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ABSTRACT
This work experimentally investigates model-based approaches for
optimising the performance of parameterised randomised algorithms.
We restrict our attention to procedures based on Gaussian process
models, the most widely-studied family of models for this problem.
We evaluated two approaches from the literature, and found that se-
quential parameter optimisation (SPO) [4] offered the most robust
performance. We then investigated key design decisions within
the SPO paradigm, characterising the performance consequences
of each. Based on these findings, we propose a new version of
SPO, dubbed SPO+, which extends SPO with a novel intensifi-
cation procedure and log-transformed response values. Finally, in
a domain for which performance results for other (model-free) pa-
rameter optimisation approaches are available, we demonstrate that
SPO+ achieves state-of-the-art performance.

1. INTRODUCTION
Many high-performance algorithms—and in particular, many heu-

ristic solvers for computationally challenging problems—expose a
set of parameters that allow end users to adapt the algorithm to a
specific target application. Optimising parameter settings is thus
an important task in the context of developing, evaluating and ap-
plying such algorithms. Recently, a substantial amount of research
has aimed at defining effective, automated procedures for parame-
ter optimisation (also called algorithm configuration or parameter
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tuning). More formally, given a parameterised target algorithm A,
a set (or distribution) of problem instances I and a performance
metric c, the goal is to find parameter settings of A that optimise
c on I . The performance metric c is often based on the runtime
required to solve a problem instance or, in the case of optimisa-
tion problems, on the solution quality achieved within a given time
budget.

Several variations of this problem have been investigated in the
literature. First, these formulations vary in the number and type
of target algorithm parameters allowed. Much existing work deals
with relatively small numbers of numerical (often continuous) pa-
rameters (see, e.g., [11, 2, 1]); some relatively recent approaches
permit both larger numbers of parameters and categorical domains
(see, e.g., [17, 9, 16]). Second, approaches differ in whether or not
explicit models (so-called response surfaces) are used to describe
the dependence of target algorithm performance on parameter set-
tings.

There has been a substantial amount of work on both model-free
and model-based approaches. Some notable model-free approaches
include F-Race by Birattari et al. [9, 3], the CALIBRA procedure by
Adenso-Diaz & Laguna [1], and ParamILS by Hutter et al. [17].
State-of-the-art model-based approaches use Gaussian stochastic
processes (also known as ‘kriging models’) to fit a response surface
model. These models minimise the mean squared error between
predicted and actual responses, using a non-parametric function
to represent the mean. Combining such a predictive model with
sequential decisions about the most promising next design point
(based on a so-called expected improvement criterion) gives rise to
a popular and widely studied approach in the statistics literature,
which is known under the acronym DACE (Design and Analysis
of Computer Experiments [21]). An influential contribution in this
field was the Efficient Global Optimisation (EGO) procedure by
Jones et al. [19], which addressed the optimisation of determinis-
tic black-box functions. Two independent lines of work extended
EGO to noisy functions: the sequential kriging optimisation (SKO)
algorithm by Huang et al. [15], and the sequential parameter opti-
misation (SPO) procedure by Bartz-Beielstein [5, 4].

In our study of model-based optimisation of randomised target
algorithms, we maintain this focus on Gaussian process (GP) mod-
els. We also limit ourselves to the simple case of only one problem
instance (which may be chosen as representative of a set or dis-
tribution of similar instances). We make this restriction because,
while still retaining significant practical relevance and focusing on
core conceptual issues, it allows us to avoid the problem of perfor-
mance variation across a set or distribution of problem instances.
(The management of such variation is an interesting and important
topic of study; indeed, we have already begun to investigate it in
our ongoing work. We note that this problem can be addressed by
the algorithm of Williams et al. [25], though only in the case of
deterministic target algorithms.)



We thoroughly investigate the two fundamental components of
any model-based optimisation approach in this setting: the choices
taken in building the predictive model, and the sequential proce-
dure that uses this model to find performance-optimising parame-
ter settings of the target algorithm. First, in Section 2, we describe
our experimental setup, with a special focus on the two target algo-
rithms we consider, CMA-ES [14, 13] and SAPS [18]. In Section
3, we compare the two model-based optimisation procedures SKO
and SPO. Overall, we found that SPO produced more robust re-
sults than SKO in terms of the final target algorithm performance
achieved. Consequently, we focused the remainder of our study on
the mechanisms that underly SPO.

