An Algorithm For Generation of L arge Bayesian Networks

A.R. Statnikov, |. Tsamardinos, C.F. Aliferis

Department of Biomedical I nformatics,
Discovery Systems L aboratory,
Vander bilt University

Technical Report DSL-03-01
May 28" 2003

ABSTRACT. We propose a novel algorithm and software for the
generation of arbitrarily large Bayesian networks (e.g., graphi-
cal models representing joint probability distributions) by tiling
smaller real-world known networks (tiles). The algorithm adds
edges between tiles, while preserving joint probability distribu-
tion of the tiles. This technique will allow researchers to conduct
large-scale evaluation of learning algorithms on the real-world large
Bayesian networks which was impossible due to unavailability of
such networks.

1. INTRODUCTION

Bayesian networks (BNs), graphical models of joint probability dis-
tributions, are currently widely used in a variety of research and in-
dustrial areas. A major branch of BN research is learning networks
from the data [6]. Although BN learning is an NP-hard problem [4],
in the last decade dozens of different heuristic algorithms were pro-
posed to learn structure from the data (e.g., PC [10], Grow-Shrink [9],
Sparse Candidate [5], Three Phase Dependency Analysis [3], etc). Un-
fortunately, most of the algorithms were validated on relatively small
networks (e.g., with less than 100 variables) , such as the classical
ALARM network [2] or other ”toy-networks”. Hence, the efficacy of
many algorithms for learning real-world networks with thousands of
variables remains unknown. The absence of large BNs hinders large-
scale learning experiments.

We propose an algorithm for generation of arbitrarily large BNs by
tiling smaller real-world known BNs (tiles). The algorithm generates a
large network with new edges between the tiles, while preserving joint
probability distribution of the tiles. We implemented the algorithm in
the BN Tiling Tool available for download from http://discoverl.mc.
vanderbilt.edu/discover/public/causal_explorer/ and distributed as a part

of Causal Explorer [1].
1

2. ALGORITHM

The algorithm requires on input a set of Bayesian networks (tiles)
BNy, ..., BN, and an integer-valued connectivity parameter k control-
ling the number of introduced edges in the output network. The al-
gorithm returns a large Bayesian network consisting of tiles with the
new edges between tiles. The joint probability distribution of the tiles
is preserved.

Let us denote with ®; the variable set of tile ¢, BN, the original
network giving rise to tile ¢, P(®;) the marginal joint probability of
the variables ®;, and with P’(®;) the joint probability of BN;. The
constraint we imposed on each tile is that the joint distribution of the
variables in the tile remains the same as in the original network the tile
is originated from, i.e., P(®;) = P'(®;). This is not trivial since edges
have been added among the tiles, which may change P(®;).

The algorithm for generating tiled networks where the above con-
straint is observed and random edges are added among the tiles is
presented in Figure 1. The general idea is the following: edges are
added to a node T' € ®; (i.e., T' will become a child of the nodes from
other tiles) only if 7" is a minimum node (i.e., has no parents) in BN;.
Then, if for all such 7" we modify the marginal of T to be the same as
the prior of T in the originating network, P(®;) = P'(®;) for all 7.

In practice we first randomly arrange tiles in topological levels. To
ensure that our resulting graph is acyclic we allow connections only
between higher and lower topological levels of tiles. We introduce con-
nections between minimal node(s) T' € ®; of the tile i located at level
p > 2 with nodes in ancestor tiles (i.e., located at levels < p). For every
minimum node 7" € ®; we select up to k ancestor nodes. We refer to k
as connectivity parameter.

Consider example in Figure 2. The basis for the construction of re-
sulting BN is the tile of Asia Bayesian network. The final BN consists
of four tiles of Asia. Minimum nodes in the tiles at level 2 receive con-
nections from level 1, and minimum nodes in the tile at level 3 receive
connections from levels 1 and 2. The connectivity parameter k = 2 in
this example. The new edges are drawn with dash-lines in Figure 2.

