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Abstract

Standard approaches to object detection focus on locah@sitof the
image, and try to classify them as background or not. We meo
use thescene conteximage as a whole) as an extra source of (global)
information, to help resolve local ambiguities. We presenbtnditional
random field for jointly solving the tasks of object detentiand scene
classification.

1 Introduction

Standard approaches to object detection (e.g., [24, 18Bllydook at local pieces of the
image in isolation when deciding if the object is present or &t a particular location/
scale. However, this approach may fail if the image is of lavaldgy (e.g., [23]), or the
object is too small, or the object is partly occluded, etahia paper we propose to use the
image as a whole as an extra global feature, to help overamcaédmbiguities.

There is some psychological evidence that people perfopid global scene analysis be-
fore conducting more detailed local object analysis [4,T2le key computational question
is how to represent the whole image in a compact, yet infau@atorm. Torralba [21]
suggests a representation, called the “gist” of the imagsed on PCA of a set of spatially
averaged filter-bank outputs. The gist acts as an holistie;dimensional representation
of the whole image. Torralba shows that this is sufficientrvjile a useful prior for what
types of objects may appear in the image, and at which lauvatale.

We extend [21] by combining the prior suggested by the gith thie outputs of bottom-up,
local object detectors, which are trained using boostieg Section 2). Note that this is
quite different from approaches that use joint spatial t@irgs between the locations of
objects, such as [11, 20, 19, 8]. In our case, the spatiati@ints come from the image as
a whole, not from other objects. This is computationally taitnpler (see Section 3).

Another task of interest is detecting if the object is préserywhere in the image, regard-
less of location. (This can be useful for object-based imagaeval.) In principle, this
is straightforward: we declare the object is present iffdie¢ector fires (at least once) at
any location/scale. However, this means that a single fads#tive at the patch level can
cause a 100% error rate at the image level. As we will see itidded, even very good
detectors can perform poorly at this task. The gist, howéveble to perform quite well at
suggesting the presence of types of objects, without ustgector at all. In fact, we can



use the gist to decide if it is even “worth” running a detectdthough we do not explore
this here.

Often, the presence of certains types of objects is coewla.g., if you see a keyboard,
you expect to see a screen. Rather than model this correldtiectly, we introduce a
hidden common cause/ factor, which we call the “scene”. lati8e 5, we show how
we can reliably determine the type of scene (e.g., officajdaror street) using the gist.
Scenes can also be defined in terms of the objects which asenir@ the image. Hence
we combine the tasks of scene classification and objecepeoesdetection using a tree-
structured graphical model: see Section 6. We perform taprdinference (scenes to
objects) and bottom-up inference (objects to scenes) smtioidel. Finally, we conclude in
Section 7.

2 Object detection and localization

For object detection there are at least three families ofagahes: parts-based (an objectis
defined as a specific spatial arrangement of small partg@&}g.patch-based (we classify
each rectangular image region, of a fixed aspect ratio (3ttapat multiple sizes, as object
or background); and region-based (a region of the imaggmerted from the background
and is described by a set of features that provide texturskhaple information e.g., [5]).

Here we use a patch-based approach. For objects with rigittdefined shapes (screens,
keyboards, people, cars), a patch usually contains theobjéict and a small portion of
the background. For the rest of the objects (desks, bookstigbuildings), rectangular
patches may contain only a piece of the object. In that cdmerdgion covered by a
number of patches defines the object. In such a case, thet digjctor will rely mostly
on the textural properties of the patch.

The main advantage of the patch-based approach is that-agtsction can be reduced to
a binary classification problem. Specifically, we compB{@$ = 1|vf) for each class
and patch (ranging over location and scale), whépg = 1 if patch: contains (part of) an
instance of class, andO; = 0 otherwiseyy is the feature vector (to be described below)
for patchi computed for class.

To detect an object, we slide our detector across the imagamg and classify all the
patches at each location and scale (20% increments of sizewany other pixel in loca-
tion). After performing non-maximal suppression [1], wpoet as detections all locations
for which P(O¢|v$) is above a threshold, chosen to given a desired trade-afideet false
positives and missed detections.

2.1 Features for objects and scenes

We would like to use the same set of features for detectingrigtyeof object types, as
well as for classifying scenes. Hence we will create a lagg®&features and use a feature
selection algorithm (Section 2.2) to select the most disicrative subset.

