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Abstract

We show how to use a variational approximation
to the logistic function to perform approximate
inference in Bayesian networks containing dis-
crete nodes with continuous parents. Essentially,
we convert the logistic function to a Gaussian,
which facilitates exact inference, and then itera-
tively adjust the variational parameters to improve
the quality of the approximation. We demonstrate
experimentally that this approximation is much
faster than sampling, but comparable in accuracy.
We also introduce a simple new technique for
handling evidence, which allows us to handle ar-
bitrary distributionson observed nodes, as well as
achieving a significant speedup in networks with
discrete variables of large cardinality.

1 Introduction

Many probabilistic models naturally contain discrete and
continuous variables. (Such models are sometimes called
“hybrid”.) Unfortunately, exact inference is only possible
when all the continuous variables are Gaussian and have
no discrete children. If we want to allow discrete children
of continuous parents (e.g., to model threshold phenom-
ena), the standard approach is to discretize all the vari-
ables [FG96, KK97] or resort to sampling [SP90, GRS96].
The problem with discretization is that, to get good accu-
racy, we must quantize finely, which makes inference slow;
this problem is especially acute in high-dimensional state
spaces. The problem with sampling is similar: to get good
accuracy, we must take many samples, which is slow. In this
paper, we introduce a variational approximation to handle
the case of discrete children of continuous parents, which is
faster and more accurate, since all the distributions that can
be handled exactly are handled exactly. We also introduce
a new approach to dealing with evidence, which allows us
to handle arbitrary distributions on observed nodes.

We present our results in the context of the junction tree
algorithm, which is widely considered to be the most ef-
ficient and most general inference algorithm for graphical
models [SAS94]. In particular, it allows us to compute
the marginals on all

�
families — a prerequisite for ef-

ficient parameter and structure learning — in two passes

over the graph, whereas other, query-driven (goal-directed)
algorithms, such as bucket-elimination [Dec98] and SPI
[CF91, CF95], would take

�
passes. In addition, the junc-

tion tree algorithm allows us to handle graphs with undi-
rected cycles, unlike some previous work on networks with
continuous variables [DM95, AA96] which was restricted
to polytrees.

The structure of the paper is as follows. We start by de-
scribing some popular conditional probability distributions
(CPDs) for nodes in hybrid networks. In Section 3, we
give a brief overview of the junction tree algorithm, and
in Sections 4 through 6, we review aspects of it that are
specific to hybrid networks. In Section 7, we explain our
variational approximation, in Section 8 we introduce our
new approach to handling evidence, in Section 9 we dis-
cuss the computational complexity of inference in hybrid
BNs, and in Section 10, we present some experimental re-
sults to assess the quality of our approximation. We finish
by discussing future work.

2 CPDs for hybrid networks
For any directed graphical model, we must define the con-
ditional distribution of each node given its parents: see
Table 1 for some examples.

For discrete nodes with discrete parents, the simplest rep-
resentation is a table (called a Conditional Probability Ta-

ble, or CPT), which defines Pr ��������� 	���
� def����� � . (A
note on nomenclature: we will use 	 to represent a discrete
parent, � to represent a discrete child, � to represent a con-
tinuous parent, and � to represent a continuous child.) If
there are multiple parents, 	 1 ��������� 	�� , we can use a multi-
dimensional table, although this requires specifying ��� 2 � �
parameters (assuming for simplicity that each discrete node
is binary). There are other representations which require
fewer parameters (e.g., noisy-OR, neural networks), and
hence are easier to learn, but we don’t discuss them here.

Now let us consider the case of continuous nodes with
continuous parents. (Without loss of generality, we can
assume the child has only one continuous parent, since if
it has more than one, we can aggregate them into a sin-
gle vector-valued node.) The simplest such example is a
Gaussian whose mean is a linear function of its parent’s
value: �

��� �"!#� �$�&%#�'� � �(! ; )+*-,&% � Σ �



Child/Parent Discrete Continuous
Discrete Tabular, noisy-OR, decision tree Probit, logistic, softmax
Continuous Conditional Gaussian Linear Gaussian

Table 1: Some popular conditional probability distributions. If a node has both discrete and continuous parents, we can
create a mixture distribution.

where , is the weight or regression matrix,� ��! ; ) � Σ � � � � Σ � exp ��� 1
2 ��!�� ) ��� Σ � 1 ��!�� ) ��	

is the Normal (Gaussian) distribution, and

� � Σ �'� � 2 
 ������ 2 �Σ � � 1
2

is the normalizing constant ( � is the number of
rows/columns in Σ), which ensures ��� � ��! ; ) � Σ �'� 1.

Networks in which all the variables have this kind of
linear Gaussian distribution were studied in [SK89]. If
the continuous child (also) has discrete parents, we can
specify a Gaussian for each value of the discrete parents; this
is called a Conditional Gaussian (CG) distribution. Note
that a CG distribution can be used to approximate arbitrary
continuous distributions.

Finally, we consider the case of discrete nodes with con-
tinuous parents. There are two popular models for the con-
ditionaldistributionof a discrete binary variable ����� 0 � 1 �
given a continuous (vector-valued) parent � , called logistic
and probit, which are defined as follows:

� � logit ��� � def� log
�

1 �
� � �����'� � �

� � probit ���#� def� Φ � 1 ���#� � � � Φ � � �
where � def� Pr ��� � 1 � � � % � , � � ��*�! � % , �'� � �+�

1
1 " exp # �$&% is the sigmoid function, and Φ ��%#�'�

�
�('�)"% � ,

'+* � � 0 � 1 � , is the cdf of the standard Normal. The logit
and probit distributions are very similar (see Figure 2), and
differ only in the tails; essentially, the cumulative normal
dies off as , �- 2 , whereas the sigmoid dies off more slowly
as , �- .

