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1 Introduction

We consider the problem of finding the maximum likelihood (ML) estimates of the parameters of a conditional
Gaussian variable Y with continuous parent X and discrete parent Q, i.e.,

p(y|x, Q = i) = c|Σi|
−

1
2 exp

(

− 1
2 (y − Bix − µi)

′Σ−1
i (y − Bix − µi)

)

where c = (2π)−d/2 is a constant and |y| = d. The j’th row of Bi is the regression vector for the j’th
component of y given that Q = i. We consider tying and various constraints on the covariance matrix in
order to reduce the number of free parameters.

We will allow any of the variables to be hidden — we will replace observed values with expected values
conditioned on evidence, as in EM. We express all the estimates in terms of expected sufficient statistics,
whose size is independent of the number of samples. (This is different from the usual presentation, which
give the formulas in terms of the raw data matrix.) The resulting formulas can be used in the M step of all
of the following common models, which use special cases of the above equation:

• Factor analysis. Q does not exist, Σ is assumed diagonal, X is hidden and Y is observed. (The
temporal version of this is the Kalman filter.)

• Mixture of Gaussians. X does not exist, Q is hidden, and Y is observed. (The temporal version of this
is an HMM with MOG outputs.)

• Mixture of factor analyzers. Σi is diagonal, Q and X are hidden, Y is observed. (The temporal version
of this is a switching Kalman filter.)

We assume that we have N i.i.d. training cases {et}, so the complete-data log-likelihood is

log

N
∏

t=1

|Q|
∏

i=1

[Pr(yt|xt, Qt = i, et)]
qi

t

where qi
t = 1 if Q has value i in the t’th complete case, and 0 otherwise. Since Q, X and Y may all be

unobserved, we compute the expected complete-data log likelihood as follows (dropping terms which are
independent of the parameters of Y )

L = − 1
2

∑

t

E

[

∑

i

qi
t log |Σi| + qi

t(yt − Bixt − µi)
′Σ−1

i (yt − Bixt − µi)|et

]

By the chain rule, we can write

E[qi
txtx

′
t|et] = E[qi

t|et]E[xtx
′
t|Qt = i, et]

def
= wi

tEti[XX ′]
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where the weights wi
t = Pr(Q = i|et) are posterior probabilities (responsibilities), and Eti[XX ′] is a con-

ditional second moment; we can rewrite the other moments similarly. In this new notation, the expected
complete-data log-likelihood becomes

L = − 1
2

∑

t

∑

i

wi
t log |Σi| −

1
2

∑

t

∑

i

wi
tEti

[

(yt − Bixt − µi)
′Σ−1

i (yt − Bixt − µi)
]

(1)

To simplify future equations, we introduce the following expected sufficient statistics:

wi
def
=

∑

t

wi
t

SY Y ′,i
def
=

∑

t

wi
tEti[Y Y ′]

SY ′Y,i
def
=

∑

t

wi
tEti[Y

′Y ]

SY,i
def
=

∑

t

wi
tEti[Y ]

SXX′,i
def
=

∑

t

wi
tEti[XX ′]

SX,i
def
=

∑

t

wi
tEti[X ]

SXY ′,i
def
=

∑

t

wi
tEti[XY ′]

SY X′,i
def
=

∑

t

wi
tEti[Y X ′]

Obviously
∑

i wi = N , SXY ′,i = SXY ′,i, etc.
The goal is to derive the equations so we can implement a function of the form

(µi, Σi, Bi) = Mstep-clg(wi, SY Y ′,i, SY ′Y,i, SY,i, SXX′,i, SX,i, SXY ′,i)

For the no regression case, where X does not exist, we can simplify this to

(µi, Σi) = Mstep-cond-gauss(wi, SY Y ′,i, SY ′Y,i, SY,i)

2 Estimating the regression matrix

2.1 Untied

Using the following identity (see e.g., [Row99],[Jor03, ch.13])

∂ ((Xa + b)′C(Xa + b))

∂X
= (C + C ′)(Xa + b)a′ (2)

where X = −Bi, a = xt, b = yt − µi, C = Σ−1
i , we have

∂

∂Bi
L = − 1

2

∑

t

wi
t · −2Σ−1

i · Eti[(yt − Bixt − µi)x
′
t]

= Σ−1
i

{

(
∑

t

wi
tEti[Y X ′]) − Bi(

∑

t

wi
tEti[XX ′]) − µi(

∑

t

wi
tEti[X

′])

}

= Σ−1
i

{

SY X′,i − BiSXX′,i − µiS
′
X,i

}
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Setting ∂
∂Bi

L = 0 yields

B̂i =
(

SY X′,i − µiS
′
X,i

)

S−1
XX′,i (3)

If we set µi = 0, we recognize this as the (weighted) normal equations:

B̂i = SY X′,iS
−1
XX′,i

2.2 Tied

The derivation is similar to the above.

