Submitted to ISMB-95

Automata-Theoretic Models
of Mutation and Alignment

David B. Searls and Kevin P. Murphy*

Department of Genetics, Rm. 475CRB
University of Pennsylvania School of Medicine
422 Curie Boulevard, Philadelphia, PA 19104-6145 USA
dsearls@cbil.humgen.upenn.edu, (215)573-3107, FAX -3111

Abstract
Finite-state automata called transducers, which have both input and output, can be used to
model simple mechanisms of biological mutation. We present a methodology whereby numeri-
cally-weighted versions of such specifications can be mechanically adapted to create string edit
machines that are essentially equivalent to recurrence relations of the sort that characterize
dynamic programming alignment algorithms. Based on this, we have developed a visual pro-
gramming system for designing new alignment algorithms in a rapid-prototyping fashion.

1 Introduction

Finite-state automata have an important place in computer science, often representing simple models
of computation as the recognition or generation of strings of symbols. A wide variety of such automata
have been intensively studied, including weighted automata which have numbers associated with
transitions between states, and transducers which have both input and output.

Allison and co-workers [2] have proposed the use of finite-state models for mutation, and fur-
thermore shown how some simple versions of such models (corresponding to constant and piecewise
linear gap penalties) can be related to dynamic programming alignment algorithms. This builds
upon early work by Karp and Held [5] establishing the relationship between weighted finite-state
automata and generalized dynamic programming. We have been working to extend this notion in
a biological context and to rigorously capture the relationships between simple mutational models,
edit distance, and alignment. We find that not only can these transitions be neatly formalized, but
that the resulting methodologies can be used to create tools to assist in the design of new algorithms.

Haussler and colleagues [6] have also made imaginative use of simple mutational models and
finite-state automata, as embodied in hidden Markov models (HMMs) that they use to learn profile
descriptors of multiply-aligned protein families. Here again there is an implicit relationship with
dynamic programming through the algorithms associated with HMMs, although in this case the
automata are used to model evolutionary relationships among specific sets of strings rather than
general algorithms for comparing arbitrary strings under some model of evolution. Thus, the au-
tomata involved in describing a class of proteins directly represent, and are roughly co-extensive
with, the strings themselves (i.e. the number of states and transitions is proportional to the lengths
of the strings). If, on the other hand, the focus is shifted to modelling the variety of possible mu-
tational mechanisms rather than the specific results of those mutations, we find that much more
compact automata can be designed that in effect map naturally to alignment algorithms rather than
strings themselves. In addition to the formal methodology described above, several novel alignment
algorithms will be presented in this paper based on such finite-state automata.

*Current address: Department of Computer Science, University of California at Davis, murphyk@cs.ucdavis.edu

_ 1=

2 Models

The basic theoretical construct with which we will deal is the following [1]:

Definition 2.1 (Finite Transducer) A finite transducer is a 6-tuple T' = (Q, %, Q, 0, s, F') where () is
a finite nonempty set of states, ¥ and Q are finite nonempty input and ouput alphabets, respectively,
s € () is a distinguished start state, F' C () is a set of final states, and § C Q) X X* X Q* X () is a finile set
of transitions. An input string v € X* is said to be accepted by T with output v € Q* iff u = wyug - - - Uy,
v = 0102 -V, and (G, Uiy, Vit1, Git1) € 6 for 0 < i < n, where o = s and g, € F. The set of all such
outputs for any u € X* is denoted T(u), and the sequence of transitions employed is called a derivation.
The following variations are also defined:

o A weighted finite transducer is one for which 6 C @ X ¥* X Q* X R x @), where R is the set of reals.
This number is called the weight of the transition, and the weight n of a derivalion is the sum of the
weights of its transitions.

o A two-tape finile transducer is one for which 6 C @ X ¥* x ¥* x Q" X @), and where a pair of input
strings u,v € X* are said to be accepted by T with output w € Q* iff u = wgug -+ Uy, v = V1V - - - Vy,
W= wywy -+ Wy, and (¢, Uit1, Vit1, Wit1,Git1) € 0 for 0 < i < n, where g = s and ¢, € F.

o A weighted, two-tape finite transducer is one for which 6 C @ X X* X X* X Q* X R x Q, with derivations
and notation as before.