Although probithas a nice interpretation as a noisy thresh-
old unit ( ��� 1 iff !/.0' ), the logistic distribution has
several advantages:1 It can be well-motivated from a statistical viewpoint

[Jor95].1 There is an efficient method for fitting its parame-
ters, called the Iterative Reweighted Least Squares
(IRLS) algorithm [MN83, JJ94b] (a form of Newton-
Raphson).1 There is a good approximation method for converting
it to potential form (see Section 6).1 It generalizes to multi-valued discrete variables as fol-
lows:

Pr ��� �&� � � � %#� � exp �(! �� % */� � �2 � exp �(! �� % *3� � �
This is called the softmax (multinomial logit) function.
Note that softmax for binary variables is equivalent
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Figure 1: The crop network. Circles represent continuous
(scalar) nodes, squares represent discrete (binary) nodes.
This example is from [BKRK97].

to the logistic function when ! �4! 1 �5! 0 and � �
� 1 �6� 0, since Pr ���"� 1 � ���"% � � 798;:1 <9=;> 17 8 :0 <9=;> 0 " 7 8 :1 <9=;> 1 �1
1 " 7�? 8 0 @ 8 1 A : <B= ? > 0 @ > 1 A .

In the softmax function, !�� is the normal vector to the � ’th
decision boundary, and � � is its offset. The magnitude of ! �
determines the steepness of the curve: a large magnitude
corresponds to a hard threshold (steep curve), and a small
magnitude corresponds to a soft threshold. In the limit
as � ! � �DCFE , the sigmoid approaches a step function; in
the limit as � ! � �GC 0, the sigmoid approaches a uniform
distribution.

It turns out that linear Gaussians and softmax are both
special cases of Generalized Linear Models (GLIMs): see
[MN83] or [JJ94b] for details. Although we can use GLIMs
as CPDs for observed nodes (see Section 8), in general it is
difficult to use them for hidden nodes, at least if we restrict
ourselves to exact inference.

2.1 Example

As a simple example of some of the distributions we have
described, consider the network in Figure 1. In this model,
the price (P) of a certain crop, say wheat, is assumed to
decrease linearly with the amount of crop (C) produced that
year, on the assumption that a glut reduces prices. But if the
government artificially subsidises prices ( H � 1), the price
will be raised by a fixed amount. In addition, the consumer
is likely to buy ( I � 1) if the price drops below 5 units (see
Figure 2). This model will be used for the experiments in
Section 10 with the parameter values shown below.

Node Distribution Params.
S CPT � � 0 � 3
C Gaussian ) � 5 � Σ � 1
P CG ) 0 � 10, ) 1 � 20,, 0 J 1 �K� 1, Σ0 J 1 � 1
B Logistic !-�L� 1, � � 5
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Figure 2: Left: The expected price decreases linearly with the crop yield,
��� � � � � H � 0� � 10 � � , and is shifted up by a

constant if the price is artificially supported,
��� � � � � H � 1� � 20 � � . Right: The probability someone will buy the crop

decreases as the price rises above the threshold of 5. We plot �'�(! % * � � and Φ � ! %�*�� � , where % is the price, !"��� 1 and� � 5.

3 The junction tree algorithm

In this section, we give a brief overview of the junction tree
algorithm (see e.g., [HD94] for details), before discussing
the aspects of it which are specific to hybrid networks. This
summary is meant to provide a road map for the rest of the
paper.

In the junction tree algorithm, we first perform the fol-
lowing graph-theoretic steps in order.1 Moralize the original graph � , i.e., connect together

all parents who share a common child, and then drop
the directionality of the arcs. This will result in an
undirected graph, ��� .1 Choose an elimination ordering 
 , e.g., according to
the heuristics discussed in [Kja90].1 Let all nodes be initially unmarked. For each node in
order 
 , mark it and join all its unmarked neighbors.
This will result in a triangulated graph, �	� . (See
[BG96] for more effective ways to triangulate a graph.)1 Find the maximal cliques in � � ; call them 
 .1 Build an undirected weighted graph ��� whose nodes
are the cliques 
 and where the weight of the edge from
clique � to clique 
 is � � �� � � � . Let � be a maximal
spanning tree of ��� [JJ94a].1 Add a separator node H to each edge ��� � 
 � of � such
that H � � �� � � .1 Pick an arbitrary node in � as root.

In Section 5, we discuss the changes that need to be made
to the above steps in the case of hybrid networks.

