
Causal Explorer User’s Manual
Public domain version 1.4 for Matlab (R13 and R14)
Release date: 8/17/2005

Copyright © 2001-2005, Discovery Systems Laboratory (DSL),
Department of Biomedical Informatics,
Vanderbilt University,
2209 Garland Avenue
Nashville, TN 37232, USA

References for citation:

- CF Aliferis, I Tsamardinos, A Statnikov. "Causal Explorer: A Probabilistic Network

Learning Toolkit for Biomedical Discovery." The 2003 International Conference on
Mathematics and Engineering Techniques in Medicine and Biological Sciences
(METMBS '03), June 23-26, 2003.

- A Statnikov, I Tsamardinos, CF Aliferis. "An Algorithm for Generation of Large

Bayesian Networks." Technical report DSL TR-03-01, May 28, 2003, Vanderbilt
University, Nashville, TN, USA.

Authors:

• Constantin F. Aliferis (constantin.aliferis@vanderbilt.edu)
• Ioannis Tsamardinos (ioannis.tsamardinos@vanderbilt.edu)
• Alexander Statnikov (alexander.statnikov@vanderbilt.edu)

Contributors:

• Laura Brown (laura.e.brown@vanderbilt.edu)

o SCA, MMHC, and Greedy Search codes;
o modifications to MMPC, MMMB, and TPDA codes.

• Nafeh Fananapazir (nafeh.fananapazir@vanderbilt.edu)
o original discretization code

Causal Explorer for Matlab R13 (Windows) is located in “Matlab_R13” folder.

Causal Explorer for Matlab R14 is located in “Matlab_R14” folder and requires
execution of the script “set_path.m” prior to use of the toolbox.

 2

Table of Contents

I. Bayesian network learning algorithms toolbox (BNLAT)... 3

I.1. Description.. 3
I.2. Matlab Interface.. 3
I.3. Inputs and Outputs.. 3

A. GS, IAMB, interIAMB, interIAMBnPC, and IAMBnPC algorithms 4
B. KS algorithm... 5
C. TPDA algorithm ... 6
D. PC algorithm.. 7
E. LCD2 algorithm.. 8
F. SCA algorithm .. 9
G. MMHC algorithm... 10
H. MMPC and MMMB algorithms ... 12
J. HITON_PC and HITON_MB algorithms.. 13

I.4. Examples .. 14
A. Examples for discrete data ... 14
B. Examples for continuous data .. 17

II. Addition to BNLAT: a parallel version of chunked IAMB algorithm 19
II.1. Matlab Interface .. 19
II.2. Inputs and Outputs .. 19

III. Bayesian network tiling tool (BNTT) ... 21
III.1. Description... 21
III.2. Matlab Interface ... 21
III.3. Inputs and Outputs ... 21
III.3. Examples.. 22

A. Generate a tiled ALARM network consisting of approximately 2,000
variables with connectivity parameter = 2 ... 22
B. Generate a tiled ALARM and HAILFINDER network consisting of
approximately 1,000 variables with connectivity parameter = 3 22

IV. Data converter from HUGIN format to BNTT ... 23
IV.1. Matlab Interface... 23
IV.2. Inputs and Outputs... 23
IV.3. Example ... 23

V. Utility to simulate data from a Bayesian network and generate an adjacency
matrix ... 24

V.1. Matlab Interface .. 24
V.2. Inputs and Outputs .. 24
V.3. Example .. 24

VI. Supervised discretization of continuous data .. 25
VI.1. Description... 25
VI.2. Matlab Interface... 25
VI.3. Inputs and Outputs... 25
VI.4. Example ... 26

VII. References.. 27

 3

I. Bayesian network learning algorithms toolbox (BNLAT)

I.1. Description

The initial version of this toolbox is described in the following report:

CF Aliferis, I Tsamardinos, A Statnikov. "Causal Explorer: A Probabilistic Network
Learning Toolkit for Biomedical Discovery." The 2003 International Conference on
Mathematics and Engineering Techniques in Medicine and Biological Sciences
(METMBS '03), June 23-26, 2003.

Available in the file Causal_Explorer.pdf

I.2. Matlab Interface

function varargout=Causal_Explorer(algorithm, varargin)

I.3. Inputs and Outputs

algorithm = String with the name of algorithm. Can take one of the following values:

• GS - Grow/Shrink algorithm
• IAMB - Incremental Association-Based Markov Blanket (IAMB)
• IAMBnPC - IAMB with PC algorithm in the pruning phase
• interIAMB - IAMB with interleaved pruning phase
• interIAMBnPC - IAMB with PC algorithm in the interleaved pruning phase
• KS - Koller-Sahami algorithm
• PC - PC algorithm
• TPDA - Three Phase Dependency Analysis (also known as BN

PowerConstructor) algorithm
• LCD2 - LCD2 (Local Causal Discovery) algorithm
• SCA - Sparse Candidate Algorithm (SCA)
• MMHC - Min Max Hill Climbing (MMHC) or Greedy Search algorithm
• MMPC - Min Max Parents and Children (MMPC)
• MMMB - Min Max Markov Blanket (MMMB)
• HITON_PC - HITON_PC algorithm
• HITON_MB - HITON_MB algorithm

varagin = inputs for the selected algorithm (see below)
varagout = outputs for the selected algorithm (see below)

 4

A. GS, IAMB, interIAMB, interIAMBnPC, and IAMBnPC algorithms

Inputs (varargin):

1st input = data
The data used for training (matrix). Columns are variables, rows are observations.
Note, that for certain statistics, such as Mutual Information and G2, data has to be
in a special format: variable i has to take values 0..domain_counts(i). For
example, if domain_counts(2)=3, this means that 2nd variable takes values
{0,1,2}.