We will employ the usual graphic conventions for such automata, for example representing a

transition from the start state s to a final state f € F via some (s,u,v,n, f) € 6 for a weighted finite
transducer as shown in Figure 1.

Figure 1: Graphical conventions for finite transducers

It will be convenient to use finite transducers that have essentially the same input and output
alphabets, but for which the output is “labelled”. For this, we define the following:
Definition 2.2 (Label) A labelling of an alphabet X is a bijection L : ¥ — X in which each © € ¥ is
mapped to a new symbol T € X, i.e. X = {T |z € E} Two strmgs u,v € Y*UYX" are equivalent up to
labelling, denoted u = v, if and only if w = z129-- Ty, v = Y1Y2 - Yn, and for 1 <t < n either z; = y;,
Ty =Y, OT T; = T;.
We will now outline an automata-theoretic model of mutation, beginning with a fundamental
operation meant to model a single mutational event affecting a substring of some sequence.
Definition 2.3 (Mechanism) A (labelled) mechanism M is a finite transducer for which @ =%
(Q=13), and where for all w € ¥* and v € M(u), u # v. A weighted mechanism is one based on
a weighted finite transducer, as above, where in addition for any derivation the weight n is non-zero.
Where the meaning is obvious from the context, the term mechanism will also refer to any derivation by
such a machine.
Note that we have required that the action of a mechanism be detectable, i.e. that any derivation by
a mechanism produce a change in the string, and furthermore that it have non-zero weight (if any).
Also, we will generally require weights to be non-negative. This definition of mutational mechanism
is obviously limited, in ways that will be discussed further below. However, by accepting these
limitations, we will find that the model proves to be tractable to further useful forms of analysis.

IEven so, it must be stressed that the use of a transducer also entails theoretical limitations that do not apply to
simple finite-state automata (i.e. without output). For example, we note that it can be shown that it is undecidable
whether an arbitrary finite transducer is a mechanism, using a reduction of the Post Correspondence Problem.

9

Some common notions of mutation can be represented by transducers that are easily seen to be
mechanisms, such as those shown in Figure 2. These represent single element substitution, deletion,
and insertion; note that the latter accepts only an empty string as input, while the others affect
only single bases at a time. The symbols x and y here represent any member of the alphabet, so
that in the literal machine there would actually be sixteen substitution transitions in the case of
DNA, and four each of deletion and insertion transitions. These might be represented as separate
mechanisms, particularly if this was thought to represent some important biological distinction. On
the other hand, note that these three mechanisms might be combined into a single mechanism, by
simply merging the respective start and final states; what constitutes a distinct mechanism is at the
discretion of the modeller. In practice, we will see that weighted, labelled mechanisms will prove to
be the most useful form, and that separate or combined mechanisms will preserve the weights and
labels in the desired manner.

Figure 2: Mechanisms for single-base (a) substitution, (b) deletion, and (c) insertion, where z,y € ¥
and x # y. The symbol € represents the empty string, or string of zero length.

In fact, we will now proceed to combine collections of mechanisms for a specific purpose. We will
wish to be able to apply a mechanism anywhere within a string, rather than just to a given substring
(or, in the previous example, a single base) in its entirety. In order to do this, we will construct a
machine that, given a set of mechanisms, applies exactly one of those mechanisms at any permissible
point in a string. We do this as follows:

Definition 2.4 (Mutator) A (labelled) mutator M, is a finite transducer constructed from a set of
(labelled) mechanisms (v that have common alphabets ¥, and Q,, bul pairwise disjoint sels of states Q);,
as follows:

o lhe sel of states () is the union of the states Q); in each M; € u, together with a new start state s and
a single, new final state, F' = {f}
o the alphabets are ¥ = Q =13,
e the transitions 6 comprise the following:
— each lransition in 6; of each mechanism in p
— a new transition (s, €, €,s;) for each start state s; of each mechanism in
— new transitions (fi, €, €, f) for each final state f; € F; of each mechanism in p
— new transitions (s,z,z,s) and (f,z,z, f) for each z € ¥,
— if p is labelled, a new transition (s,Z,T,s), for eachT € X,
A weighted mutator is constructed as above, with zero weights attached to each new transition. A (labelled)
mutation is any derivation by a (labelled) mutator.
The construction of a mutator is perhaps more easily understood using the graphical representation,
as shown in Figure 3a. For an unlabelled mechanism set, the reflexive transitions on the start and
end states merely serve to consume and produce identical input and output, so that any substring of
the overall string may be “presented” to the appropriate mechanism. We will refer to such transitions
(gi,x,x,q;) € 6, where & € ¥, as scanning transitions. It is clear, by the construction of a mutator,
that only one mechanism’s transitions are invoked in any particular mutation; we will refer to that
mechanism within a given mutation as, simply, the mechanism of the mutation. The effect of a given
mutation will refer to the output produced by the mechanism of that mutation, which is a substring