Suppose that a node T receives two new edges from nodes X and
Y (See Figure 2). We require that the prior of 7" in the originating
network is the same as the marginal of 7" in the new network, i.e.,

P(T)= P(T) or,

P(T=1)=> P(T=tX=2Y =y)P(X =2,Y =y)
x?y

2

TileBNs(BN; =< &4, Ey, J; >,..., BN, =< ®,, E,, J,, >, k)
Generate BN =< &, E, J > as follows:

10 =uU;P,;

2 F=UE;

3 Randomly arrange tiles in topological levels

4 For every tile ¢ located at level [> 2

5 For every minimal node 7' € ®; from the tile ¢

6 For every ancestor tile m located at level < [
7 Randomly select p < k nodes X3, ..., X, € ®,, from tile m
8 Add new edges E=EU{X; = T,...,X, =T}

9 For all variables T' that received new edges

10 Select randomly w4, for all values ¢ of T" and all instantiations p
11 of parents of T' (i.e., nodes X1, ..., X,), Pa(T)

12 Solve equations

3>, apxgprtcp = by, Vt

14 Zt Ty, ricy = 1,Vp

15 subject to ric, > 0,Vt,p

16 where a, = P(Pa(T) = p,by = P(T =t)

17 Set P(T = t|Pa(T) = p) = xy,11Cp

18 Let J be the joint implied by the conditional probability tables
19 in Jy,...,J, and the changes made at line 17

20 Return BN =< ¢, E, J >

FiGURE 1. The algorithm TileBNs for tiling BNs in a
way that maintains their probabilistic properties.

for all possible values ¢, z, y of the variables. Equivalently,

ZP — t|Pa(T) = p)P(Pa(T) = p)

for Pa(T) being the new parents of 7" in the simulated BN, and p run-
ning through all possible instantiations of the parents. The quantities
P'(T = t) are the known priors of 7" in the originating network, and
P(Pa(T) = p) is the joint of P(Pa(T) = p) in the new network. Since
our method will produce networks where the constraint P(®;) = P'(®;)
holds for all ¢, then P(Pa(T) = p) = P'(Pa(T) = p) and can be exactly
calculated from the originating network.

Let us denote with a, = P(Pa(T") = p) for all different instantiations
p of parents of T', with b, = P'(T = t) for all values of T', and with

xyy = P(T = t|Pa(T) = p) for all values of 7" and parents of 7. Then,
3

Level 1

Level 2

Level 3

the

FIGURE 2. Generation of BN from four tiles of Asia network.

above equations can be rewritten as:

Z ApTyp = bt, Vit
p

Also, for x4, to be conditional probabilities they have to belong in

0,1

| and:

thp =1,Vp
t

must hold for any p. This gives us a set of |T| + |Pa(T)| equations

and

|T| x |Pa(T")| unknowns zy, (] X | means cardinality, i.e., number of

unique instantiations, of the set of variables X). One could solve this

4

underconstraint system of linear equations for z,,. However, it is de-
sirable that these solutions are randomly picked among all possible so-
lutions. Most linear equation solvers will arbitrarily, but not randomly,
select a solution for the system (e.g. solve for the first |T'| + |Pa(T)|
values of the unknowns and set the rest to zeros).

To find a random solution to the system of equations we took the
following approach. We randomly selected values x}, uniformly from
[0, 1]. Obviously, the random values will not be solutions to the equa-
tions. However, if they are appropriately rescaled they can be. We
expressed the rescaling factors as the unknown quantities r; and ¢, and
rewrote the equations as:

/ —
E Apy,T1Cp = b, Vt

P
Zx;prtcp =1,Yp
t

i.e., we replaced each unknown quantity xy, with the quantity xj,ric,.
We also need to introduce constraints:

thp Z 07 Vtap

to ensure that z;, = x;prtcp > 0 (z¢p is automatically < 1 since
> Ty = 1,Vp); hence x4, can be interpreted as probabilities. Now
the linear system of |T'| + |Pa(T)| equations and |T'| x |Pa(T)| un-
knowns has become a quadratic system of |T'| + |Pa(T)| equations,
|T| + |Pa(T)| unknowns (the quantities r, and ¢,), and |T| x |Pa(T)|
nonlinear constraints' which can be solved by any standard method for
solving non-linear constraint equations.

3. IMPLEMENTATION

BN Tiling algorithm (BN Tiling Tool) was implemented in Math-
works Matlab [7]. The input BNs are specified in HUGIN [8] format,
and a simple parser was written to read HUGIN BNs in a custom
Matlab format. We used an iterative solver from Matlab Optimiza-
tion toolbox employing Gauss-Newton algorithm with BFGS updating
scheme. Since this optimization algorithm may be trapped in a local
minimum, we repeated lines 10 — 16 in Figure 1 while convergence was
not achieved to ensure that the optimization problem is solved numer-
ically with specified tolerance (le — 6).