2nd input = target_variable_index
Index of the target variable. Our goal will be to find Markov blanket of this
variable.

3rd input = domain_counts
Some statistical tests operating on discrete data (such as Mutual Information and
G2) require a vector with the size of the corresponding domain (for all variables).
E.g. domain_counts = [2 2 3]. This specifies that the domain of the first and the
second variable is {0, 1}, and the domain of the third is {0, 1, 2}. The array
domain_counts should be empty (i.e. []) if Fisher's Z-test is used (since variables
are continuous).

4th input = statistic
Statistical test desired to use. It can be either 'mi' (Mutual Information for discrete
data), 'g2' (G2 test for discrete data), or 'z' (Fisher's z-test for continuous data).

5th input = threshold
Threshold on statistic (either Mutual Information or p-value). For Fisher's z-test
and G2 test, it is common to use 0.05 threshold. However, there is no universal
threshold for Mutual Information, and it should be determined by validation.

Outputs (varargout):

1st output = A vector with the indexes of variables in the Markov Blanket.

 5

B. KS algorithm

This algorithm works only with discrete data.

Inputs (varargin):

1st input = data
The data used for training (matrix). Columns are variables, rows are observations.
Data has to be in a special format: variable i has to take values
0..domain_counts(i). For example, if domain_counts(2)=3, this means that 2nd
variable takes values {0,1,2}.

2nd input = target_variable_index
Index of the target variable. Our goal will be to find Markov blanket of this
variable.

3rd input = domain_counts
A vector with the size of the corresponding domain (for all variables). E.g.
domain_counts = [2 2 3]. This specifies that the domain of the first and the second
variable is {0, 1}, and the domain of the third is {0, 1, 2}.

4th input = Number of features to remove.

5th input = Size of the Markov Blanket estimator.

Outputs (varargout):

1st output = Removed features (zeros in this array are removed features).

2nd output = Order of removed features.

 6

C. TPDA algorithm

Inputs (varargin):

1st input = data
The data used for training (matrix). Columns are variables, rows are observations.
Note, that for certain statistics, such as Mutual Information and G2, data has to be
in a special format: variable i has to take values 0..domain_counts(i). For
example, if domain_counts(2)=3, this means that 2nd variable takes values
{0,1,2}.

2nd input = domain_counts
Some statistical tests operating on discrete data (such as Mutual Information and
G2) require a vector with the size of the corresponding domain (for all variables).
E.g. domain_counts = [2 2 3]. This specifies that the domain of the first and the
second variable is {0, 1}, and the domain of the third is {0, 1, 2}. The array
domain_counts should be empty (i.e. []) if Fisher's Z-test is used (since variables
are continuous).

3rd input = statistic
Statistical test desired to use. It can be either 'mi' (Mutual Information for discrete
data), 'g2' (G2 test for discrete data), or 'z' (Fisher's z-test for continuous data).

4th input = threshold
Threshold on statistic (either Mutual Information or p-value). For Fisher's z-test
and G2 test, it is common to use 0.05 threshold. However, there is no universal
threshold for Mutual Information, and it should be determined by validation.

5th input = Flag indicating whether to use one conditioning superset in
EdgeNeeded_H and Edge_Needed* subroutines. If this flag=0, C=S_x and C=S_y
are considered. If this flag=1, C=S_x U S_y is considered. Please see TPDA
reference paper for more information.

6th input = Flag indicating if the data is monotone faithful (=1) or not (=0).

Outputs (varargout):

1st output = Adjacency matrix. The algorithm constructs undirected graph and
attempt to direct all edges. If the element in the ith row and jth column of
adjacency matrix is equal to 1, this means that variable i is a parent of variable j.
However, if element in ith row and jth column is equal to 2 (and element in jth
row and ith column is also equal to 2), this means that the algorithm failed to
direct that edge (i.e. the resulting edge between variables i and j is undirected).

 7

D. PC algorithm

Inputs (varargin):

1st input = data
The data used for training (matrix). Columns are variables, rows are observations.
Note, that for certain statistics, such as Mutual Information and G2, data has to be
in a special format: variable i has to take values 0..domain_counts(i). For
example, if domain_counts(2)=3, this means that 2nd variable takes values
{0,1,2}.