-3 -

XX

ele
X/X X/X
/
ele xly
ele x/€
S >
ely

Figure 3: (a) Construction of a mutator from mechanisms M; (left) and (b) an equivalent transducer
to the mutator for the mechanisms of Figure 2 (right).

of the overall mutator’s output — in fact, for a labelled mutator acting on unlabelled input, the effect
is precisely that substring of the output that is labelled. The substring of the overall input that is
consumed by the mechanism will be called the affected substring.

A mutator is constructed so as to keep the different mechanisms contributing to it clearly separate
and distinct, but in fact an equivalent transducer can be constructed, without empty transitions, by
merging states. Such an equivalent mutator, for the mechanisms given in Figure 2, is illustrated in
Figure 3b. We note that the purpose of labels is to ensure that evolutions, or multiple applications
of a mutator to a string, are provably equivalent to another form of automaton derived from it,
as described next. Briefly, labelling ensures that in running a string through a mutator multiple
times, the effect of any mutation will never be affected in a subsequent mutation. This formalizes an
important (and biologically simplistic) assumption in the derivation of edit distances, and can also
serve to establish that the number of labelled evolutions of any string is finite.

We now proceed to extend this general model to encompass the notion of string edit and edit
distance, by constructing the next in a series of machines:

Definition 2.5 (Editor) Aneditor £, is a finile transducer constructed from a mutator M, as follows:

o the states), input and output alphabets ¥ = Q, and start state s are as in M,
e the final states are changed from F = {f} to F = {s}
e the transitions ¢ are those in M, together with a new transition (f, ¢, ¢, s)

A weighted editor is constructed as above from a weighted mutator, with zero weight attached to the new

transition. An editing is any derivation by an editor, and an edit is an oulput of an editor.

Figure 4a illustrates this construction graphically. An editor goes a step further than a mutator
by applying any number of allowable mutation mechanisms to a string. It accomplishes this by, first,
allowing the transducer to in fact perform no mutations, by making the start state a final state, and
second, to iterate after each mutation by returning to the start state s from what would otherwise
be the final state f. Thus, after each mechanism is applied, the input may be further scanned and
another mechanism applied at any subsequent point, and so on. Note that the scanning transition on
the former final state is now superfluous, and in fact an equivalent editor can generally be constructed
by simply merging the start and final states of a mutator. Such an equivalent editor, for the mutator
of Figure 3b, is illustrated in Figure 4b.

4

XIX xly

ele ’

xl€ ely

Figure 4: (a) Construction of an editor from a mutator M, of which only the start and (formerly)
final states are shown (left), and (b) an equivalent editor for a weighted version of the mutator of

Figure 3b (right).

The editor of Figure 4b in addition has weights of “1” attached to each transition formerly
associated with a mutation mechanism (i.e. substitution, insertion, and deletion). It can now be seen
that this editor in fact constitutes a calculator of the number of mutation mechanisms invoked to
transform one string to another in any particular editing. This, of course, is the fundamental notion
behind the measure of edit distance. While it may seem that we have gone to a great deal of trouble
to arrive at this simple calculator, we emphasize again the generality of this approach. For example,
it has long been recognized that the simplistic notion of calculating edit distance by assessing a
“penalty” for insertions and deletions that is strictly proportional to the length of the resulting gaps,
which is inherent in the editor of Figure 4b, is biologically naive. More realistic sequence alignment
algorithms recognize that insertions and deletions of any size generally constitute single mutational
events, and the metrics imposed involve a constant penalty for any gap, plus some smaller incremental
penalty that is proportional to the size of the gap. We can easily adapt to this new model of mutation
by substituting for the mechanisms for deletion and insertion ones like that illustrated in Figure 5a.