In Section 4, we investigate the effectiveness of various meth-
ods for determining the set of parameter settings used for building
the initial parameter response model. Here we found that using
more complex initial designs did not consistently lead to improve-
ments over more naïve methods. More importantly, we also found
that parameter response models built from log-transformed perfor-
mance measurements tended to be substantially more accurate than
those built from raw data (as used by SPO [4]). In Section 5, we
turn to the sequential experimental design procedure. We introduce
a simple variation in SPO’s intensification mechanism which led to
significant and substantial performance improvements. Next, we
consider two previous expected improvement criteria for selecting
the next parameter setting to evaluate, and derive a new expected
improvement criterion specifically for optimisation based on pre-
dictive models trained on logarithmic data. This theoretical im-
provement, however, did not lead to consistent improvements in al-
gorithm performance. Finally, we demonstrate that our novel vari-
ant of SPO, which we dub SPO+, achieved an improvement over
the best previously-known results on the SAPS parameter optimi-
sation benchmark.

2. TARGET ALGORITHMS AND EXPERI-
MENTAL SETUP

The target algorithms we used in our study of model-based pa-
rameter optimisation procedures are CMA-ES and SAPS. CMA-ES
is a prominent gradient-free global optimisation algorithm for con-
tinuous functions [14, 13] which is based on an evolutionary strat-
egy that uses a covariance matrix adaptation scheme. We used the
Matlab implementation CMA-ES 2.54,1 which is integrated into
the SPO toolbox version 0.4 and was used as an example applica-
tion for parameter optimisation in the SPO manual [6]. CMA-ES
has two obvious parameters: the number of parents, N , and a fac-
tor ν ≥ 1 relating the number of parents to the population size.
(The population size is defined as bN × ν + 0.5c.) Furthermore,
Bartz-Beielstein et al. [6] modified CMA-ES’s interface to expose
two additional parameters: the “learning rate for the cumulation for
the step size control”, cσ or cs, and the damping parameter, dσ or
damps (for details, see [12]). We used exactly the same region of
interest (see Table 1) considered in Bartz-Beielstein et al.’s SPO
example based on CMA-ES [6].

For each run of CMA-ES, we allowed a limited number of func-
tion evaluations and used the resulting solution quality (i.e., the
minimal function value found) as the response variable to be opti-
mised. We considered four canonical 10-dimensional test functions
with a global minimum function value of zero that have previously
been used for the evaluation of CMA-ES: the Sphere function (used
in the SPO example mentioned above) and the Ackley, Griewank,
and Rastrigin functions (as used by Hansen & Kern [13]). For the

1The newest CMA-ES version, 3.0, differs mostly in the inter-
face and in supporting “separable” CMA (see the change log at
http://www.lri.fr/~hansen/cmaes_inmatlab.html).

Target algorithm Parameter Domain Type
N [1, 50] integer

CMA-ES ν [2, 10] continuous
cs (0, 1] continuous

damps [0.25, 0.99] continuous
α (1, 1.4] continuous

SAPS ρ [0, 1] continuous
Psmooth [0, 0.2] continuous
wp [0, 0.06] continuous

Table 1: Target algorithms, parameters, and the regions of in-
terest (parameter domains) considered.

first three functions, we optimised mean solution quality reached
by CMA-ES within 1 000 function evaluations, while for the more
challenging Rastrigin function we set a limit of 10 000 function
evaluations.

The second target algorithm we considered was SAPS [18], a
high-performance dynamic local search algorithm for the proposi-
tional satisfiability problem. We used the standard UBCSAT im-
plementation [24] of SAPS and defined the region of interest (see
Table 1) closely following Hutter et al.’s earlier parameter opti-
misation study using SAPS [17], with the difference that we did
not discretise parameter values. (Hutter et al. did so because the
parameter optimisation procedure used by them required it.) For
SAPS, our goal was to minimise the median run-time (measured in
local search steps) for solving the “quasigroups with holes” (QWH)
SAT instance used in [17]. This instance belongs to a family of dis-
tributions that has received considerable interest in the SAT com-
munity. We chose this particular instance to facilitate direct com-
parison of the performance achieved by the parameter optimisation
procedures considered here and in [17]; of course, we cannot draw
general conclusions about optimising SAPS from studying a single
instance.