2nd input = domain_counts
Some statistical tests operating on discrete data (such as Mutual Information and
G2) require a vector with the size of the corresponding domain (for all variables).
E.g. domain_counts = [2 2 3]. This specifies that the domain of the first and the
second variable is {0, 1}, and the domain of the third is {0, 1, 2}. The array
domain_counts should be empty (i.e. []) if Fisher's Z-test is used (since variables
are continuous).

3rd input = statistic
Statistical test desired to use. It can be either 'mi' (Mutual Information for discrete
data), 'g2' (G2 test for discrete data), or 'z' (Fisher's z-test for continuous data).

4th input = threshold
Threshold on statistic (either Mutual Information or p-value). For Fisher's z-test
and G2 test, it is common to use 0.05 threshold. However, there is no universal
threshold for Mutual Information, and it should be determined by validation.

5th input = k
Maximum cardinality on number of direct causes and effects of a node. Set this
number to be equal to -1 if you do not want to impose this constraint.

Outputs (varargout):

1st output = Adjacency matrix. The algorithm constructs undirected graph and
attempt to direct all edges. If the element in the ith row and jth column of
adjacency matrix is equal to 1, this means that variable i is a parent of variable j.
However, if element in ith row and jth column is equal to 2 (and element in jth
row and ith column is also equal to 2), this means that the algorithm failed to
direct that edge (i.e. the resulting edge between variables i and j is undirected).

 8

E. LCD2 algorithm

Inputs (varargin):

1st input = data
The data used for training (matrix). Columns are variables, rows are observations.
Note, that for certain statistics, such as Mutual Information and G2, data has to be
in a special format: variable i has to take values 0..domain_counts(i). For
example, if domain_counts(2)=3, this means that 2nd variable takes values
{0,1,2}.

2nd input = target_variable_index
Index of the target variable. Our goal will be to find Markov blanket of this
variable.

3rd input = domain_counts
Some statistical tests operating on discrete data (such as Mutual Information and
G2) require a vector with the size of the corresponding domain (for all variables).
E.g. domain_counts = [2 2 3]. This specifies that the domain of the first and the
second variable is {0, 1}, and the domain of the third is {0, 1, 2}. The array
domain_counts should be empty (i.e. []) if Fisher's Z-test is used (since variables
are continuous).

4th input = statistic
Statistical test desired to use. It can be either 'mi' (Mutual Information for discrete
data), 'g2' (G2 test for discrete data), or 'z' (Fisher's z-test for continuous data).

5th input = threshold
Threshold on statistic (either Mutual Information or p-value). For Fisher's z-test
and G2 test, it is common to use 0.05 threshold. However, there is no universal
threshold for Mutual Information, and it should be determined by validation.

Outputs (varargout):

1st output = Causal Relationships matrix. It is a 2-column matrix. The element in
the first column is the index of the "cause" variable. The element in the second
column is the index of the "effect" variable (corresponding to the "cause" variable
in the first column).

 9

F. SCA algorithm

This algorithm works only with discrete data.

Inputs (varargin):

1st input = data
The data used for training (matrix). Columns are variables, rows are observations.
Data has to be in a special format: variable i has to take values
0..domain_counts(i). For example, if domain_counts(2)=3, this means that 2nd
variable takes values {0,1,2}.

2nd input = domain_counts
A vector with the size of the corresponding domain (for all variables). E.g.
domain_counts = [2 2 3]. This specifies that the domain of the first and the second
variable is {0, 1}, and the domain of the third is {0, 1, 2}.

3rd input = k
Number of candidates on first iteration (i.e., max fan-in). Default value can be
either 5 or 10.

4th input = dw
Dirichlet Weight (default value is 10).

5th input = prior_type
Type of the priors. Default is 'BDeu'. Another option is uniform priors - 'unif'.

6th input = statistic
Statistical/Bayesian test desired to use. It can be either 'mi' (Mutual Information),
or 'ms' (a Bayesian scoring metric).

Outputs (varargout):

1st output = DAG
Best DAG found. DAG is represented via adjacency matrix. If the element in the
ith row and jth column of adjacency matrix is equal to 1, this means that variable i
is a parent of variable j.

2nd output = n_stats
Number of times a scoring function was called.

3rd output = score
Score of the best DAG

 10

G. MMHC and Greedy Search algorithms

This algorithm works only with discrete data.

Inputs (varargin):

1st input = data
The data used for training (matrix). Columns are variables, rows are observations.
Data has to be in a special format: variable i has to take values
0..domain_counts(i). For example, if domain_counts(2)=3, this means that 2nd
variable takes values {0,1,2}.

2nd input = domain_counts
A vector with the size of the corresponding domain (for all variables). E.g.
domain_counts = [2 2 3]. This specifies that the domain of the first and the second
variable is {0, 1}, and the domain of the third is {0, 1, 2}.

3rd input = cs_method
Method for choosing candidate parents, 'MMHC' or 'GreedySearch' (defualt =
MMHC).

4th input = mmpc_options
Structure of options for MMPC, the candidate selection procedure used in
MMHC,
- options.threshold = threshold on statistical test (default = 0.05)
- options.epc - elements per cell, MMPC attempts to find the maximum size of

the conditioning set that is acceptable, where the available sample is more
than epc for each cell of the conditional probability table (default = 5).