We compute componentof the feature vector for image patéin three steps, as follows.
First we convolve the (monochrome) patglz) with a filter g, (z), chosen from the set of
13 (zero-mean) filters shown in Figure 1(a). This set inchuniéented edges, a Laplacian
filter, corner detectors and long edge detectors. Theseré=atan be computed efficiently:
The filters used can be obtained by convolution of 1D filtees {fistance, the long edge
filters are obtained by the convolution of the two filtérsl 0 1]7 and[1 1 1 11 1]) or as
linear combinations of the other filter outputs (e.g., thet Bix filters are steerable).

We can summarize the response of the patch convolved wiffiitdre| I; (z) * gi (x)|, using
a histogram. As shown in [7], we can further summarize thigdgram using just two



statistics, the variance and the kurtosis. Hence in stepweaomputel; (z) * g (x)|7*,
for v, € {2,4}. (The kurtosis is useful for characterizing texture-likgions.)

Often we are only interested in the response of the filteriwaltertain region of the patch.
Hence we can apply one of 30 different spatial templatesghvare shown in Figure 1(b).
The use of a spatial template provides a crude encoding efp&shinside the rectangular
patch. We use rectangular masks because we can efficientiyute the average response
of a filter within each region using the integral image [24].

Summarizing, we can compute compongrdf the feature vector for patczhas follows:
filk) = >, wi(x) ([I(z) * gr(x)|™),. (To achieve some illumination invariance, we
also standardize each feature vector on a per-patch babie)feature vector has size
13 x 30 x 2 = 780 (the factor of 2 arises because we consiges= 2 or 4).

Figure 2 shows some of the features selected by the leartungthm (see Section 2.2)

for different kinds of objects. For example, we see that cot@pmonitor screens are char-
acterized by long horizontal or vertical lines on the eddebe patch, whereas buildings,
seen from the outside, are characterized by cross-likarextlue to the repetitive pattern
of windows.
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Figure 1:(a) Dictionary of filters. Filter 1 is a delta function, 2—7 are 3x3 Gaussian derieati8 is

a 3x3 Laplacian, 9 is a 5x5 corner detector, 10-13 are long ddtgctors (of size 3x5, 3x7, 5x3 and
7x3). (b) Dictionary of 30 spatial templates Template 1 is the whole patch, 2—7 are all sub-patches
of size 1/2, 8-30 are all sub-patches of size 1/3.
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Figure 2:Some of the features chosen after 100 rounds of boostingémgnizing screens, pedes-
trians and buildings. Features are sorted in order of deitrgaveight, which is a rough indication of
importance. “Energy” meang, = 2 and “Kurt” (kurtosis) means;, = 4.

The Viola and Jones [24] feature set is equivalent to usiegdtmasks plus a delta function filter;
the result is like a Haar wavelet basis. This has the advariteay objects of any size can be detected
without needing an image pyramid, making the system vetty g contrast, since our filters have
fixed spatial support, we need to down-sample the image &xtletrge objects.



2.2 Classifier

Following [24], our detectors are based on a classifier éihinsing boosting. There are
many variants of boosting [10, 9, 17], which differ in theddanction they are trying to

optimize, and in the gradient directions which they folla¥e, and others [14], have found
that GentleBoost [10] gives higher performance than AdaB@br], and requires fewer
iterations to train, so this is the version we shall (brieflygsent below.

The boosting procedure learns a (possibly weighted) coatioim of base classifiers, or
“weak learners”a(v) = >, a;hy(v), wherev is the feature vector of the patch, is the
base classifier used at roundandq; is its corresponding weight. (GentleBoost, unlike
AdaBoost, does not weight the outputs of the weak learners,; s= 1.) For the weak
classifiers we use regression stumps of the fofm) = afvy > 0] +b, wherefvy > 0] =1

iff componentf of the feature vector is above threshold. For most of the objects we
used about 100 rounds of boosting. (We use a hold-out set toton@verfitting.) See
Figure 2 for some examples of the selected features.

The output of a boosted classifier is a “confidence-ratedigtied”, «. We convert this to
a probability using logistic regressio®?(O§ = 1|a(v§)) = o(wT[1 ), whereo(z) =
1/(1 4+ exp(—x)) is the sigmoid function [16]. We can then change the hit falsg alarm
rate of the detector by varying the thresholdB{O = 1|«).