To evaluate the qualityQ(θ) of a proposed parameter setting θ in
an offline evaluation stage of the algorithm, we always performed
additional test runs of the target algorithm with setting θ. In partic-
ular, for the CMA-ES test cases, we computed Q(θ) as the mean
solution quality achieved by CMA-ES using θ across 100 test runs.
For the higher-variance SAPS domain, we computed Q(θ) as the
median runtime achieved by SAPS with setting θ across 1 000 test
runs. We measure the performance pk of a parameter optimisation
run after k runs of the target algorithm as the performance Q(θ) of
the parameter setting θ the method would output if terminated at
that point. The final performance of a parameter optimisation run
is the performance at the end of the run. In order to measure the
performance of a parameter optimisation method, we performed 25
runs of the method with different random seeds, and report mean
and standard deviation of the final performance across these 25 rep-
etitions. We also performed paired signed rank tests for differences
in final performance (we chose a paired test because, using identi-
cal random seeds, the ith repetition of every parameter optimisation
method used the same initial design and response values). For the
experiments in Section 5.3 this pairing did not apply, so there we
used the (unpaired) Mann-Whitney U test.

3. SEQUENTIAL MODEL-BASED OPTIMI-
SATION METHODS: SKO VS SPO

As discussed in the introduction, the two most influential exist-
ing methods for model-based optimisation of noisy functions (such
as the performance of a randomised algorithm) are the SKO al-
gorithm of Huang et al. [15] and the SPO framework of Bartz-
Beielstein et al. [5, 4]. We unify both through the general frame-
work presented as Algorithm 1. Both methods first generate an
initial Latin hypercube design (LHD) and evaluate the respective



parameterisations of the target algorithm. (For a D-dimensional
parameter optimisation task, SKO performs an additional run for
the D parameter settings with the lowest response in this LHD; in
SPO’s initial design, r repeats are performed for each point, where
r is a parameter we fixed to its default value of 2 in this study.)
Both methods then iterate through the following steps: fit a Gaus-
sian process modelM to predict the response for all parameter set-
tings; select an incumbent parameter setting (to be returned upon
termination); based on the predictive model M and an expected
improvement criterion, select one or more new parameter settings
and evaluate them.

The two methods differ in their implementation of these steps.
Before fitting its Gaussian process model, SPO computes empir-
ical estimates of the user-defined performance metric (e.g., mean
solution quality) at each previously-observed parameter setting; it
then fits a noise-free Gaussian process model to this data. Since
this model is noise-free, it perfectly predicts on its training data
and the incumbent selected in line 8 of Algorithm 1 is thus the
previously-observed parameter setting with the best empirical per-
formance metric. In order to select which parameter setting should
be investigated next, SPO evaluates the E[I2] expected improve-
ment criterion [23] (which we discuss in Section 5.2) at 10 000
randomly selected parameter settings and picks the m ones with
highest expected improvement (in this paper, we use the default
m = 1). Because the true performance at the incumbent may differ
from the current empirical estimate, SPO implements an intensifi-
cation strategy that over time increases the number of runs to be
performed at each parameter setting as well as on the incumbent.
We discuss intensification strategies in greater detail in Section 5.1.

In contrast, SKO is based on a noisy Gaussian process model
and makes the assumption that observation noise is normally dis-
tributed. In order to select the next parameter setting to be evalu-
ated, it maximises an augmented expected improvement criterion
(that is biased away from parameter settings for which predictive
variance is low [15]), using the Nelder-Mead simplex method. SKO
selects the incumbent parameter setting as the previously observed
setting with minimal predicted mean minus one standard deviation.
No explicit intensification strategy is used; instead, intensification
is achieved indirectly through the one-standard-deviation perfor-
mance penalty.

We empirically compared both approaches “out of the box” on
the CMA-ES test cases, based on the same initial design (the one
used by SKO) and the original, untransformed data. In this com-
parison, SPO’s performance turned out to be more robust: while
for some repetitions, the incumbent parameter settings selected by
SKO changed very frequently, SPO’s incumbents remained quite
stable. Figure 1 illustrates the differences between the two ap-
proaches for CMA-ES on the Sphere function. Here, the LHD al-
ready contained very good parameter settings, and the challenge
was mostly to select the best of these and stick with it. From the
figure, we observe that SPO largely succeeded in doing this, while
SKO did not reliably select good parameter settings. On the other
test functions, SKO also tended to be more sensitive. Multiple ex-
planations could be offered for this behaviour. We hypothesise that
in some runs a non-negligible noise component in SKO’s Gaussian
process model misled the algorithm when selecting the incumbent
parameter setting: unlike in the noise-free case, the model was not
bound to selecting the parameter setting with best empirical perfor-
mance as the incumbent. SKO’s lack of an explicit intensification
mechanism provides another possible explanation.

