and used a (transition) path length of 50 (we found that

results compared similarly at other path lengths). We generated a target

distribution by starting with a spherical multivariate normal distribution

centered at the origin and with σ2 = 0.5. We then added 100 n-dimensional

hypercubes with side-length 0.25 randomly to the distribution. This allowed

us to choose the dimension and structure of the target distribution while still

allowing us to compute
∫
s(θ)p(θ)dθ exactly.

We compared path sampling with the geometric path (equation 7.2) with

sweep sampling at a number of dimensions and found that in many cases

sweep sampling gave comparably accurate results. Because MATLAB did

not have the proper data structures (such as dynamic kd-trees) for parts of

the sweep sampling algorithm, we could not accurately compare execution

times. We defined the cost simply as the squared L2 distance. Where

we found sweep sampling tended to break down was in how we defined new

regions; as the dimension of the space increased, the number of total particles

needs to increase exponentially to achieve a comparable rate of growth. We

offset this by increasing the maximum cost, but it remains an issue and area

for further study.

Various results are shown in 7.3. The results for path sampling are the
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Dim N CMax True λ λ from PS SS λ (best) SS λ (avg) SS λ (worst)
2 400 0.1 -1.4794 -1.5711 -1.4927 -1.5028 -1.3655
3 600 0.15 -2.2191 -2.3301 -2.2699 -2.2953 -2.3109
5 1000 0.25 -3.6986 -4.0149 -3.602 -3.9118 -3.9747
8 1600 0.4 -5.9177 -6.6576 -5.7327 -6.466 -7.722
10 2000 0.5 -7.3972 -8.4789 -7.4203 -7.749 -8.0961
15 3000 0.75 -11.0957 -13.0613 -10.0865 -10.1348 -23.8546
20 6000 2 -14.7943 -17.6515 -16.802 -17.0037 -17.2968
30 9000 3 -22.1915 -26.7133 -25.4506 -25.6692 -25.8925

Table 7.3: The results for the target distribution with C(α) dynamically
updated.

average of two cases, as repeated results were very similar. We ran the

sweep sampling tests 10 times for 2-15 dimensions and 4 times for 20 and 30

dimensions. We threw out obvious outliers (λ several orders of magnitude or

more away from the median) and tabulated the results. In general, updating

the constant dynamically improves the results and yielded the most accurate

results.

The bias toward smaller values of the normalizing constant is likely due

to the sharp “edges” in the target distribution, which pose a challenge for

any method and require significantly more samples to estimate. The purpose

of this simulation was to push the methods to their limits for the purpose

of comparison; we suspect that a real distribution will be better behaved.

7.1.4 Discussion

This method demonstrates that sweep sampling can achieve favorable results

while taking into account one type of computationally difficult distribution.

However, there are still several areas for possible improvement.

For one, the estimate of C is bound to be highly noisy. One possible way

of improving the algorithm, then, is to treat the estimation of C(α(j)) as a

time-series control problem in which C̃(α(j)) is a noisy input. This problem

is well studied, and constructing a Kalman filter [WB01], unscented Kalman

filter [WVDM00], or particle filter could be a fruitful area for further study.
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