Figure 3 summarizes the performances of the detectors fet afsobjects on isolated
patches (not whole images) taken from the test set. Thetsegry in quality since some
objects are harder to recognize than others, and because dgects have less training
data. When we trained and tested our detector on the trdiaging sets of side-views of
cars from UIUC, we outperformed the detector of [1] at every point on theisien-recalll
curve (results not shown), suggesting that our base-litecttgs can match state-of-the-art
detectors when given enough training data.
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Figure 3: left) ROC curves for 9 objects; we plot hit rate vs number of falsenas, when the
detectors are run on isolated test patchegldle) Example of the detector output on one of the test
setimages, before non-maximal suppressia@ht ) Example of the detector output on a line drawing
of a typical office scene. The system correctly detects treesc the desk and the bookshelf.

3 Improving object localization by using the gist

One way to improve the speed and accuracy of a detector isitweghe search space, by
only running the detector in locations/ scales that we etpdnd the object. The expected
location/scale can be computed on a per image basis usingjghas we explain below.
(Thus our approach is more sophisticated than having a fixied, guch as “keyboards
always occur in the bottom half of an image”.)

If we only run our detectors in a predicted region, we riskgsimg objects. Instead, we
run our detectors everywhere, but we penalize detecticatsatte far from the predicted

2http://12r.cs.uiuc.edutcogcomp/Data/Car/



location/scale. Thus objects in unusual locations haveet@drticularly salient (strong
local detection score) in order to be detected, which acowith psychophysical results of
human observers [2].

We define the gist as a feature vector summarizing the whagémnand denote it byg.
One way to compute this is to treat the whole image as a sirgglshpand to compute a
feature vector for it as described in Section 2.1. If we usmage scales and 30 spatial
masks, the gist will have sizE3 x 30 x 2 x 2 = 1560. Alternatively, we can omit the
fourth-moment terms, to get a vector of half the size; wetbddl the gist-without-kurtosis.
Even this is too large for some methods, so we consider ane#iant that reduces di-
mensionality yet further by using PCA. Following [22, 21]ewake the first 80 principal
components; we call this the PCA-gist.

We can predict the expected location/scale of objects skelgiven the gist,F[X ¢|v%],
by using a regression procedure; we used boosted regrdS§iorhe gist can predict the
expected size and vertical location of an object, but ndtatszontal location, since this is
typically unconstrained by the scene: see [21] for detalils.

To combine the local and global sources of information, westict a feature vectof
which combines the output of the boosted deteaidr;s), and the vector between the
location of the patch and the predicted location for objetthis class;z{ — z¢. We then
train another classifier to compu®O¢ = 1| f (a(v§), z¢, £°)). We could use boosting, but
for such a low-dimensional feature vector, we find logiséigression is sufficient. Hence
the cost of this approach is not much higher than just usiogl ldetectors (since the gist is
computed using the same features as the object detectors).

In Figure 4, we compare localization performance using fhst detectors,P(O§ =
1|la(v§) (denotedP(O,|v,) in the legend), and using the detectors and the predicted loc
tion, P(OF = 1| f(c(v), x5, 2°)) (denotedP(Oy|vp, z(ve)) in the legend). For keyboards
(which are hard to detect) we see that using the predicteditothelps a lot, whereas for
screens (which are easy to detect), the location informataes not help. We expected a
benefit in the case of people; the reason this is not appa@nbmdue to the fact that our
patch size for people is much larger than for screens andoeag, and hence there are
fewer patches that need to be rejected by the gist.
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Figure 4:ROC curves for detecting the location of objects in the imdgg keyboard, (b) screen,
(c) person. The circles (green) are the local detectorsalmmd the squares (blue) are the detectors
and predicted location.

4 Object presence detection

We can compute the probability that the object exists anysvimethe image (which can be
used for e.g., object-based image retrieval) by taking tReofall the detectors:

P(E® = 1165,y) = ViP(O° = 1[v5.).



Unfortunately, this leads to massive overconfidence, dine@atches are not independent.
As a simple approximation, we can use

P(E® = 1|vf.) ~ max P(E° = 1|of,) = P(E° = 1| maxa,(vf)) = P(E° = 1|a%,,,)-

Unfortunately, even for good detectors, this can give pesuits: the probability of error

at the image level i$ — [,(1 — ¢;) = 1 — (1 — ¢)"V, whereg is the probability of error at
the patch level andv is the number of patches. For a detector with a reasonablydtse
alarm rate, say = 10~4, andN = 5000 patches, this gives a 40% false detection rate at
the image level! For example, see the reduced performaribe ahage level of the screen
detector (Figure 5(a)), which performs very well at the pdével (Figure 4(a)).

An alternative approach is to use the gist to predict thegmes of the object, without using
a detector at all. This is possible because the overalltstire©f the image can suggest
what kind of scene this is (see Section 5), and this in turgesty what kinds of objects
are present (see Section 6). We trained another boostesifiglato predictP(E°¢ = 1[v%);
results are shown Figure 5. For poor detectors, such as keyfahe gist does a much
better job than the detectors, whereas for good detectoch, & screens, the results are
comparable.