After building the junction tree “shell”, we perform the
following numerical steps in order. These steps involve the
potentials associated with each clique and separator; how
to represent and operate on such potentials is discussed in
Section 4.1 For each clique and separator in � , initialize its poten-

tial to the identity element.1 For each node � in � , find a clique
�

in � that contains� and its parents, convert � ’s CPD to a potential (see

Sections 6 and 7), and multiply it onto
�

’s potential.1 Optionally, we can now perform a global propagation,
to convert the potentials into joint form; these can then
be saved for later reuse, so that we can avoid repeating
this initialization step. (In the approach to evidence
that we discuss in Section 8, it is not possible to do a
propagation before the evidence has arrived.)1 For each node � for which we have evidence, find a
clique

�
that contains � , and multiply in the evidence

(see Section 8).1 For each clique � in postorder (i.e., children before
parents), make , absorb from � , where , is � ’s
parent in � . (This is called the “collect evidence”
phase.) , absorbs from � via separator H by per-
forming the following operations:

– ��� �(H'� � 2������ �'��� � .
– ��� � ,&� ���'� ,&��� ����� �(H'� �!�'� H'� � .

where � is a potential, the " superscript denotes the
new or updated potential,

2
represents the marginal-

ization operator, � the multiplication operator, and �
the division operator. (We say that � sends a “mes-
sage” to , .)1 For each clique � in preorder (i.e., parents before
children), make , absorb from � , for each child ,
of � . (This is called the “distribute evidence” phase.)

4 Hybrid clique potentials
When all the variables in a clique are discrete, we can rep-
resent its potential using a table (multidimensional array);
when all the variables are Gaussian, we can represent the
potential as a quadratic form; and when some of the vari-
ables are discrete, and some are Gaussian, we can use a
table of quadratic forms. We now explain the quadratic
form representation; see [LW89, Lau92, Ole93, Lau96] for
details.

A Gaussian clique potential can either be represented in
familiar moment form�

��% ; � � ) � Σ � ��� exp � � 1
2 ��% � ) ��� Σ � 1 ��% � ) � 	



or the more convenient canonical form�
��% ; � � � ��� � � exp � � *-% � � � 1

2 % � � % 	
We can convert from canonical to moment form (provided� is full rank) as follows:

Σ � � � 1

) � Σ
�

log � � � � 1
2 log � � ��* �2 log � 2 
 � * 1

2 )G� � )
We can always convert from moment to canonical form.

A CG potential is just a list of such Gaussian potentials,
one for each value of the discrete variables. Note that, by
using a logarithmic representation of the constant factor,
we are assuming the � ���(� is never non-zero. To get around
this, we need to additionally store an indicator variable,� �(��� , which is 1 iff this discrete value has positive support.
(One advantage of the logarithmic representation is that it
is unlikely to underflow even if we have a lot of evidence.)

We now define how to peform the fundamental operations
of extension, multiplication/division, and marginalization
on CG potentials.

Extension is the operation of ensuring that two potentials
are defined on the same set of variables. For the continuous
variables, we must make sure the size of each vector and
matrix is the same, by inserting 0s where necessary.1 For
the discrete variables, we must make sure both potentials
have the same number of table entries, duplicating where
necessary.

We can now define multiplication of two CG potentials,� 1 � ,&� and � 2 � � � , as follows.1 Convert both potentials to canonical form, if necessary.1 Extend them to the same domain, if necessary.1 Compute the following for each discrete entry:

� � 1 � � 1 ��� 1 � ��� � 2 � � 2 ��� 2 � � � � 1 * � 2 � � 1 * � 2 ��� 1 * � 2 �
Division is similar, except we use � instead of * .

Marginalization is harder. Let us first consider the case
of pure Gaussian potentials. Suppose we want to compute�'��% 2 � � � - 1 �'�(% 1 � % 2 � . We first convert � to canonical form
(if necessary)2 , and then partition it into the components
being kept and the components being marginalized over:� � � �

1�
2 � � � � � � 11 � 12� 21 � 22 �

The new canonical characteristics are as follows:

ˆ� � � * 1
2 � � log � 2 
 � � log � � 11 � * � �1 � � 1

11

�
1 �

ˆ� � �
2 � � 21 � � 1

11

�
1

ˆ� � � 22 � � 21 � � 1
11 � 12

Now let us turn to the CG case. We first marginalize
over the continuous variables, and then the discrete ones.

1We assume there is a canonical ordering for the entries within
each vector/matrix/table.

2It is much easier to marginalize in moment form (just extract
the relevant components of � and Σ); however, it is not always
possible to convert to moment form.

However, this does not necessarily reduce the size (num-
ber of table entries) of the CG potential. For example,
consider the potential �'�(% � ! � � � 
 � where % and ! are con-
tinuous scalar variables, and � and 
 are discrete binary
variables; hence � is a mixture of four (two dimensional)
Gaussians. If we marginalize over ! and 
 , the result will
be �'�(% � ��� � 2 � � � �'��% � ! � � � 
 � which is still a mixture of
four (one dimensional) Gaussians: marginalization has not
made the potential any smaller (in terms of the number of
discrete components). Now suppose we multiply this po-
tential by 	��(% ��
 � � ��� � , where 
 is a scalar and � is a binary
variable — the result will now be a mixture of 8 (two dimen-
sional) Gaussians, instead of just 4, since for each value of� and � , � contains two Gaussians. Hence, as we propagate
messages, the potentials become mixtures with more and
more components.

To avoid the exponential blow-up in the size of the poten-
tials, we adopt the standard approximation of “collapsing”
a mixture of Gaussians to a single Gaussian, using the fol-
lowing formulas (this is called “weak marginalization”):

� �(��� � � � � ��� � 
�
) �(��� � � � � � 
 � ��� ) ��� � 
 �
Σ �(��� � � � � � 
 � ��� � Σ ��� � 
 � *

��) �(� � 
� � ) ���(� � � ) ��� � 
 � � ) �(������� 	
where � � 
 � �(� � � ��� � 
 �� 2 � � ��� � 
 � . (In our example, we
collapse a mixture of 2 Gaussians to a single Gaussian for
each value of � .) This is the best CG approximation (in the
sense of minimizing KL divergence) to the true marginal
(see e.g., [Lau96, p. 162] for a proof). In particular, it gives
the correct first and second order moments, i.e.,

� � %'� � � and
Var

� % � � � will be the same for the weak marginal and the true
marginal.