∂

∂B
L =

∑

i

Σ−1
i

{

SY X′,i − BSXX′,i − µiS
′
X,i

}

Unfortunately, this is hard to solve. So we will assume the covariance is also tied, leading to

∂

∂B
L = Σ−1

∑

i

{

SY X′,i − BSXX′,i − µiS
′
X,i

}

and hence

B̂ =

(

∑

i

SY X′,i −
∑

i

µiS
′
X,i

)(

∑

i

SXX′,i

)−1

(4)

3 Estimating the mean

3.1 Untied

We can estimate µi similarly to Bi. Using Equation 2 where X = µi, a = 1, b = yt − Bixt, C = Σ−1
i , we

have

∂

∂µi
L = − 1

2

∑

t

wi
t · −2Σ−1

i · Eti[(yt − Bixt − µi)]

= Σ−1
i

{

(
∑

t

wi
tEti[Y ]) − Bi(

∑

t

wi
tEti[X ]) − µi(

∑

t

wi
t1)

}

= Σ−1
i {SY,i − BiSX,i − µiwi}

Setting ∂
∂µi

L = 0 yields

µ̂i =
SY,i − BiSX,i

wi
(5)

3.1.1 No regression

If Bi = 0, this yields the familiar special case

µ̂i =
SY,i

wi
=

∑

t wi
tEtiY

∑

t wi
t

(6)

3.2 Tied

∂

∂µ
L = Σ−1

i

∑

i

{SY,i − BiSX,i − µiwi}

So

µ̂ =

∑

i(SY,i − BiSX,i)

N
(7)
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3.2.1 No regression

If B = 0, this yields

µ̂ =

∑

i SY,i

N
(8)

4 Estimating the regression matrix and the mean simultaneously

Since the equation for Bi depends on µi and vice versa, if they are both to be estimated (as opposed to
being clamped to fixed values), we must estimate them jointly. We can do this by appending µi as the last
column to Bi to create Ai, and appending a 1 to the last component of X to create Z. Then the likelihood
becomes

p(y|x, Q = i) = c|Σi|
−

1
2 exp

(

− 1
2 (y − Aiz)′Σ−1

i (y − Aiz)
)

We use the equations from Section 2, with µi = 0 and replacing SXX′,i with SZZ′,i and SY X′,i with SZY ′,i,
defined below. Specifically,

Âi = SY Z′,iS
−1
ZZ′,i (9)

The substitutions are

EtiZZ ′ = Eti

(

X
1

)

(

X ′ 1
)

= Eti

(

XX ′ X
X ′ 1

)

so

SZZ′,i =

(

SXX′,i SX,i

S′
X,i wi

)

Also,

EtiZY ′ = Eti

(

X
1

)

Y ′ = Eti

(

XY ′

Y ′

)

so

SZY ′,i =

(

SXY ′,i

S′
Y,i

)

5 Estimating a full covariance matrix

We assume the mean (whether estimated or clamped) is appended to Ai, and that a 1 is appended to Z, to
simplify notation.

5.1 Untied

Using the identities
∂ ln |X |

∂X
= (X ′)−1 and ln |X | = − ln |X−1|

we have
∂

∂Σ−1
i

ln |Σi| = −
∂

∂Σ−1
i

ln |Σ−1
i | = −Σi

Also, using the identity
∂(a′Xb)

∂X
= ab′

where a′ = b = (yt − Aizt) and X = Σ−1
i , we have

∂

∂Σ−1
i

L = 1
2 (
∑

t

wi
t)Σi −

1
2

∑

t

wi
tEti(yt − Aizt)(yt − Aizt)

′

= 0
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Hence

Σ̂i =
1

wi

∑

t

wi
tEti (Y Y ′ − Y Z ′A′

i − AiZY ′ + AiZZ ′A′
i)

=
1

wi
(SY Y ′,i − SY Z′,iA

′
i − AiSZY ′,i + AiSZZ′,iA

′
i) (10)