Finally, we can combine combine both approaches by cortstgua feature vector from the
output of the global and local boosted classifiers. As ini8e@&, we use logistic regres-
sion to combine the information source3(E° = 1[v%, v§.\) = o(wl [l a(v¥)as,,,]).
However, this seems to offer little improvement over thé gisne (see Figure 5), presum-
ably because our detectors are not very good.
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Figure 5: ROC curves for detecting the presence of object classesiimthge: (a) keyboard (b)
screen, (c) person. The circles (green) use the gist albaesquares (blue) use the detectors alone,
and the stars (red) use the joint model, which uses the gisatuthe detectors from all the object
classes.

5 Scene classification

As mentioned in the introduction, the presence of many tygfesbjects is correlated.
Rather than model this correlation directly, we introdudatant common “cause”, which
we call the “scene”. We assume that object presence is ¢ondily independent given
the scene, as explained in Section 6. But first we explain hewesognize the scene type,
which in this paper can be office, corridor or street.

The approach we take to scene classification is simple. Wedrane-vs-all binary clas-
sifier for recognizing each type of scene using boostingiagpb the gisE Then we

3An alternative would be to use the multi-class LogitBoosfoaithm [10]. However, training
separate one-vs-all classifiers allows them to have difféngernal structure (e.g., number of rounds).
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Figure 6: (a) Graphical model for scene and object recognitien= 6 is the number of object
classesN. ~ 5000 is the number of patches for class Other terms are defined in the texb)
Precision-recall curve for scene classification.

normalize the resultsP(S = s[v®) = % where P(S® = 1[v%) is the

output of the s-vs-other classifitr.

6 Joint scene classification and object-presence detection

We now discuss how we can use scene classification to faeiliaject-presence detec-
tion, and vice versa. The approach is based on the treexstedcgraphical modelin
Figure 6(a), which encodes our assumption that the objeetsanditionally independent
given the scene.

This graphical model encodes the foIIowing conditionahjalensity:

P(S,E¥™, 0%y, ..., 05 |v) P(S|vG)HQS(EC,S)HP(OﬂEC,vf)

wherev® andv¢ are deterministic functions of the imagandZ is a normalizing constant.
called the partition function (which is tractable to comgugince the graph is a tree). By
conditioning on the observations as opposed to generdttérg,twe are free to incorporate
arbitrary, possibly overlapping features (local and glpbaithout having to make strong
independence assumptions c.f., [13, 12].

We now define the individual terms in this expressiét{.S|v“) is the output of boosting
as described in Section B(E*<, S) is essentially a table which counts the number of times
object typec occurs in scene typ§. Finally, we define

c e v J oIl a(f)]) ife=1
Pof =115 =it} = { fe—1
This means that if we know the object is absent in the imdgfe=€ 0), then all the local
detectors should be turned ofd?{ = 0); but if the object is present{® = 1), we do not
know where, so we allow the local evideneg, to decide which detectors should turn on.
We can find the maximum likelihood estimates of the paramseatkthis model by training
it jointly using a gradient procedure; see the long versiothis paper for details.

In Figure 5, we compare the ability to detect object presessieg the gist directly (as in
Section 4) and using it indirectly via the scene variable (using the joint model). Both

“For scenes, it is arguably more natural to allow multipleslapas in [3], rather than forcing each
scene into a single category; this can be handled with a simpHification of boosting [18].
The graph is a tree once we remove the observed nodes.



methods perform equally well (and outperform just usingcalaletector). The importance
of this result is that it is easy to label images with theirrecéype, and hence to train
P(S|v%), but it is much more time consuming to annotate objects, viiaequired to
train the direct model, which computé&¥ E¢|v%).6

7 Conclusions and future work

We have shown how to combine global and local image featoreslve the tasks of object
detection and scene recognition. In the future, we planyt@tiarger number of object

classes. Also, we would like to investigate methods for sifgpwhich order to run the

detectors. For example, one can imagine a scenario in whichuw the screen detector
first (since it is very reliable); if we discover a screen, wadude we are in an office, and
then decide to look for keyboards and chairs; but if we doistaver a screen, we might
be in a corridor or a street, so we choose to run another detectlisambiguate our belief
state. This corresponds to a dynamic message passing @rotothe graphical model, as
opposed to the fixed order (bottom-up, then top-down) thatuveently use.
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