Note that if the parameters of the Gaussian are indepen-
dent of the discrete variable being marginalized over (i.e.,) ��� � 
� � ) ���(� and Σ �(� � 
 �+� Σ �(��� ) — for example, be-
cause the discrete variable is not a parent or child of the
Gaussian variables but just happens to “live” in the same
clique — then this process is exact, and is called “strong
marginalization”.

5 Junction trees with strong roots
The non-closure of CG-potentials under marginalization of
discrete variables means that we have to be careful how we
construct the junction tree. In particular, we need to be
able to convert to moment form before we perform any dis-
crete marginalizations. The relevant theory is discussed in
[Lau92, Lau96]; here, we just summarize the main results.

We define a strong root as any node � (in the junction
tree) which satisfies the following property: for any pair� � , of neighbors on the tree with , closer to � than � ,
we have ����� ,&��� Γ � � �	 ,&��� ∆
where Γ are all the continuous variables and ∆ are all the
discrete variables. In other words, when a separator be-



tween two neighboring cliques is not purely discrete, all the
variables in the clique furthest away from the root which
are not in the separator are continuous. If a graph is trian-
gulated and does not have any paths between two discrete
vertices passing through only continuous vertices (i.e., a
“forbidden path” of the form

� � � � �
), then there is

always at least one strong root [Lei89]; such graphs are
called decomposable, marked graphs (marked just means
there are two types of nodes).

For example, consider Figure 1. Moralization adds an
arc between H and

�
; the resulting graph is then already

triangulated, and has cliques H �
�

and

�
I , so the junction

tree is H �
�
�
�
�
�
I . Note that this has a forbidden path

from H to I , and hence there is no strong root. However,
if we add an extra arc between H and I after the moraliza-
tion step, to eliminate the forbidden path, the junction tree
becomes H �

�
� H
�
� H
�
I . Here, H

�
I is a strong root,

since ��� , �K� H � � � � � � � H � � � I6� �L� � � � Γ.
A sufficient condition to ensure there is a strong root is to

eliminate all the continuous nodes before the discrete ones
when triangulating. For example, if we use the elimination
order 
 � � � �

�
� H � I ), we get the strong junction tree

above.
We need a junction tree with a strong root is to ensure that

when we send messages up to the root (during the collect
evidence phase), all the marginalizations will be strong,
so that when we subsequently send messages back from
the root (during the distribute evidence phase), neighboring
potentials will be consistent.

The reason the first pass results in strongmarginals is easy
to see: for any pair � � , of neighbors on the tree with ,
closer to the strong root than � , when we compute � � � H'� �2 ����� �'��� � , we are only performing integrations, since the
only variables in � which are not in , are continuous (by
definition). When we have to marginalize out a discrete
variable, say � , we can always integrate out any variables
which depend on it, say � , first (i.e., we can compute2 � � - �'��% � �(� instead of � -

2 � �'��% � �(� ), and hence avoid
the need to collapse the mixture of Gaussians.

The reason the second pass results in consistent potentials
is also easy to see. Suppose that , absorbed from � on
the first pass, so �'�(H'��� 2�� ��� �'��� � . On the backwards
pass, we compute � � � � �'���'��� � � ����� �(H'� �!�'� H'� � , so�� ��� � � ��� � � ��� � � H � � �'�(H'� ��� �� ��� �'��� �

� � � �(H'� � ������ � � � ,&�
(Note that we are justified in pulling the ratio outside the
sum only because the marginalization over � �#, is strong.)

The disadvantage of requiring a strong root is that, in
general, adding extra links to remove forbidden paths will
increase the size of the cliques, as we saw above. One
can always choose to ignore the strong root requirement,
although this risks incurring additional inaccuracies of un-
known magnitude. Fortunately, as we will see in Section 9,
the effective size of a clique is determined only by the num-
ber of hidden nodes it contains, so adding extra links to
observed nodes does not increase the computational com-
plexity.

6 Converting CPDs to potentials

We now discuss how to convert CPDs into potentials for
Gaussian nodes with Gaussian and/or discrete parents, and
for discrete nodes with discrete and/or Gaussian parents.

For a Gaussian node with Gaussian parents, we can create
a canonical potential as follows.�
�(! � % �
� � � Σ � exp � � 1

2 ��!�� ) �-,&% � � Σ � 1 ��!�� ) �-,&%#� 	
� exp

�
� 1

2 � % !�� � , Σ � 1 , � � , Σ � 1

� Σ � 1 , � Σ � 1 � � % ! �
* � % ! � � � , � Σ � 1 )

Σ � 1 ) � � 1
2 )G� Σ � 1 )+* log

� � Σ �
	
Hence we set the canonical characteristics to� � � 1

2 ) � Σ � 1 )�* log
� � Σ �� �

� � , � Σ � 1 )
Σ � 1 ) �

� �
� , Σ � 1 , � � , Σ � 1

� Σ � 1 , � Σ � 1 �
This generalizes the result in [Lau92] to the case of vector-
valued nodes. In the scalar case, Σ � 1 � 1 ;� , , ��! , and�+� 1, so the above becomes� � ��) 2

2 � 2 � 1
2 log � 2 
G� 2 �� � )

� 2

� � !
1 �

� � 1
� 2

� ! ! � � !� ! � 1 �
From this, we see that � is rank 1; hence we may not be
able to represent the initial potential on a clique in moment
form (although after we have propagated evidence, each
potential represents a joint probability density, which can
always be converted to moment form).