Here, reflexive arcs accomplish single deletions with weights of “1”, as many as are desired, but in
order to complete the application of the mechanism, the last transition to the final state is assessed a
much greater weight. Thus, a single such event entails one large weight plus an incremental weight in
proportion to the length of the indel. (There are several variations to this architecture which would
serve equally well.) Such mechanisms can be combined with the previous substitution mechanism
(now given an intermediate weight) to create an equivalent mutator, as the reader may confirm, and
the mutator’s start and end states may then be merged to produce the equivalent editor illustrated in
Figure 5c. We also introduce at this point the use of Greek letters to denote weights on transitions.

As suggested above, a series of consecutive deletions or insertions is commonly called a gap. A
gap penalty is the total weight assessed by the mechanisms creating a gap, and is characterized by a
function 7y, of the gap length k. Thus, for the naive model of mutation, v, = 3k for transition weight
3, but for models such as that of Figure 5 we have a so-called affine gap penalty, v, = a+ 5 (k—1),
as may be readily inferred from the automaton.

In fact, the cost of any editing may be inferred from the construction of these automata, and thus
also the minimal cost via the following inductive definition:

Definition 2.6 (Functional Edit Distance) For each state ¢; € Q of a weighted editor & construct a

function of the same name from pairs of strings to reals, ¢; : ¥* X ¥* — R, such that

o for each final state f € F, f(e,€) =0
o forallz,y e ¥, ¢(z,y)=min{ ¢j(r,s)+n| (¢, u,v,n,q¢) €6, x =ur and y = vs}

Then for any z,y € ¥* the functional edit distance from z to y is the value for the start state, s(z,y).

-5

x/e X/X °Q x/e
. x/€
xle ely
4 L
Xy ‘Q ey

Figure 5: (a) Weighted mechanism for single-event deletion (left) and (b) an equivalent editor for
single-event deletion and insertion, plus substitution as before (right).

Applying this definition to the editor of Figure 4b leads to the classic edit distance recurrence,
s(u,v) 4+ 0, where o,, =0 if 2 =y and o0,, =1 otherwise
s(zu,yv) = minq s(u,yv)+ 1
s(zu,v)+1 s(u, €) = |ul s(e,v) = |v|
This follows from the architecture of the automaton when the single state s is interpreted as the
recursive function, while transitions represent conditions under which prefixes of the input and output
are consumed and generated, respectively, and the total cost incremented so as to arrive in a new
machine configuration. Boundary conditions are established by requiring the automaton to arrive in
a final state with empty input and completed output. Note that this is also, in essence, the basis of
the Needleman-Wunsch-Sellers dynamic programming algorithm [9, 10], as can be seen more clearly
by way of an exactly analogous definition for a matrix interpretation of distance:

Definition 2.7 (Matrix Edit Distance) Given a weighted editor £ and a pair of strings z,y € X%,
for each state q; € Q construct a matriz ¢;[0..]z|,0..|y|] of reals such that

o for each final state f € F, f[0,0] =0
o for0 <a<|z|and 0 <b< |y,

gi[a,b] = min { g;la — |ul,b— [v]]+ n | (g, u,v,1,¢;) € 6, U = T(q_jul41)..a A0 U = Yp_|o|41).5)
Then the matrix edit distance between z and y is s[|z|, |y|]

Relating these distances to alignment is awkward because of the distinction between input and
output. We can require that the output generated match a given string, but it is more natural and
ultimately more useful to reorient our view of the automaton with one final construction:

Definition 2.8 (Aligner) An aligner A, is a (weighted) two-tape finite transducer constructed from a
(weighted) editor £, as follows:

the states @), start state s, and final states F' are as in &,

the input alphabet is that of £, ¥ =X,

the output alphabet) is a new set of symbols in a bijective mapping from transitions in £, a: 6 —
for each transition d = (q;,z,y,(n,) ¢;) in &, there is a (¢;,x,y,2,(n,) q;) in A, such that a(d) = z

An aligning s any derivation by an aligner, and an alignment is an oulput of an aligner.