If Ai = Âi in Equation 9, we have

AiSZZ′,iA
′
i =

(

SY Z′,iS
−1
ZZ′,i

)

SZZ′,i

(

S−1
ZZ′,iSZY ′,i

)

= SY Z′,iA
′
i

so the above simplifies further to

Σ̂i =
1

wi
(SY Y ′,i − AiSZY ′,i) (11)

5.1.1 No regression

If Ai = µi, Equation 10 simplifies to

Σ̂i =
1

wi

(

SY Y ′,i − SY,iµ
′
i − µiS

′
Y,i + µiµ

′
i

)

If in addition µi = µ̂i =
SY,i

wi
from Equation 6, then

Σ̂i =
SY Y ′,i

wi
− µiµ

′
i (12)

5.2 Tied

We have
∂

∂Σ−1
L = 1

2 (
∑

i

∑

t

wi
t)Σ − 1

2

∑

t

∑

i

wi
tEti(yt − Aizt)(yt − Aizt)

′

Hence

Σ̂ =
1

N

∑

i

(SY Y ′,i − SY Z′,iA
′
i − AiSZY ′,i + AiSZZ′,iA

′
i) (13)

If Ai = Âi, then

Σ̂i =
1

N

∑

i

(SY Y ′,i − AiSZY ′,i) (14)

5.2.1 No regression

If Ai = µi, Equation 13 simplifies to

Σ̂ =
1

N

∑

i

(

SY Y ′,i − SY,iµ
′
i − µiS

′
Y,i + µiµ

′
i

)

If in addition µi = µ̂i =
SY,i

wi
from Equation 6, then

Σ̂ =

∑

i SY Y ′,i

N
−
∑

i

µiµ
′
i (15)

6 Estimating a diagonal covariance matrix

Proceed as in estimating a full matrix, but then set all off-diagonal entries to 0.
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7 Estimating a spherical covariance matrix

7.1 Untied

If we have the constraint that Σi = σ2
i I is isotropic, the conditional density of Y becomes

p(y|x, Q = i) = cσ−d
i exp

(

− 1
2σ−2

i ||y − Aiz||
2
)

Hence
L = −d

∑

t

∑

i

wi
tEti[log σi −

1
2σ−2

i ||y − Aiz||
2]

so
∂

∂σi
L = −d

∑

t

wi
tσ

−1
i + σ−3

i wi
tEti||yt − Aizt||

2 = 0

and

σ2
i =

1/d
∑

t wi
t

(

∑

t

wi
tEti||yt − Aixt||

2

)

Now
||yt − Aizt||

2 = (yt − Aizt)
′(yt − Aizt) = y′

tyt + z′tA
′
iAizt − 2y′

tAizt

To compute the expected value of this distance, we use the fact that x′Ay = tr(x′Ay) = tr(Ayx′), so
E[x′Ay] = tr(AE[yx′]). Hence

∑

t

wi
tEti(yt − Aizt)

′(yt − Aizt) = tr(
∑

t

wi
tEtiY

′Y ) + tr(
∑

t

wi
tA

′
iAiEtiZZ ′) − 2tr(

∑

t

wi
tAiEtiZY ′)

Now tr(A) + tr(B) = tr(A + B), so

σ2
i =

1/d

wi
tr (SY ′Y,i + A′

iAiSZZ′,i − 2AiSZY ′,i) (16)

7.1.1 No regression

If Ai = µi and zt = 1,

∑

t

wi
tEti(yt − Aizt)

′(yt − Aizt) =
∑

t

wi
tEti (Y ′Y + µ′

iµi − 2Y ′µi)

If µi = µ̂i =
∑

t EtiY

wi
as in Equation 5, this becomes

σ2
i =

1

d

(

SY ′Y,i

wi
− µ′

iµi

)

(17)

7.2 Tied

If σ2
i is tied, we get

σ2 =
1/d

N
tr
∑

i

(SY ′Y,i + A′
iAiSZZ′,i − 2AiSZY ′,i) (18)

7.2.1 No regression

For the tied case, we get

σ2 =
1

Nd

(

∑

i

SY ′Y,i +
∑

i

wiµ
′
iµi

)

(19)
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8 MAP estimates

You may encounter numerical problems when estimating CLG distributions, especially with small data sets
or with mixture components that have low reponsibility (and hence little data assigned to them). A simple
solution to this is to put a prior on the parameters, and compute maximum a posterior (MAP) estimates
instead of maximum likelihood (ML) estimates.