For a Gaussian node with discrete parents, we get a� � � � ��� � triple of the above form for each value of the
discrete parents.

For discrete nodes with discrete parents, we can convert
any CPD into a CPT (i.e., we can compute Pr �(� � � � 	 �
 � , even if the distributionis specified implicitly), and hence
can convert it to a tabular potential. Of course, such a trans-
formation might lose some local conditional independence
information, which might have been exploited to speed up
inference. For some kinds of CPDs, such as noisy causal
independence models [RD98], there are ways to expose the
local structure graphically, which makes it easier to exploit
in the junction tree framework, but we don’t discuss this
issue here.

Finally, we discuss the case of discrete nodes with Gaus-
sian parents in the next section.

7 The variational approximation

We can convert the logistic function to a canonical Gaussian
potential by using the following variational lower bound



[JJ96] (see Appendix A for the derivation):

Pr �(�"� � � ��� % �'���'�(! � % *3� �� �'��� � exp � ��� ��� �  2 *�� �	� � ��� 2 �
� 2 � 	
where �&� � 2 � � 1 ���(! � % *�� � , � ��� � � � 12 � �'��� ���� 2 � , and� ��� 0 � 1 � . Notice that this is quadratic in % , and hence we
can represent it as a canonical potential:� � log �'��� � * 1

2 � 2 � � 1 � � � 1
2 � *�� �	� � �(� 2 ��� 2 �� � 1

2 � 2 � � 1 � ! *� ��� � 2 � !� � � 2 � ��� � ! ! �
We call this representation VG, for Variational Gaussian.
If the discrete node also has discrete parents, we get a�(! � � � � � pair for each discrete parent value, and the resulting
potential will be a mixture of VGs (MVG).

The advantage of the variational approximation is that it
allows us to represent the potential as a Gaussian, and hence
perform marginalization in closed form. The need to do this
arises even in sparsely connected models (ones which have
small clique size). This is in contrast to the more common
use of variational methods, which is to approximate infer-
ence in models which are too dense to solve exactly (see
[JGJS98] for a review).

With any approximation method, it is natural to ask how
good the approximation is. Although a quadratic function
is a poor approximation to a sigmoid, the joint probability�
� � � � � (where � is Gaussian and � is logistic) is well-

approximated by a Gaussian (see Figure 3). In fact, the
approximation is exact when � � � 2 � � 1 � � ! � % *5��� .

If � is hidden, the optimalvalue of � cannot be computed.
However, we can guess an initial value, and then iteratively
adjust it to increase the quality of the approximation. As in
EM [NH98], at each iteration we set � to the value that maxi-
mizes the expected complete-data log-likelihood, where the
expectation is computed using the parameter values of the
previous iteration. This results in the following update (see
Appendix B for the derivation):

� 2 � � � �(! � % * � � 2 � ��! � � Σ * ) )G��� ! * 2 � ! � ) */� 2
where the posterior distributionon � is � * � ��) � Σ � . (The
update equation does not specify whether to take the positive
or negative square root. However, this ambiguity turns out
not to matter, since Pr �(� � � ; � � is symmetric in � .)

Choosing a good initial estimate of � is important (see
Section 10). The procedure we use is as follows. We walk
down the graph and compute the mean and variance of each
node (if it is continuous), or its most probable value (if it
is discrete), based only on the evidence and assignments
above it. Then, when we get to a logistic node, we can look
up ) and Σ of its parents, and plug them into the equation
above for � .

For example, consider the crop network and suppose onlyI is observed. We set H � 0 (since the H node is more
likely to be off than on),

��� � � � 5, and
��� � � � ���

�
� H �

0� � 10 � 5 � 5, i.e., we use the mixture component
corresponding to the most probable value of H . (This turned
out to be better than collapsing the mixture of Gaussians at�

, using the distribution over H for the weights.)
We can also derive the upper bound

�
� � � %#� ) exp ����� ��

2 ���'� � , where � is another variational parameter and

�
2 � � � def� � � log � �&� 1 � � � log � 1 � � � is the binary en-

tropy function. We use the lower bound because (1) it is
tighter (since it is a second-order approximation), and (2)
for learning, we want to maximize a lower bound on the
likelihood [NH98]. However, the upper bound can be used
in conjunction with the lower bound to filter out runs of
MCMC which result in marginals which fall outside the
bounds, as in [JJ99].

Note that we can also exploit the quadratic approximation
to fit the parameters of the logistic node, ! and � , using
linear regression, instead of the slower IRLS (Iteratively
Reweighted Least Squares) procedure, as noted in [Tip98].

Finding a good variational approximation for the softmax
distribution is a problem we are currently working on. In
this paper, we only consider the logistic distribution (i.e.,
binary nodes). However, we can always use � binary nodes
to encode (in a distributed fashion) the value of a single
node � with 2 � possible values (see e.g., [Tip98]).