In light of these findings, we decided to focus the remainder of
this study on various aspects of the SPO framework. In future work
it could be interesting to experiment with intensification mecha-
nisms in the SKO framework and to compare SKO with SPO under
transformations of the response variable.
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Figure 1: Comparison of SKO and two variants of SPO (dis-
cussed in Section 5.1) for optimising CMA-ES on the Sphere
function. We plot the performance pk of each method (mean so-
lution quality CMA-ES achieved in 100 test runs on the Sphere
function using the method’s chosen parameter settings) as a
function of the number of algorithm runs, k, it was allowed
to perform; these values are averaged across 25 runs of each
method.

Algorithm 1: General Schema for Sequential Model-Based
Optimisation. θi:j denotes a vector (θi, θi+1, . . . , θj); func-
tion SelectNewParameterSettings’s output is a vector of vari-
able length (i.e., m(i) can be different in every iteration).

Input : Target algorithm A, parameter domains D
Output: Incumbent parameter setting θ̂∗

θ1:m(1) ← ChooseInitialDesign(D)1
i← 1;n← 12
repeat3

for j = n, . . . , n+m(i)− 1 do4
Execute A with param. setting θj , store response in yj5

n← n+m(i)6
M← FitModel(θ1:n, y1:n)7

θ̂∗ ← SelectIncumbent(M, θ1:n)8
i← i+ 19

θn+1:n+m(i) ← SelectNewParameterSettings(M,D, θ̂∗)10
until TerminationCriterion()11

return θ̂∗12

4. MODEL QUALITY
It is not obvious that a model-based parameter optimisation pro-

cedure needs models that accurately predict target algorithm per-
formance across all parameter settings—including very bad ones.
Nevertheless, all things being equal, overall-accurate models are
generally helpful to such methods, and are furthermore essential to
more general tasks such as performance robustness analysis. In this
section we investigate the effect of two key model-design choices
on the accuracy of the GP models used by SPO.

4.1 Choosing the Initial Design
In the overall approach described in Algorithm 1, an initial pa-

rameter response model is determined by constructing a Gaussian
process model based on the target algorithm’s performance on a
given set of parameter settings (the initial design). This initial
model is then subsequently updated based on runs of the target
algorithm on additional parameter settings. The decision about
which additional parameter settings to select is based on the cur-
rent model.

It is reasonable to expect that the quality of the final model (and
the performance-optimising parameter setting determined from it)



Test case Metric Random Sample Random LHD SPO LHD IHS LHD
RMSE 2.35± 0.31 2.40± 0.27 2.33± 0.24 2.30± 0.22

CMA-ES-sphere CC 0.29± 0.16 0.27± 0.14 0.32± 0.11 0.31± 0.14
LL −9.87± 0.81 −10.05± 1.23 −10.43± 2.17 −9.90± 0.70

#predictions < 0 24.2± 13.1 17.7± 13.4 24.0± 11.7 23.7± 13.0
RMSE 0.46± 0.11 0.45± 0.19 0.60± 0.42 0.50± 0.18

CMA-ES-ackley CC 0.18± 0.14 0.19± 0.17 0.21± 0.14 0.23± 0.18
LL −4056± 14620 −1516± 2624 −998± 2372 −1755± 4590

#predictions < 0 6.8± 9.5 4.2± 10.6 10.6± 13.8 9.1± 11.7
RMSE 1.66± 0.30 1.64± 0.19 1.70± 0.22 1.53± 0.20

CMA-ES-griewank CC 0.36± 0.15 0.30± 0.15 0.35± 0.12 0.38± 0.12
LL −10.18± 24.97 −3.04± 3.33 −3.28± 3.37 −2.30± 2.14