Minka [Min00] discusses conjugate priors for the case of linear regression (including ridge regression, etc.)
To extend these formulas to the current case, it would be necessary to derive the conditioning on Q, and to
consider the partially observed case.

Most of the formulas needed for the no regression case have been derived in [HC95]; We summarize the
results for the full-covariance, untied case below.1 The tied and diagonal cases are similar. The details for
the spherical case are not given, since regularization of a single scalar parameter is less important.

We put a Normal-Wishart prior on each Gaussian mixture component

P (µi, Σi) = P (µi)P (Σi|µi) = N (µi; mi, τ
−1
i Id) ×W(Σi|µi; Λi, αi)

where
W(Σi|µi; Λi, αi) ∝ |Σi|

(αi−d)/2 exp(− 1
2 tr(ΛiΣi))

The mode of the Wishart is Σ−1
i = (αi − d)Λ−1

i , and the mean is Σ−1
i = αiΛ

−1
i . Either of these can be used

as initial estimates for Σi.
We can compute the MAP estimates by setting the derivative of the unnormalized log posterior to zero:

∂LMAP

∂µi
=

[

∑

t

wi
tEti

∂

∂µi
logN (Yt; µi, Σi)

]

+
∂

∂µi
logN (µi; mi, τi)

=

[

∑

t

wi
tEtiΣ

−1
i (Yt − µi)

]

− τiΣ
−1
i (µi − mi)

so

µ̂MAP
i =

τimi +
∑

t wi
tEtiYt

τi +
∑

t wi
t

=
τimi + SY,i

τi + wi
(20)

Similarly,

∂LMAP

∂Σ−1
i

=

[

∑

t

wi
tEti

∂

∂Σ−1
i

logN (Yt; µi, Σi)

]

+
∂

∂Σ−1
i

logW(Σi)

=

[

∑

t

wi
tEti

1
2 (Σi − (Yt − µi)(Yt − µi)

′)

]

+

[

αi − d

2
Σi −

τi

2
(µi − mi)(µi − mi)

′ − 1
2Λi

]

so

Σ̂MAP
i =

Λi + τi(µi − mi)(µi − mi)
′ +
∑

t wi
tEti(Yt − µi)(Yt − µi)

′

αi − d +
∑

t wi
t

=
Λi + τi(µi − mi)(µi − mi)

′ + SY Y ′,i − wiµiµ
′
i

αi − d + wi
(21)

If we don’t put a prior on µi (by setting the precision τi = 0), this simplfies to

Σ̂MAP
i =

Λi + SY Y ′,i − wiµiµ
′
i

αi − d + wi
(22)

1We use slightly different notation. Specifically, we use µi as a parameter and mi as a hyperparameter, whereas they use
the opposite; we use the covariance matrix Σi instead of the precision matrix r

−1

i
, and denote the prior covariance ui by Λi.

Note that τi is an inverse variance (scalar). Also, we use the expected value of Y .
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A simple choice of hyper-parameters is Λi = siId and αi = d, where si is some scaling factor, e.g., 0.01. (This
can be implemented by simply replacing SY Y ′,i with SY Y ′,i +Λi in all the equations above.) Essentially this
just regularizes the covariance estimate and avoids problems with singular matrices.

9 Deterministic annealing

EM is notorious for getting stuck in local optima. One approach is to use deterministic annealing [Ros98,
UN98], slowly lowering a “temperature” parameter.

Brand [Bra99b, Bra99a] suggests optimizing

θMAP = arg max
θ

log P (D|θ) − ZH(θ)

where −H(θ) is a minimum entropy prior, Z = T0−T , and T is a temperature; he calls this “prior balancing”.
In the case of (unconditional) Gaussians, this becomes

Σ̂MAP = SY Y ′/(N + Z)

Initially, T is a large positive number, so Z is a large negative number, which “inflates” Σ̂MAP . We reduce
the temperature until Z = 1, the minimum entropy solution. (Z = 0 corresponds to maximum likelihood,
and Z = −1 corresponds to maximum entropy.)

A similar approach can be applied to the more conventional Wishart prior: we start with si large, forcing
all covariances to be broad, and hence all mixture components to receive a lot of support; then we gradually
reduce the noise level.
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