8 A new approach to handling evidence

The “traditional” approach to handlingevidence in the junc-
tion tree framework is as follows (see e.g., [HD94]). Let
us start by considering the case where all the potentials are
discrete. First we create a junction tree with the potentials
initialized to 1s, then we multiply on all the CPDs. When
evidence arrives, e.g., we observe that 	 � � , we find any
clique that contains 	 and multiply it by a potential of the
form � 0 ������� � 1 ��������� 0 � , where the 1 is in the � ’th position.3

This sets to 0 any entries incompatible with the evidence.
Finally, we do a propagation to restore global consistency.
Now each clique potential contains the joint probability of
its variables and the evidence , , e.g., �'�(	�� � � � � 
 � �
Pr ��	 � � � � � 
 � ,�� . This can be normalized to obtain the
likelihood of the evidence, Pr � ,�� � 2 � J � �'��� � 
� , and the
posterior, Pr ��	 �&� � � �-
 � ,�� ���'��� � 
�  Pr � ,�� .

When we have Gaussian potentials, we initialize to 0s,
and follow a similar procedure, except now we must multi-
ply every potential (including separators) that contains the
nodes for which we have evidence, since the dimensionality
of the vectors and matrices will be reduced. For example,
suppose we observe � �"! ; then �'��� � � � becomes

� � �(% � � exp

� � * � % � ! � � � ������ �
� 1

2 � % ! � � � ��� � � �� � � � ��� � � % ! � 	
� exp � � � * � �� !�� 1

2 ! � � ��� ! �* % � � ��� � � � � ! � � 1
2 % � � ��� % 	

This generalizes the equation in [Lau92] to the case of
vector-valued nodes.

There are several problems with the traditional approach:
1 For discrete variables with many possible values (e.g.,

HMMs with large codebooks), we may create huge ini-
tial clique potentials, only to subsequently set most of

3This is sometimes called “hard” evidence. “Soft” or “virtual”
evidence would consist of a distribution over � ’s possible values.
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Figure 3: The variational approximation gets poorer as the logistic function becomes steeper (more deterministic). On the
left we plot Pr �(�"� 1 � % � for the exact (solid) and approximate (dotted) logistic function, using ����� 2 and !-� 1 (top) or!-� 4 (bottom), and the optimal � value. On the right, we plot Pr ���"� 1 � %#� Pr ��%#� , where Pr ��%#�'� � ��% ; 0 � 1 � .

the entries to zero. The technique of evidence shrink-
age [HD94] and zero compression [JA90] can help
reduce the inefficiency of manipulating such sparse
potentials, but it would be better not to create them in
the first place.1 We need to have a way of converting the CPD of each
node into potential form. This makes it impossible
to use many kinds of distributions. Also, we might
want to create a conditional model Pr ��� � � � , and not
associate any parameters with � since it is always an
observed input (as in linear regression). This is not
possible with the traditional approach.1 There is an annoying asymmetry in the handling of
observations on discrete and continuous nodes. For
the former, we only need to modify one potential,
but for the latter, we must modify all potentials that
contain the observed nodes. In addition, it is difficult
to do the book-keeping when we change the size of
each Gaussian potential.

There is a very simple solution to all these problems:
create the initial clique potentials after the evidence has
arrived! Then the potentials only have to be defined on the
hidden nodes: the observed nodes just contribute a constant
factor to the value of clique potential, and don’t take up any
space.

For example, consider a softmax node with a parent �
whose value is observed to be % � . We can convert this to
a CPT and thence into a discrete potential by computing
Pr ��� �&� � � � % ��� � softmax ��% � � ��� for each � . Similarly,
consider an HMM with Gaussian output. We can create
the evidence-specific observation matrices by computing
Pr ��� � � ! �� � 	 �&�(� � � ��! �� ; ) � � Σ � � for each hidden state �
and each time step

�
. This is the sense in which we can use

arbitrary conditional densities on observed nodes.
The type of potential that we need to use in the junction

tree is determined by the type of hidden nodes that are left.
If all the hidden nodes in a clique are discrete (D), we can
represent its potential with a table; if they are all Gaussian
(G), we can use a Gaussian; otherwise, we must use a
Mixture of Gaussians (MG). If there is one potential of type
D and another of type G, all the potentials will be converted

to type MG for compatibility (i.e., so they can absorb from
one another). Similarly, if one is of type MG and another is
of type D or G, the latter will be converted to MG. (That is,
all the cliques are “raised” to their least common ancestor
in the type hierarchy, which has MG above both D and G.)

The disadvantage of the new approach to handling evi-
dence is that it is not incremental, i.e., when new evidence
arrives, we cannot just update a small part of the junction
tree, but instead must combine the new and old evidence,
and rerun the whole inference algorithm. In addition, the
new approach cannot handle retraction of evidence or soft
evidence. On the other hand, it is simple to combine the
new technique with the old, so that the “core” findings can
be handled in the new way, and nodes for which we have
soft evidence, or which we might want to just temporarily
instantiate, can be handled in the old way.

9 Computational complexity of inference

It is possible to marginalize and multiply/divide a Gaussian
potential in ���(� 3 � time, where � is the size of the potential
(i.e., the number of scalar variables in the clique), whereas
these operations on a discrete potential take time linear in
the number of entries in the table, which is exponential
in the number of discrete variables in the clique. Hence
large cliques only impose a high computational cost if they
contain many discrete variables. This is the reason why
people have been able to exactly solve large linear Gaussian
models, such as Kalman filters, without having to resort to
the kinds of approximations that are used in the discrete
Bayes net community.