IFor simplicity, one can also substitute specified constraints with linear more
strict constraints |T'| + |Pa(T)|; namely r;, > 0,V¢ and ¢, > 0,Vp
5

1]

REFERENCES

C. Aliferis, I. Tsamardinos, and A. Statnikov. Causal explorer: A probabilistic
network learning toolkit for biomedical discovery. International Conference on
Mathematics and Engineering Techniques in Medicine and Biological Sciences
(METMBS), 2003.

I. Beinlich, J. Suermondt, R. Chavez, and G. Cooper. The alarm monitoring
system: A case study with two probabilistic inference techniques for belief
networks. In Proc. of the Second European Conference on Artificial Intelligence
in Medicine, 1989.

J. Cheng, R. Greiner, J. Kelly, D. Bell, and W. Liu. Learning bayesian networks
from data: an information-theory based approach. The Artificial Intelligence
Journal, Volume 137, 2002.

David Maxwell Chickering. Learning Bayesian networks is NP-Complete. In
D. Fisher and H.J. Lengz, editors, Learning from Data: Artificial Intelligence
and Statistics V, pages 121-130. Springer-Verlag, 1996.

N. Friedman, I. Nachman, and D. Peer. Learning bayesian network structure
from massive datasets: The ”sparse candidate” algorithm. In Proc. 15th Conf.
on Uncertainty in Artificial Intelligence, 1999.

D. Heckerman. A tutorial on learning bayesian networks. Technical Report
MSR-TR-95-06, Microsoft Research, March 1995.

The Mathworks Inc. Matlab. http://www.mathworks.com, 2003.

F. Jensen, U. Kjeerulff, M. Lang, and A.L. Madsen. Hugin - the tool for
bayesian networks and influence diagrams. In First European Workshop on
Probabilistic Graphical Models, pages 212221, 2002.

D. Margaritis and S. Thrun. Bayesian network induction via local neighbor-
hoods. Advances in Neural Information Processing Systems 12 (NIPS), 1999.
P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search,
Second Edition. MIT Press, 2000.

APPENDIX A. BN TILING TooOL USER’S MANUAL

A.1. System Requirements. The software runs on a Windows ma-
chine, although a UNIX version can be created upon request. It is
necessary to have the latest Matlab (e.g., version 6.5 - release 13)
with Matlab Optimization Toolbox (e.g., version 2.2 - release 13) and
HUGIN software (e.g. version 6.1 or 6.2 educational) installed on your
computer.

A.2. Installation Package. The software is distributed as DLL’s for
use with Matlab. The distributive of BN Tiling Tool includes the
following files:

e bn_tiling.dll — BN Tiling Tool (Main program) DLL;

e bn_tiling.m — BN Tiling Tool: Matlab driver with documenta-
tion;

e data_converter_hugin.dll — Data Converter from HUGIN to Mat-
lab format DLL;

e data_converter_hugin.m — Data Converter From HUGIN to Mat-
lab format: Matlab driver with documentation;

e simulate_data.dll — Data and Adjacency Matrix Generator DLL;

e simulate_data.m — Data and Adjacency Matrix Generator: Mat-
lab driver with documentation;

e Data/alarm_h.dat — ALARM network: data generated by HUGIN;

e Data/alarm_h.mat — ALARM network: data in Matlab format;

e Data/alarm_h.net - ALARM network: original HUGIN network
file;

e Data/alarm_h_graph.mat — ALARM network: Adjacency ma-
trix;

e Data/hailfinder_h.dat — Hailfinder network: data generated by
HUGIN;

e Data/hailfinder_h.mat — Hailfinder network: data in Matlab
format;

e Data/hailfinder_h.net — Hailfinder network: original HUGIN
network file;

e Data/hailfinder_h_graph.mat — Hailfinder network: Adjacency
matrix;

e Data/nodes.mat — Sample tiled network (about 1000 nodes)
from ALARM and Hailfinder tiles.

A.3. Getting Started. Given a network file(s) in HUGIN format, one
has to perform the following steps in order to generate a large Bayesian

network and randomly sample data instance from it:
7

e Generate data for all original networks using HUGIN software
(without missing values). The data will be used to estimate
joint probabilities in the tiles. In the later versions of BN Tiling
Tool there will be not need to specify datasets, since an inference
algorithm will be implemented in the software;

e Convert data generated by HUGIN in Matlab format using util-
ity data_converter_hugin and save it in files (a file per single
data array variable "data”);

e Use bn_tiling program to generate a new large Bayesian net-
work;

e Use sample_data utility to sample data from the large network,
as well as to generate an adjacency matrix.

All details (including examples) on working with functions listed
above are included in Matlab documentation of the installation pack-
age.