#predictions < 0 22.4± 14.7 18.8± 15.6 20.9± 16.9 20.4± 15.1
RMSE 1.54± 0.33 1.46± 0.33 1.49± 0.41 1.46± 0.33

CMA-ES-rastrigin CC 0.32± 0.20 0.41± 0.17 0.33± 0.14 0.40± 0.14
LL −13.32± 6.25 −31.34± 97.94 −14.24± 10.70 −3735± 18613

#predictions < 0 23.1± 16.4 22.0± 16.6 17.5± 14.0 25.6± 17.1
RMSE 0.56± 0.07 0.51± 0.05 0.51± 0.06 0.52± 0.05

SAPS-QWH-cont-al CC 0.45± 0.18 0.58± 0.09 0.55± 0.14 0.52± 0.14
LL −13.88± 0.36 −13.73± 0.40 −13.71± 0.33 −14.06± 0.80

#predictions < 0 5.8± 5.1 8.1± 4.5 6.6± 5.1 8.0± 6.2

Table 2: Comparison of different methods for choosing the parameter settings in the initial design for models based on original
untransformed data. In addition to metrics RMSE, CC, and LL, we report the number of predictions that are below zero (note that
the true values are known to be greater than zero). In each case means and standard deviations are determined from 25 repetitions
with different LHDs and training responses (but identical test data). Bold face indicates the best value for each scenario and metric.

Test case Metric Random Sample Random LHD SPO LHD IHS LHD
RMSE 0.88± 0.11 0.84± 0.10 0.88± 0.11 0.82± 0.08

CMA-ES-sphere CC 0.91± 0.02 0.91± 0.02 0.90± 0.02 0.92± 0.02
LL −1.52± 0.56 −1.42± 0.31 −1.77± 0.95 −1.46± 0.30

RMSE 0.38± 0.02 0.37± 0.02 0.37± 0.02 0.37± 0.01
CMA-ES-ackley CC 0.22± 0.12 0.25± 0.13 0.25± 0.13 0.21± 0.12

LL −1.40± 1.65 −1.28± 0.79 −1.34± 0.97 −1.32± 1.21
RMSE 4.33± 0.53 4.35± 0.41 4.43± 0.61 4.78± 0.55

CMA-ES-griewank CC 0.40± 0.10 0.40± 0.11 0.42± 0.08 0.47± 0.06
LL −3.06± 0.17 −3.08± 0.25 −3.13± 0.33 −3.30± 0.26

RMSE 0.73± 0.09 0.74± 0.08 0.78± 0.13 0.72± 0.10
CMA-ES-rastrigin CC 0.56± 0.19 0.57± 0.13 0.53± 0.11 0.58± 0.18

LL −1.38± 0.54 −1.37± 0.45 −1.48± 0.78 −1.41± 0.47
RMSE 0.42± 0.04 0.41± 0.05 0.42± 0.04 0.41± 0.04

SAPS-QWH-cont-al CC 0.56± 0.16 0.58± 0.16 0.59± 0.10 0.61± 0.09
LL −0.55± 0.11 −0.52± 0.11 −0.54± 0.11 −0.56± 0.15

Table 3: Comparison of different methods for choosing the parameter settings in the initial design for models based on log-
transformed data. Bold face indicates the best value for each scenario and metric. The poor RMSE values for CMA-ES-griewank
are due a number of parameter settings predicted to be much better than they really are; for the models based on non-log data in
Table 2, such settings are predicted to be < 0 and do not take part in computing RMSE.

would depend on the quality of the initial model. Therefore, we
studied the overall accuracy of the initial parameter response mod-
els constructed based on various initial designs. The effect of the
number of parameter settings in the initial design, d, as well as
the number of repetitions for each parameter setting, r, has already
been studied before [7], and we thus fixed them in this study: we
used the SPO default of r = 2 and chose d = 250, such that when
methods were allowed 1 000 runs of the target algorithm, half of
them were chosen with the initial design (m(1) = d × r = 500).
Here, we study the effect of the method for choosing which 250
parameter settings to include in the initial design, considering four
methods: (1) a uniform random sample from the region of interest;
(2) a random Latin hypercube design (LHD); (3) the LHD used in
SPO; and (4) a more complex LHD based on iterated distributed
hypercube sampling (IHS) [8].