By using the new approach to handling evidence, we
only need to worry about cliques that contain many hidden
discrete variables. More precisely, if we partition the nodes
into a hidden and observed set, �&� ��� � , or into a discrete
and continuous set, � � ��� �

, then the cost of inference
in a hybrid network is

�
��� ��
	�� �� �� �

-
	��
�� �� � % � �� �

�� �
-
	��
�� �� � %'� ��

3 ���� �
��



where 
 is the set of cliques, � %'� is the number of values
node % can take on (if it is discrete) or its length (if it
is a continuous-valued vector). (See [MA98] for a more
detailed discussion of the complexity of the junction tree
algorithm for discrete networks.)

10 Experimental results

To see how accurate the variational approximation is, we
compared the junction tree algorithm (as implemented in
BNT4) to Gibbs Sampling (as implemented in BUGS5) on
the network shown in Figure 1. We generated 20 random
examples from the joint distribution encoded by the network
(using the exact setting of � ), and computed the posterior
distributions over the hidden variables, for each possible
pattern of evidence, using the junction tree or BUGS.

For BUGS, we used a “burn-in” of 2000 iterations, and
then sampled for 10,000 iterations. (Similar results were
achieved using a burn-in of just 1000 plus 1000 iterations,
and also using 1000 samples from likelihood weighting
[SP90].) For the junction tree, we updated the varia-
tional parameters until the relative change in log-likelihood
dropped below 0 � 001; when H was observed, so

�
had a

unimodal distribution, this took 2–3 iterations; when H was
hidden, so

�
had a bimodal distribution, this took 7–9 iter-

ations. BUGS (implemented in compiled Modula 2) took
17 and 12 minutes of real time, for 10,000 and 1000 iter-
ations respectively, and the junction tree (implemented in
interpreted Matlab) took 2.5 minutes. (Times are for a Sun
Ultra Sparc 2.)

The results are shown in Table 2. ∆ � H'� is � � � � H � � � � � H ���
averaged over 20 trials, and similarly for ∆ � � � , ∆ �

�
� , and

∆ �(I � , where
� � and

� � are the expected values (condi-
tioned on the evidence) computed using the junction tree
and BUGS respectively. (Standard deviation is in brack-
ets.) A dash means the variable was observed, so inference
was not necessary. (Note that, since H is a binary random
variable,

��� H�� � Pr � H � 1 � and similarly for I .)
When

�
is observed (with value, say, � ), we can perform

inference exactly (because

�
�
�
� � � H � � � can be repre-

sented as a CG distribution), and so the non-zero values of
∆ are due to finite sampling effects in BUGS (which can
always be driven to 0 by taking more samples). When

�
is

hidden, we need to use the variational approximation, and
so the non-zero values of ∆ are partly due to errors incurred
by this approximation, and partly due to finite sampling
effects.

The results indicate that the variational approximation
does well except in cases where both H and I are hidden
(rows 14 and 16). This is because, in this case, the posterior
on

�
is bimodal: there will be a peak near

�
� 5 and

one near

�
� 15, corresponding to H � 0 and H � 1

respectively. Furthermore, since I is not observed, it is
hard tell which one is more likely (apart from the prior, of
course). Note that observing

�
is not particularly helpful,

since it is d-separated from H , and in any case rarely deviates

4Bayes Net Toolbox. See
www.cs.berkeley.edu/ murphyk/Bayes/bnt.html.

5Bayesian inference Using Gibbs Sampling. See
www.mrc-bsu.cam.ac.uk/bugs/.

from its mean (since Cov
� � � � 1). When

�
is bimodal, it

is difficult to choose a good initial estimate of � , which can
cause the algorithm to converge to a poor local maximum (of
the lower-bound on the log-likelihood). When we “cheated”
by starting the variational algorithm off with the correct
value of � (i.e., � � � 2 � � 1 ���(! � % * � � , using the true values
of

�
� % and � � � ), we found, not surprisingly, that the

variational method did very well.6

11 Future work
We are currently working on ways to improve the quality of
the approximation in the case that the distribution over the
parents of the logistic node is multimodal. We also want
to extend the variational approximation to softmax nodes.
In the future, we intend to apply these techniques to hybrid
Dynamic Bayesian Networks, which can be thoughtof as an
extension to the traditional Switching Kalman Filter model
[BSL93]; in particular, the methods in this paper allow the
mode switches to be determined by the hidden continuous
state, instead of occuring “spontaneously”.
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A Derivation of the quadratic lower bound
to the logistic function

In this section, we derive a quadratic lower bound on the sigmoid
function �������	�
� 1 ������ � � 1

For details, see [Jaa97].
Consider first

1 ���� � ����� 2 � ������� 2 ������� 2 ��� ����� 2 � log ��� @ <�� 2 ��� <�� 2  
def� � ��� 2 � ˆ! � �  

where ˆ! �����"� log � � ����� 2 �#� ��� 2 � is symmetric, and a concave
function of � 2 .

Now, for any concave function
! ����� , it is easy to see that

! �����%$
�
���'&(��*)

) (
! ��(+� � ! ��(�� 	

def� ˜, ��(+�-�.& ˜, ��(��-( � ! ��(��
where ˜, ��(+���0//�1

! ��(+� , i.e., any tangent line to the function is an
upper bound, which is tight when (2�#� .