By default and by convention, the mapping a for transitions with input pairs z,y € ¥, U {e} will
simply be a token with the inputs written one above the other, using a dash in the case of e. Thus,
for the transitions of the three simple mechanisms of Figure 2, we would have a((s,z,y, f)) = ¥,
a((s,z,e,f)) =2, and a((s,€,y, f)) = y. It can be seen that formal alignments will thus correspond

-6 —

to alignments as they are usually understood. Not only is alignment thus explicitly related to editing
(as well as mutation, etc.), but to the definition of minimal edit distance as well.

We emphasize that this also constitutes a declarative computational model, and that we may infer
recurrences directly from the structures of the models. For example, viewing the states in Figure 5b
this time as matrices according to Definition 2.7, we derive the following recurrences by minimizing
over all outgoing transitions, decrementing indices by the lengths of the inputs consumed and incre-
menting the cost by their attached weights (with appropriate conditions applied):

sla—1,b—1] it z, =1y, dla b]—min{ sla—1,b] + «

B = mi sla—1,b—1]+0 if z, # 1y T dla—1,b] +
sla, b] = min d[a, b] o bl = i sla,b— 1]+ «
i[a, b] s[0,0] =0 ile,]_mm{ ila,b— 1]+ 8

together with other boundary conditions that are easily inferred. These, in fact, are exactly the
recurrences for affine gaps derived by Gotoh algebraically (and rather less concisely) [4].

To review and recapitulate this methodology, we consider yet another model of indels that takes
potential reading frames into account. Our goal will be a discontinuous distance function, defined for
gap length k£ as Y4 = Qgmods + -k, where ag € a3 = as = a. That is, indels that would maintain
a reading frame will be penalized less than those that would disrupt it. We begin with a mechanism
of deletion conforming to this notion, as shown in Figure 6a. We create successive states for each
individual base deletion, in a loop of length three, and from each deletion state allow the deletion to
terminate with penalty «, unless the deletion is a multiple of three in size (we use ap = 0). We can
incorporate this mechanism into an editor according to Definition 2.4 as shown in Figure 6b, along
with a simple substitution mechanism; insertion is not shown but is analogous to deletion.

As before, we can merge start and final states to produce the equivalent editor of Figure 6¢c. By
examination, it is obvious that state dy can also be merged with the start/final state: its only out-
going transitions are a free move to that state, and a deletion move to d; which s already possesses.
Thus we arrive at Figure 6d, and again can mechanically and non-algebraically produce a recurrence:

sla—1,b—1] it z, =1y, . sla b+«
ot = mind Sla—1b= 140 it o £ ila bl =ming g0 164 8
o la—1,b]+5 dy[a, b] = min sla,b] +a
1]a,b— 1]+ 3 s[0,0] =0 SR sla—1,b]+ etc.

Thus, great flexibility in designing gap weights can be achieved through the use of additional
states. Of course, this comes at the cost of adding new matrices, and because there are finite states
it is not possible to model forms such as concave gap functions [7] without additional features, e.g. a
pushdown automaton would be required to model inversions. However, we can use this framework to
incorporate certain “meta” models of alignment in a very intuitive manner. For example, practical
alignment algorithms used for purposes of detecting sequence similarities differ from those shown
above in several respects. First, they are constructed so as to maximize similarity rather than
minimize distance (see [12] for a discussion), and this is easily accomplished by reconsidering the
weights on arcs and by substituting maz functions in Definition 2.7. More importantly, the best-
fitting substrings of the inputs are desired, for a so-called local alignment. To achieve such variations
the model is formally augmented with new types of zero-weighted scanning moves that act on either
but not both input strings and produce empty alignment output, and which may be inserted into
existing models in a variety of series and parallel configurations for the desired effect. Space does
not permit a full development of this technique, but as an example Figure 7a shows an equivalent
aligner for the simple series-scanned case, that produces local alignment.

_7-

Figure 6: (a) Weighted mechanism for frame-sensitive deletion (top), (b) an editor with substitutions
as well (middle), (c) an equivalent editor with merged start and final states (bottom left), and (d)
a simplified editor (bottom right). Insertions are omitted for economy, but would simply mirror the
deletion apparatus.

w/E
X XX XX X
e 2% Y/y e

AN
[¢

e X

€/ €
vy yle

e/w

Figure 7: (a) Equivalent aligner for local alignment (left), and (b) an editor for variable numbers of
tandem repeats, where w € ¥*, |w| <4, and n &~ 20 (right).