The parameter response models obtained using these initialisa-
tion strategies are evaluated by metrics that measure how closely
model predictions at previously unseen parameter settings match
the true performance achieved using these settings. We consid-

ered three metrics to evaluate mean predictions µ1:n and predictive
variances σ2

1:n given true values y1:n. Root mean squared error
(RMSE) is defined as

√∑n
i=1(yi − µi)2; Pearson’s correlation

coefficient (CC) as (
∑n
i=1(µi·yi)−n·µ̄·ȳ)/((n−1)·sµ·sy), where

x̄ and sx denote sample mean and standard deviation of x; and log
likelihood (LL) as

∑n
i=1 ϕ( yi−µi

σi
), where ϕ denotes the probabil-

ity density function of a standard normal distribution. Intuitively,
LL is the log probability of observing the true values yi under the
predicted distributions N (µi, σ

2
i ). For CC and LL, higher values

are better, while for RMSE lower values are better.
The results of this analysis for our five test cases are summarised

in Table 2.2 This table shows that for the original untransformed
data, there was very little variation in predictive quality due to the

2We report RMSE and CC after a log transformation of predictions
and true values in order to yield comparable values to the models
based on log-transformed data (otherwise, RMSEs would some-
times be on the order of 108). These values for RMSE and CC are
only based on the parameter settings for which the model prediction
was positive.
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(b) Untransformed data on log-log scale;
only means are plotted.
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(c) Log-transformed data on log-log scale.

Figure 2: Performance of noise-free Gaussian process models for CMA-ES-sphere based on an initial design using a random LHD;
in (a) and (c) we plot mean ± one standard deviation of the prediction. Metrics: (a) RMSE=2.289, CC=0.329, LL=-8.274, 22 points
predicted below zero; (c) RMSE=0.858, CC=0.927, LL=-1.407. For better visual comparison to (c), (b) shows exactly the same mean
predictions as (a), but on a loglog scale, for the data points predicted above zero.

procedure used for constructing the initial design. Note that this
does not contradict results from the literature; for example, [22]
states on page 149: “It has not been demonstrated that LHDs are
superior to any designs other than simple random sampling (and
they are only superior to simple random sampling in some cases).”

4.2 Transforming Performance Data
The second issue we investigated was whether more accurate

models could be obtained by using log-transformed performance
data for building and updating the model. This is motivated by the
fact that our main interest is in minimising positive functions with
spreads of several orders of magnitude which arise in the optimi-
sation of runtimes. Indeed, we have used log transformations for
predicting runtimes of algorithms in different contexts before (see.,
e.g., [20]). All of the test functions we consider for CMA-ES are
also positive functions; in general, non-positive functions can be
transformed to positive functions by subtracting a lower bound. In
the context of model-based optimisation, log transformations were
previously advocated by Jones et al. [19]. The problem they studied
was slightly different in that the functions considered were noise-
free. We adapt their approach by first computing performance met-
rics (such as median run-time) and then fitting a Gaussian process
model to the log-transformed metrics. Note that this is different
from fitting a Gaussian process model to the log-transformed noisy
data as done by Williams et al. [25] and Huang et al. [15]. The
performance metric that is implicitly optimised under this latter ap-
proach is geometric mean performance, which is a poor choice in
situations where performance variations change considerably de-
pending on the parameter setting. In contrast, when first computing
performance metrics and then applying a transformation, any per-
formance metric can be optimised, and we do not need to assume a
Gaussian noise model.

As can be seen from the results reported in Table 3, the use of
log-transformed performance data tended to result in much better
model accuracy than the use of raw performance data. First, note
that model fits on non-logarithmic data often yielded negative pre-
dictions of runtime and solution quality, whereas the true response
was known to be positive. Especially the log likelihood of the data
under the predictive model dramatically improved for all test cases.
In some cases, we also see drastic improvements in the other mea-
sures: for example, for CMA-ES-sphere, the correlation coefficient
improved from about 0.3 to above 0.9, and root mean squared er-
ror decreased from about 2.3 to below 0.9. Figure 2 visualises the

predictions and predictive uncertainty of these two models. Fur-
thermore, for the case of log-transformed data the effect of using
different initial designs was larger than for the untransformed data:
the IHS and Random LHDs tended to perform better than pure ran-
dom sampling or the SPO LHD. Overall, our results suggest that
much more accurate Gaussian process models may be constructed
through the use of log transformed rather than raw performance
data, and that the initial design plays a less important role.