- options.maxK = The maximum size of the conditioning set allowed. This
value is determined by MMPC using epc and the amount of sample, be a
maximum value can also be set. Thus, MMPC's maximum conditioning set is
min(maxK, k) where k is the max conditioning set calculated by MMPC
(default = 10).

- options.use_card_lim = Flag is 1 if limited cardinality, and 0 otherwise
(default = 0).

- options.max_card = Max number of variables to be added in the first phase of
MMPC if the cardinality is limited (default = 0).

5th input = dw
Dirichlet weight (default = 10)

6th input = prior_type
Type of priors, 'unif' or 'BDeu'. (default = 'BDeu')

 11

Outputs (varargout):

1st output = DAG
Best DAG found. DAG is represented via adjacency matrix. If the element in the
ith row and jth column of adjacency matrix is equal to 1, this means that variable i
is a parent of variable j.

2nd output = dag_score
Score of the best DAG found.

3rd output = num_stats
Number of statistics called in MMPC if used as a candidate parent selection
method.

4th output = cp_time
Time to complete the candidate selection method.

5th output = cps
A matrix of the candidate parents selected. The dimensions of cps are [number of
variables x number of variables]. If cps(i,j)=1, then i is considered for a parent of
j (similarly, if cps(i,j)=0 then i is not considered to be a parent of j). Note, for
plain Greedy Hill Climbing Search then this matrix is all 1s.

 12

H. MMPC and MMMB algorithms

This algorithm works only with discrete data.

Inputs (varargin):

1st input = data
The data used for training (matrix). Columns are variables, rows are observations.
Data has to be in a special format: variable i has to take values
0..domain_counts(i). For example, if domain_counts(2)=3, this means that 2nd
variable takes values {0,1,2}.

2nd input = target_variable_index
Index of the target variable. Our goal will be to find Markov blanket of this
variable.

3rd input = domain_counts
A vector with the size of the corresponding domain (for all variables). E.g.
domain_counts = [2 2 3]. This specifies that the domain of the first and the second
variable is {0, 1}, and the domain of the third is {0, 1, 2}.

4th input = method
Type of MMPC algorithm (for choosing parents and children): 'MMPC' for
regular MMPC, and 'PMMPC' for polynomial MMPC.

5th input = mmpc_options
Structure of options for MMPC, the candidate selection procedure used in
MMHC,
- options.threshold = threshold on statistical test (default = 0.05)
- options.epc - elements per cell, MMPC attempts to find the maximum size of

the conditioning set that is acceptable, where the available sample is more
than epc for each cell of the conditional probability table (default = 5).

- options.maxK = The maximum size of the conditioning set allowed. This
value is determined by MMPC using epc and the amount of sample, be a
maximum value can also be set. Thus, MMPC's maximum conditioning set is
min(maxK, k) where k is the max conditioning set calculated by MMPC
(default = 10).

- options.use_card_lim = Flag is 1 if limited cardinality, and 0 otherwise
(default = 0).

- options.max_card = Max number of variables to be added in the first phase of
MMPC if the cardinality is limited (default = 0).

Outputs (varargout):

1st output = A vector with the indexes of variables in the set of parents and
children (for MMPC) and Markov blanket (for MMMB).

 13

J. HITON_PC and HITON_MB algorithms

Inputs (varargin):

1st input = data
The data used for training (matrix). Columns are variables, rows are observations.
Note, that for certain statistics, such as Mutual Information and G2, data has to be
in a special format: variable i has to take values 0..domain_counts(i). For
example, if domain_counts(2)=3, this means that 2nd variable takes values
{0,1,2}.

2nd input = target_variable_index
Index of the target variable. Our goal will be to find Markov blanket of this
variable.

3rd input = domain_counts
Some statistical tests operating on discrete data (such as Mutual Information and
G2) require a vector with the size of the corresponding domain (for all variables).
E.g. domain_counts = [2 2 3]. This specifies that the domain of the first and the
second variable is {0, 1}, and the domain of the third is {0, 1, 2}. The array
domain_counts should be empty (i.e. []) if Fisher's Z-test is used (since variables
are continuous).

4th input = statistic
Statistical test desired to use. It can be either 'g2' (G2 test for discrete data) or 'z'
(Fisher's z-test for continuous data). HITON_PC and HITON_MB do not
currently support mutual information.

5th input = threshold
Threshold on statistic (either Mutual Information or p-value). For Fisher's z-test
and G2 test, it is common to use 0.05 threshold. However, there is no universal
threshold for Mutual Information, and it should be determined by validation.

6th input = The maximum size of the conditioning set allowed.

Outputs (varargout):

1st output = A vector with the indexes of variables in the set of parents and
children (for HITON_PC) and Markov blanket (for HITON_MB).