Let
! ��� 2 � def� ˆ! ����� , and let ( 2 be the variational parameter

indicating the location of the tangent, so that

ˆ! �����3� ! ��� 2 �*$ ˜, ��(��-� 2 � ! ��( 2 ��&( 2 ˜, ��(+�
6In fact, it did better than any exact method could, since by

using the optimal ( , we “leaked” information about the true val-
ues of 4 and 5 . For example, in case 16, when there are no
observations, the posteriors should be equal to the priors (i.e.,6.7 8:9 � 0 ; 3,

6.7 <=9 � 5,
6.7 4 9 � 0 ; 7 � 10 & 5 � � 0 ; 3 � 20 & 5 �	� 8,6.7 >?9 � 0 ; 35), and yet the cheating method computed different

estimates of these quantities for each example, indicating that it
had knowledge of the ’true values’; furthermore, these estimates
were closer to the true values than the exact priors.



S C P B ∆ � 8 � ∆ � < � ∆ � 4 � ∆ � > �
1 o o o o - - - -
2 h o o o 0.0000 (0.0000) - - -
3 o h o o - 0.0033 (0.0002) - -
4 h h o o 0.0000 (0.0000) 0.0034 (0.0003) - -
5 o o h o - - 0.0152 (0.0101) -
6 h o h o 0.0000 (0.0000) - 0.0063 (0.0037) -
7 o h h o - 0.0110 (0.0062) 0.0176 (0.0137) -
8 h h h o 0.0000 (0.0000) 0.0352 (0.0145) 0.0424 (0.0218) -
9 o o o h - - - 0.0018 (0.0021)
10 h o o h 0.0000 (0.0000) - - 0.0026 (0.0030)
11 o h o h - 0.0022 (0.0003) - 0.0019 (0.0017)
12 h h o h 0.0000 (0.0000) 0.0006 (0.0003) - 0.0023 (0.0022)
13 o o h h - - 0.2286 (0.1455) 0.2800 (0.1862)
14 h o h h 0.2957 (0.0000) - 2.8897 (0.3186) 0.3745 (0.1788)
15 o h h h - 0.2756 (0.1530) 0.5506 (0.3033) 0.3812 (0.2258)
16 h h h h 0.3015 (0.0000) 0.3337 (0.0000) 2.3247 (0.0000) 0.3480 (0.0000)

Table 2: Experimental results for the crop network using the junction tree. Cols. 1–4: ’o’ means a variable is observed, ’h’
means it is hidden. Cols. 5–8. ∆ �(H'� is � � � � H �G� � � � H ��� averaged over 20 trials, and similarly for ∆ � � � , ∆ �

�
� , and ∆ �(I � ,

where
� � and

� � are the expected values (conditioned on the evidence) computed using the jtree and BUGS respectively.
(Standard deviation in brackets.) A dash means the variable was observed, so inference was not necessary. See text for
details.

where

˜, ��(+� � )
) ( 2

! ��( 2 ��� )
) ( 2

ˆ! ��(��

Using the substitution � �#( 2 we find

˜, ��(��	� 1
4 ( tanh ��(�� 2 �	� � ����(+� & 1

2
��� 2 (

Now,

log ��� &�� �	�
& log � 1 ���� �3� &2���	� 2 � ˆ! ��� � �
so we get the following lower bound on the logistic function:

log ����� � � �	� 2 & ˆ! ��� �

 ��� 2 & ˜, ��(+��� 2 & ! ��( 2 � � ( 2 ˜, ��(+�

 ��� 2 � , ��(+��� 2 � log ����(���& (� 2 &( 2 , ��(��

where
, ��(��*� & ˜, ��(�� . Using the fact that Pr � 5 � 0 � � �
���*�

1 & Pr � 5 � 1 � � �#���3� ��� &2����� � ��� � � , we get the final result.

B Derivation of update formula for the
variational parameter

To find the optimal value of ( , we iteratively maximize a lower
bound on the expected complete-data log-likelihood, as in EM
[NH98]. The only term which depends on ( is

6.7
log 4 � 5 �

� � � � � ; (�� 9 , where the expectation is w.r.t. all the observed data
and the ( from the previous iteration. Differentiating, we get

)
) (
6.7

log 4 � 5 ��� � � � � � 9

� ) , ��(+�
) (

)
) ,
6 � log ����(�� � ���#& (���� 2 � , ��(�� ��� 2 & ( 2 � 	

� ) , ��(+�
) ( � 6.7 � 2 9 & ( 2 �

Since
, ��(�� is monotonically increasing in � ( � , the maximum is

obtained at

( 2 � 6.7 � 2 9 � 6 � 6.7 � 2 � 5 ��� 9 	

� 4 � 5 � 0 � 6.7 � & 1 � 2 ��� � � ��� � 2 9

�24 � 5 � 1 � 6.7 � 1 � 2 ��� � � ��� � 2 9
� 6.7 ��� � � ��� � � ��� � � ��� � 9
� 6.7

tr ��� � ��� � ��� 9 � 2 � � � 6.7 � 9 ��� 2

� tr ��� � 6.7 ��� � 9 � � � 2 � � � 6.7 � 9 ��� 2

� � � � Cov
7 � 9 � 6.7 � 9�6.7 � � 9 ��� � 2 � � � 6.7 � 9 ��� 2

� � � � Σ � � � � � � � � 2 � � � � ��� 2

where
6

and 4 are taken w.r.t. all the data and the previous ( .
Note that this derivation is slightly more general than the one

in [JJ96], since we allow 5 to be hidden; however, the net result
turns out to be the same.
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