We emphasize that this aligner has empty output on the reflexive transitions on s and f, so
that only the local alignment would be displayed, in the customary fashion. Again, we can produce
recurrences by direct examination of the automaton:

sla—1,8] ela—1,b6—1]+1 if x, =1y
sla,b) = max{ s[a,b— 1] = max et,] ela—1,6—1]—1/3 if z,# ys
ela, b 0<% ela,b] = max{ e[a— 1,0 —4/3
[

fla — 1,0 ela,b—1]—4/3
f[aab]ZmaX{ fla,b—1] =0 fla,b] (= 0)

The simplifications given for the recurrences of s and f also follow by reasoning from the automaton.
We know that f[a,b] = 0 for any a, b because all out-transitions from f have zero weight, and any
inputs can be emptied to achieve the conditions for termination. Similarly, s permits any prefixes of
the inputs to be consumed with zero weight, so that the maximum weight from any position on the
inputs is simply the maximum of zero and the result of the free transition from there to e (i.e. the
maximum value in the matrix of €) which we have seen is at least zero. These are the same equations
derived by Smith and Waterman [11]. Other uses of meta-alignment scanning nodes include best-fit
alignments that specify containment or overlap as required by fragment assembly algorithms.

As a final example of more sophisticated gap models we present one in which the gap penalty
is context-dependent — dependent, that is, on what lies across from the gap. The editor in Figure
7b is based on the observation that regions of the genome with multiple short tandem repeats are
observed to exhibit great variability in the number of those repeats [8]. In comparing these highly
polymorphic segments, an alignment algorithm would be more effective if it penalized gaps within
such VNTRs much less than it did gaps in other sequence, since such gaps are known to arise more
frequently than elsewhere. The editor shown implements this idea via the move that recognizes such
matching repeats w over a certain threshold number n, and then allows additional such repeats to
be inserted or deleted at much reduced cost (this being a min machine). The repeat w is shown
as a parameter on the VNTR mechanism nodes so that the identity of a repeat may be preserved
through subsequent transitions, but again this is just shorthand for a more complex (though still
finite) automaton with instantiated inputs. Note that, for both the machines in Figure 7, affine gaps
or indeed any other models of gaps could be substituted for the ordinary gap models illustrated, and
in fact this technique makes it easy to combine aspects of various models.

-9

£ G_rn'h.tli'_n

Clear _ L oad Dlsplag_ Change]Jelete_ Save Print | Optimal Eu:umplle_ Fun Prculcug_ Exit

Figure 8: Frame-maintenance aligner, as entered into the graphical user interface.

3 Visual Programming

We have recently begun to implement a system making practical use of this methodology. A Pro-
log program was written that takes as input a specification of an aligner, given as a database of
appropriately-labelled and indexed nodes and transitions. The program translates this to Prolog
code, essentially using the constructions given above to (1) create a matrix for each node to store
not only aggregated weights but also traceback information, and (2) generate declarative code to
implement the appropriate recurrence. The Prolog code generated uses foreign function calls to
dynamically-allocated ‘C’ arrays for efficiency, and we observe true quadratic-time behavior, although
the recursive overhead in the current version limits speeds to the range of 1-10 msec per matrix cell.

We have hidden the logic-based code generator within an easy-to-use graphical interface, shown
in Figure 8 — in effect, a domain-specific visual programming system. The interface is designed
as a specialized drawing tool, with which the modeller may use the mouse to deposit or adjust the
labelled nodes and arcs (including reflexive arcs) of a finite transducer. The Motif-based drawing
tool has all the features found in similar programs, such as “snapping” of objects to a grid to ensure
a neat appearance, and the ability to add and adjust articulation points to linear arcs. However, the
drawing tool is connected to the underlying logic that will, at the press of a button, generate and
execute a dynamic programming algorithm specified by the automaton on the screen. For example,
with this model the “Run” button produces the following behavior in a dialog window:

~10 -

Enter 1st sequence: ttaggcttatgcgattcgttatgcggtatgcttagectttaggegttatgegggatce
Enter 2nd sequence: tattcgggcttatgtcggcggattctgagtcggtactttacttattcggatctatg
Enter start state: start

Running alignment...