Note on application of HITON_PC and HITON_MB to continuous data:

Unlike other algorithms which require all variables of the dataset to be
continuous, HITON_PC and HITON_MB require that the target variable is
discrete and takes consecutive integer values starting from 0 (i.e. 0, 1, 2, …)

 14

I.4. Examples

A. Examples for discrete data

In order to work with examples below, please load ALARM dataset into variable "data"
and domain counts into variable "domain_counts":

load ../Data/alarm_h;
load ../Data/alarm_h_dc;

GS algorithm:

mb=Causal_Explorer('GS', data, 3, domain_counts, 'mi', 0.02)

mb=Causal_Explorer('GS', data, 5, domain_counts, 'g2', 0.05)

IAMB algorithm:

mb=Causal_Explorer('IAMB', data, 4, domain_counts, 'mi', 0.04)

mb=Causal_Explorer('IAMB', data, 2, domain_counts, 'g2', 0.05)

interIAMB algorithm:

mb=Causal_Explorer('interIAMB', data, 2, domain_counts, 'mi', 0.01)

mb=Causal_Explorer('interIAMB', data, 2, domain_counts, 'g2', 0.05)

interIAMBnPC algorithm:

mb=Causal_Explorer('interIAMBnPC', data, 4, domain_counts, 'mi', 0.05)

mb=Causal_Explorer('interIAMBnPC', data, 2, domain_counts, 'g2', 0.05)

IAMBnPC algorithm:

mb=Causal_Explorer('IAMBnPC', data, 3, domain_counts, 'mi', 0.01)

mb=Causal_Explorer('IAMBnPC', data, 2, domain_counts, 'g2', 0.05)

KS algorithm:

[features, order]=Causal_Explorer('KS', data, 3, domain_counts, 34, 2)

 15

TPDA algorithm:

A=Causal_Explorer('TPDA', data, domain_counts, 'mi', 0.01, 0, 1)

A=Causal_Explorer('TPDA', data, domain_counts, 'mi', 0.01, 0, 0)

A=Causal_Explorer('TPDA', data, domain_counts, 'mi', 0.01, 1, 0)

A=Causal_Explorer('TPDA', data, domain_counts, 'mi', 0.01, 1, 1)

A=Causal_Explorer('TPDA', data, domain_counts, 'g2', 0.01, 0, 1)

A=Causal_Explorer('TPDA', data, domain_counts, 'g2', 0.01, 0, 0)

A=Causal_Explorer('TPDA', data, domain_counts, 'g2', 0.01, 1, 0)

A=Causal_Explorer('TPDA', data, domain_counts, 'g2', 0.01, 1, 1)

PC algorithm:

A=Causal_Explorer('PC', data, domain_counts, 'mi', 0.01, 2)

A=Causal_Explorer('PC', data, domain_counts, 'mi', 0.01, -1)

A=Causal_Explorer('PC', data, domain_counts, 'g2', 0.05, 2)

A=Causal_Explorer('PC', data, domain_counts, 'g2', 0.05, -1)

LCD2 algorithm:

CR=Causal_Explorer('LCD2', data, 1, domain_counts, 'mi', 0.01)

CR=Causal_Explorer('LCD2', data, 1, domain_counts, 'g2', 0.05)

SCA algorithm:

[A,stats,bs]=Causal_Explorer('SCA', data, domain_counts, 5, 10, 'BDeu', 'ms')

[A,stats,bs]=Causal_Explorer('SCA', data, domain_counts, 5, 10, 'BDeu', 'mi')

[A,stats,bs]=Causal_Explorer('SCA', data, domain_counts, 5, 10, 'unif', 'ms')

[A,stats,bs]=Causal_Explorer('SCA', data, domain_counts, 5, 10, 'unif', 'mi')

 16

MMHC algorithm:

[A,score,stats,cp_time,cps] = Causal_Explorer('MMHC',data,domain_counts,'MMHC',[],10,'BDeu')

options.threshold = 0.05;
options.epc = 10;
options.maxK = 10;
options.use_card_lim = 0;
options.max_card = 0;
[A,score,stats,time,cps] = Causal_Explorer('MMHC',data,domain_counts,'MMHC',options,10,'BDeu');

Greedy Search algorithm:

[A,score,stats,time,cps] = Causal_Explorer('MMHC',data,domain_counts,'GreedySearch',[],10,'BDeu');

MMPC algorithm:

[pc, stats] = Causal_Explorer('MMPC', data, 3, domain_counts, 'MMPC', [])

[pc, stats] = Causal_Explorer('MMPC', data, 4, domain_counts, 'PMMPC', [])

options.threshold = 0.05;
options.epc = 5;
options.maxK = 5;
options.use_card_lim = 0;
options.max_card = 0;
[pc, stats] = Causal_Explorer('MMPC', data, 3, domain_counts, 'MMPC', options)

options.threshold = 0.05;
options.epc = 7;
options.maxK = 3;
options.use_card_lim = 0;
options.max_card = 0;
[pc, stats] = Causal_Explorer('MMPC', data, 4, domain_counts, 'PMMPC', options)

MMMB algorithm:

[mb, pc, pc_pc] = Causal_Explorer('MMMB', data, 5, domain_counts, 'MMPC', [])

[mb, pc, pc_pc] = Causal_Explorer('MMMB', data, 5, domain_counts, 'PMMPC', [])

options.threshold = 0.05;
options.epc = 5;
options.maxK = 5;
options.use_card_lim = 0;
options.max_card = 0;
[mb, pc, pc_pc] = Causal_Explorer('MMMB', data, 5, domain_counts, 'MMPC', options)

 17

options.threshold = 0.05;
options.epc = 5;
options.maxK = 5;
options.use_card_lim = 0;
options.max_card = 0;
[mb, pc, pc_pc] = Causal_Explorer('MMMB', data, 5, domain_counts, 'PMMPC', options)

HITON_PC algorithm:

pc=Causal_Explorer('HITON_PC', data, 4, domain_counts, 'g2', 0.05, 3)

HITON_MB algorithm:

mb=Causal_Explorer('HITON_MB', data, 4, domain_counts, 'g2', 0.05, 3)

B. Examples for continuous data

In order to work with examples below, please load a continuous dataset:

load ../Data/random_data_1;

GS algorithm:

mb=Causal_Explorer('GS', data, 3, [], 'z', 0.05)

IAMB algorithm:

mb=Causal_Explorer('IAMB', data, 3, [], 'z', 0.05)

interIAMB algorithm:

mb=Causal_Explorer('interIAMB', data, 3, [], 'z', 0.05)

IAMBnPC algorithm:

mb=Causal_Explorer('IAMBnPC', data, 3, [], 'z', 0.05)

interIAMBnPC algorithm:

mb=Causal_Explorer('interIAMBnPC', data, 4, [], 'z', 0.05)

TPDA algorithm:

A=Causal_Explorer('TPDA', data, [], 'z', 0.05, 1, 1)

 18

PC algorithm:

A=Causal_Explorer('PC', data, [], 'z', 0.05, 1, 1)

LCD2 algorithm:

CR=Causal_Explorer('LCD2', data, 11, [], 'z', 0.05)

In order to work with examples below, please load a continuous dataset with discrete
target and a target variable index:

load ../Data/random_data_2;

HITON_PC algorithm:

pc=Causal_Explorer('HITON_PC', data, target_variable_index, [], 'z', 0.05, 3)

HITON_MB algorithm:

mb=Causal_Explorer('HITON_MB', data, target_variable_index, [], 'z', 0.05, 3)

 19

II. Addition to BNLAT: a parallel version of chunked IAMB algorithm

II.1. Matlab Interface

function mb=pchIAMB(data, target_variable_index, domain_counts, statistic, threshold, machines)

II.2. Inputs and Outputs

Inputs:

1st input = data
The data used for training (matrix). Columns are variables, rows are observations.
Note, that for certain statistics, such as Mutual Information and G2, data has to be
in a special format: variable i has to take values 0..domain_counts(i). For
example, if domain_counts(2)=3, this means that 2nd variable takes values
{0,1,2}.

2nd input = target_variable_index
Index of the target variable. Our goal will be to find Markov blanket of this
variable.

3rd input = domain_counts
Some statistical tests operating on discrete data (such as Mutual Information and
G2) require a vector with the size of the corresponding domain (for all variables).
E.g. domain_counts = [2 2 3]. This specifies that the domain of the first and the
second variable is {0, 1}, and the domain of the third is {0, 1, 2}. The array
domain_counts should be empty (i.e. []) if Fisher's Z-test is used (since variables
are continuous).

4th input = statistic
Statistical test desired to use. It can be either 'mi' (Mutual Information for discrete
data), 'g2' (G2 test for discrete data), or 'z' (Fisher's z-test for continuous data).

5th input = threshold
Threshold on statistic (either Mutual Information or p-value). For Fisher's z-test
and G2 test, it is common to use 0.05 threshold. However, there is no universal
threshold for Mutual Information, and it should be determined by validation.

6th input = machines
A cell array of strings with names of slave computers. For example, if we specify
machines={'cmp01','cmp02','cmp03'}, the algorithm will execute slave processes
on cmp01, cmp02, and cmp03.

 20

Outputs:

1st output = A vector with the indexes of variables in the Markov Blanket.

Note:

Current implementation of parallel version of chunked IAMB algorithm is based
on MPI Matlab toolbox by Einar Heiberg. Please obtain this toolbox before
running this algorithm: http://www.imv.liu.se/klinfys/einar/mpi/index.html

 21

III. Bayesian network tiling tool (BNTT)

III.1. Description

Please see the following technical report:

A Statnikov, I Tsamardinos, CF Aliferis. "An Algorithm for Generation of Large
Bayesian Networks." Technical report DSL TR-03-01, May 28, 2003, Vanderbilt
University, Nashville, TN, USA

Available in the file BN_Tiling.pdf

III.2. Matlab Interface

nodes=bn_tiling(network_filename, dataset_filename, num_variables, k)

III.3. Inputs and Outputs

Inputs:

1st input = network_filename
Cell array of names of network files in HUGIN format, where
network_filename{i} is a name of network file in HUGIN format. The network
filename should include a path and should be specified with the extension.