Alignment completed in 6.313 ms per cell, total value 68:

t-t--aggcttatgcgattcgttatgecggtatgcttagectttaggegttatgeggg---atc
|=+=="1111T1 | L === ==+= 11T ===
tattcgggcttatgtcggeggattctgagtcgg--ta-cttta--c-ttattcggatctatg

We note several things about the implementation: First, the labels on transitions are given as
uppercase logic variables within square-bracketed lists, conforming to Prolog notation. Where a
single input is indicated (e.g. [X]) it is understood that both inputs are the same, and otherwise
different. Although the machine is portrayed as an editor, it is actually an aligner, with the output
entered separately and ordinarily not shown. In specifying the aligner outputs, the user may indicate
both an upper and lower output (generally single characters) as well as a character to appear between
the aligned elements. In the alignment shown, a blank between the rows of characters indicates a
mismatch, a hyphen indicates a gap, a vertical bar indicates a match that is “in frame”, and a plus
indicates a match that is “out of frame”, in the following sense: While the frame-sensitive machine
derived in Figure 6 implemented a gap penalty model in which frame-preserving gaps were penalized
less than others, it did not allow for cases where a gap that is not a multiple of three nevertheless
restores the proper reading frame. Moreover, that model does not penalize the length of out-of-frame
sequence downstream from a frame-disrupting gap. The model of Figure 8 maintains the notion of
frame, however, so that both matches and mismatches in the putatively correct frame0 are penalized
less than in other frames, and it is possible for the correct frame to be restored by subsequent
frameshifts.? Note also that the user may specify any node as the start state; the node named start
is specifically designed to allow for any initial frame orientation in the input strings.

Because Prolog still provides top-down control for the algorithms thus generated, they are properly
classified as a form of dynamic programming termed memoization [3]. We have investigated whether
greater speedups could be obtained by generating true bottom-up, iterative code at the back end of
the system. Indeed, an implementation in which the algorithm specification was translated instead
to C++ resulted in two orders of magnitude speedup; however, a memoized version in C++ was
only a factor of two slower than this, indicating that it is the recursive overhead in Prolog that is the
major bottleneck in the initial prototype.

Acknowledgements

This work was supported by the Department of Energy Office of Energy Research, under grant
number DE-FG02-92ER61371 to D.B.S. The authors thank Chris Overton and Kyle Hart for helpful
discussions and suggestions, and Mike Yasayko for implementing a C++ prototype.

References
[1] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and Compiling. Volume 1: Parsing.
Printice-Hall, Englewood Cliffs, NJ, 1972.

[2] L. Allison, C.S. Wallace, and C.N. Yee. Finite-state models in the alignment of macromolecules. J.
Mol. Evol., 35(1):77-89, 1992.

2The derivation of the novel and elegant recurrence associated with this model is left as an easy exercise, given the
methodology presented in the previous section.

- 11 =

[3]

[9]
[10]
[11]

[12]

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press/McGraw-Hill,
Cambridge, MA, 1989.

] O. Gotoh. An improved algorithm for matching biological sequences. J. Mol. Biol., 162:705-708, 1982.

R.M. Karp and M. Held. Finite-state processes and dynamic programming. SIAM J. Appl. Math.,
13(3):693-718, 1967.

A. Krogh, M. Brown, [.S. Mian, K. Sjolander, and D. Haussler. Hidden Markov models in computational
biology: Applications to protein modeling. J. Mol. Biol., 235(5):1501-1531, 1994.

W. Miller and E.W. Myers. Sequence comparison with concave weighting functions. Bull. Math. Biol.,
50:97-120, 1988.

Y. Nakamura, M. Leppert, P. O’Connell, R. Wolff; T. Holm, M. Culver, C. Martin, E. Fujimoto,
M. Hoff, E. Kumlin, and R. White. Variable number of tandem repeat (VNTR) markers for human
gene mapping. Science, 235:1616-1622, 1987.

S.B. Needleman and C.D. Wunsch. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. J. Mol. Biol., 48:443-453, 1970.

P. H. Sellers. On the theory and computation of evolutionary distances. STAM J. Appl. Math.,26(4):787—
793, 1974.

T.F. Smith and M.S. Waterman. Identification of common molecular sequences. J. Mol. Biol., 147:195—
197, 1981.

T.F. Smith, M.S. Waterman, and W.M. Fitch. Comparative biosequence metrics. J. Mol. Fvol., 18:38—
46, 1981.

- 12 —