2nd input = dataset_filename
Cell array of names of dataset files for networks specified in cell array
"network_filename" (in the same order), where dataset_filename{i} is a name of
dataset in Matlab format (.mat) corresponding to network network_filename{i}.
These datasets will be used for estimation of joint probabilities. The dataset file
should contain an array "data" (where rows are observations/samples and columns
are variables of the original network). Each column (variable) in "data" should
take discrete values {0,1,...,domain counts of this variable} (where "domain
counts" is the number of unique values this variable can take). It is recommended
to specify a dataset with a large number of observations (typically, 10,000 is
enough). In order to generate this file, one can simulate cases of the network
network_filename{i} using HUGIN (without missing values), and use utility in
the file data_converter_hugin.dll to convert generated data file into Matlab array
"data" as described above. In the later versions of Bayesian Network Tiling Tool
there will be no need to specify datasets, since an inference algorithm will be
implemented in the software.

 22

3rd input = num_variables
Desired maximum number of variables in the output network.

4th input = k
Connectivity parameter (see technical report for details).

Outputs:

1st output = nodes
Resulting network in a cell array. Each cell of this array is a data-structure
corresponding to a variable. The number of variables is approximately
"num_variables" (since we include only full tiles). If two or more original
networks are specified in "network_filename", the resulting network will contain
the same number of variables from different original networks. For example,
nodes{i} corresponding to the ith variable in the resulting tiled network contains:
- nodes{i}.name = a name of the original variable (parsed from HUGIN

network file)
- nodes{i}.parents = pointers to the parents (variable indices in the new

network)
- nodes{i}.cpt = conditional probability table (cpt) as an n-dimensional array,

where n is number of parents + 1.
The semantics are: P(A=a | B=b C=c D=d ..) = cpt(1, 1, 1, 1, ..) when a, b, c,
and d are the first values in order in the domains of the variables.

III.3. Examples

A. Generate a tiled ALARM network consisting of approximately 2,000 variables with
connectivity parameter = 2

network_filename={'../Data/alarm_h.net'};
dataset_filename={'../Data/alarm_h.mat'};
nodes=bn_tiling(network_filename, dataset_filename, 2000, 2);

B. Generate a tiled ALARM and HAILFINDER network consisting of approximately
1,000 variables with connectivity parameter = 3

network_filename={'../Data/alarm_h.net', '../Data/hailfinder_h.net'};
dataset_filename={'../Data/alarm_h.mat', '../Data/hailfinder_h.mat'};
nodes=bn_tiling(network_filename, dataset_filename, 1000, 3);

 23

IV. Data converter from HUGIN format to BNTT

IV.1. Matlab Interface

data=data_converter_hugin(data_file, network_file)

IV.2. Inputs and Outputs

Inputs:

1st input = data_file
Filename with simulated data in HUGIN format

2nd input = network_file
Filename with original network in HUGIN format

Outputs:

 1st output = data

Data array in Matlab format. The rows are observations/samples and columns are
variables of the original network. Each column (variable) in "data" takes discrete
values {0,1,...,domain counts of this variable} (where "domain counts" is the
number of unique values this variable can take).

IV.3. Example

data=data_converter_hugin('../Data/alarm_h.dat', '../Data/alarm_h.net');

 24

V. Utility to simulate data from a Bayesian network and generate an
adjacency matrix

V.1. Matlab Interface

[data, graph]=simulate_data(nodes, num_cases)

V.2. Inputs and Outputs

Inputs:

1st input = nodes
Network in a cell array. Each cell of this array is a data-structure corresponding to
a variable. For example, nodes{i} corresponds to the ith variable of the network
and contains:
- nodes{i}.name = a name of the variable
- nodes{i}.parents = pointers to the parents (variable indices in the network)
- nodes{i}.cpt = conditional probability table (cpt) as an n-dimensional array,

where n is number of parents + 1.
The semantics are: P(A=a | B=b C=c D=d ..) = cpt(1, 1, 1, 1, ..) when a, b, c,
and d are the first values in order in the domains of the variables.

Please see example below for more details on this data structure.

2nd input = num_cases
Number of cases to be simulated.

Outputs:

 1st output = data

Data array in Matlab format. The rows are observations/samples and columns are
variables of the original network. Each column (variable) in "data" takes discrete
values {0,1,...,domain counts of this variable} (where "domain counts" is the
number of unique values this variable can take).

2nd output = graph
Adjacency matrix. If the element in the ith row and jth column of adjacency
matrix is equal to 1, this means that variable i is a parent of variable j.

V.3. Example

load ../Data/nodes.mat
[data, graph]=simulate_data(nodes, 1000);

 25

VI. Supervised discretization of continuous data

VI.1. Description

The discretization routine performs the following steps:

• Data is normalized so that each variable has mean 0 and standard deviation 1.

• After normalization, association of each variable with the target is computed
using either Wilcoxon rank sum test (for binary target) or Kruskal-Wallis
ANOVA (for multicategory target) with 0.05 alpha level.

• If a variable is not significantly associated with the target, it is discretized as

follows:
o 0 for values less then -1 standard deviation
o 1 for values between -1 and 1 standard deviation
o 2 for values greater than 1 standard deviation

• If a variable is significantly associated with the target, it is discretized using

sliding threshold (into binary) or using sliding window (into ternary). The
discretization threshold(s) is determined by a Chi-squared test.

The discretization routine uses information only from the training samples.

For a general idea, refer to Mitchell's book "Machine Learning", 1997, pages 72-73.

VI.2. Matlab Interface

data_d = discretization(data, target_variable_index, training_samples_index, variables_index)

VI.3. Inputs and Outputs

Inputs:

1st input = data
Continuous input dataset in the form of a matrix. Rows should correspond to
observations/samples and columns should correspond to variables. The column
corresponding to target (i.e. response variable) should take consecutive integer
values starting from 1 (i.e. 0, 1, 2,…).

2nd input = target_variable_index
Index of the target column (i.e. response variable). This column should take
consecutive integer values starting from 1 (i.e. 0, 1, 2,…).

 26

3rd input = training_samples_index
Vector with indices of rows (samples) that will be used for training.

4th input = variables_index
Vector with indices of columns (variables) that will be discretized.

Outputs:

1st output = data_d
Discrete dataset in the form of a matrix.

VI.4. Example

In order to work with example below, please load a continuous dataset with discrete
target and a target variable index:

load ../Data/random_data_2;

Define training samples and variables to be discretized:

training_samples_index=1:700; % use first 700 samples for training;
variables_index=setdiff(1:size(data,2), target_variable_index); % all variables but the target

Run discretization:

data_d = discretization(data, target_variable_index, training_samples_index, variables_index);

 27

VII. References

TPDA algorithm:

• Cheng, J., Greiner, R., Kelly, J., Bell, DA and Liu, W., Learning Bayesian
Networks from Data: an Information-Theory Based Approach, The Artificial
Intelligence Journal, Volume 137, Pages 43-90, 2002

GS algorithm:

• D. Margaritis and S. Thrun. Bayesian Network Induction via Local
Neighborhoods. Advances in Neural Information Processing Systems 12 (NIPS),
Denver, Colorado. December 1999.

KS algorithm:

• Koller, D., and Sahami, M. (1996). Toward Optimal Feature Selection. In:
Machine Learning: Proceedings of the Thirteenth International Conference.
Morgan Kaufmann.

PC algorithm:

• Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction and

Search (second edition). The MIT Press, 2000.

LCD2 algorithm:

• Subramani Mani, Gregory F. Cooper. A Study in Causal Discovery from
Population-Based Infant Birth and Death Records. Proceedings of the AMIA
Annual Fall Symposium, 1999, p315--319. Hanley and Belfus Publishers,
Philadelphia, PA.

IAMB, interIAMB, interIAMBnPC, IAMBnPC, pchIAMB algorithms:

• Tsamardinos I., C.F. Aliferis, A. Statnikov. Algorithms for Large Scale Markov
Blanket Discovery," in Proceedings of the 16th International FLAIRS Conference
(FLAIRS 2003), 2003

SCA algorithm:

• Nir Friedman, Iftach Nachman and Dana Pe'er. Learning Bayesian Network
Structure from Massive Datasets: The ``Sparse Candidate'' Algorithm. Fifteenth
Conference on Uncertainty in Artificial Intelligence, 1999.

 28

MMHC algorithm:

• L.E. Brown, I. Tsamardinos, C.F. Aliferis. "A Novel Algorithm for Scalable and
Accurate Bayesian Network Learning" In Proceedings of the 11th World
Congress on Medical Informatics (MEDINFO), September 7-11, 2004, San
Francisco, California, USA

MMPC and MMMB algorithms:

• I. Tsamardinos, C.F. Aliferis, A. Statnikov. "Time and Sample Efficient
Discovery of Markov Blankets and Direct Causal Relations" In Proceedings of the
9th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, August 24-27, 2003, Washington, DC, USA, ACM Press, pages 673-678

• L.E. Brown, I. Tsamardinos, C.F. Aliferis. "A Comparison of Novel and State-of-

the-Art Polynomial Bayesian Network Learning Algorithms" In Proceedings of
the Twentieth National Conference on Artificial Intelligence (AAAI), 2005

Greedy Search algorithm:

• L.E. Brown, I. Tsamardinos, C.F. Aliferis. "A Comparison of Novel and State-of-
the-Art Polynomial Bayesian Network Learning Algorithms" In Proceedings of
the Twentieth National Conference on Artificial Intelligence (AAAI), 2005

HITON_PC and HITON_MB algorithms:

• C. F. Aliferis, I. Tsamardinos, A. Statnikov. "HITON, A Novel Markov Blanket
Algorithm for Optimal Variable Selection" In Proceedings of the 2003 American
Medical Informatics Association (AMIA) Annual Symposium, November 8-12,
2003, Washington, DC, USA, pages 21-25.