5. SEQUENTIAL EXPERIMENTAL DESIGN
Having studied the initial design, we now turn our attention to the

sequential search for performance-optimising parameters. Since
log transformations consistently led to improved performance and
random LHDs yielded comparable performance to more complex
designs, we fixed these two design dimensions.

5.1 Intensification Mechanism
In order to achieve good results when optimising parameters

based on a noisy performance metric (such as runtime or solu-
tion quality achieved by a randomised algorithm), it is important
to perform a sufficient number of runs for the parameter settings
considered. However, runs of a given target algorithm on inter-
esting problem instances are typically computationally expensive,
such that there is a delicate tradeoff between the number of algo-
rithm runs performed on each parameter setting and the number
of parameter settings considered in the course of the optimisation
process.

Realising the importance of this tradeoff, SPO implements a
mechanism to gradually increase the number of runs to be per-
formed for each parameter setting during the parameter optimisa-
tion process. In particular, SPO increases the number of runs to be
performed for each subsequent parameter setting whenever the in-
cumbent θ̂∗ selected in an iteration has already been the incumbent
in some previous iteration. The original version 0.3 of SPO [5,
4, 7] doubles the number of runs for subsequent function evalua-
tions whenever this happens. A newer version of SPO (0.4) only
increments the number of runs by one each time [6]. Both versions
perform additional runs for the current incumbent, θ̂∗, to make sure
it gets as many function evaluations as new parameter settings.

While these intensification mechanisms work in most cases, we
have encountered runs of SPO in high-noise scenarios in which
there is a large number of parameter settings with a few runs and
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(a) CMA-ES Ackley
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(b) CMA-ES Griewank
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(c) CMA-ES Rastrigin
Figure 3: Performance pk (mean solution quality CMA-ES achieved in 100 test runs using the method’s chosen parameter settings)
of SPO 0.3, SPO 0.4, and SPO+, as a function of the number of target algorithm runs, k, the method is allowed. We plot means of pk
across 25 repetitions of each parameter optimisation procedure.

Sphere Ackley Griewank Rastrigin
SPO 0.3 10.3× 10−7 ± 11.9× 10−7 9.34± 1.65 453× 10−4 ± 2140× 10−4 1130± 5653
SPO 0.4 6.06× 10−7 ± 8.88× 10−7 8.16 ± 1.48 1320× 10−4 ± 6530× 10−4 4.06± 1.93
SPO+ 5.56 × 10−7 ± 5.15 × 10−7 8.48± 2.61 2.66 × 10−4 ± 2.53 × 10−4 2.62 ± 0.51

p-value SPO 0.3 vs SPO 0.4 0.07 0.015 0.95 1
p-value SPO 0.3 vs SPO+ 0.20 0.020 0.00006 0.0005
p-value SPO 0.4 vs SPO+ 0.56 0.97 0.00009 0.0014

Table 4: Comparison of different intensification mechanisms for optimising CMA-ES performance on a number of instances. We
report mean ± standard deviation of performance p1000 (mean solution quality achieved by CMA-ES in 100 test runs using the
parameter settings the method chose after 1000 algorithm runs) across 25 repetitions of each method, and p-values (see Sec. 2).

“lucky” function evaluations, making them likely to become in-
cumbents. In those runs, in almost every iteration a new incumbent
was picked, because the previous incumbent had been found to be
poor after performing additional runs on it. This situation contin-
ued throughout the entire parameter optimisation trajectory, leading
to a final choice of parameter settings that had only been evaluated
using very few (“lucky”) runs and performed poorly in independent
test runs.

This observation motivated us to introduce a different intensifi-
cation mechanism that guarantees an increasing confidence in the
performance of the parameter settings we select as incumbents. In
particular, inspired by the mechanism used in FocusedILS [17], we
maintain the invariant that we never choose an incumbent unless it
is the parameter setting with the most function evaluations. Promis-
ing parameter settings receive additional function evaluations until
they either cease to appear promising or receive enough function
evaluations to become the new incumbent.

In detail, our new intensification mechanism works as follows.
In the first iteration, the incumbent is chosen exactly as in SPO,
because all parameter settings have the same number of function
evaluations. From then on, in each iteration we select a number
of parameter settings and evaluate them as compared to the incum-
bent, θ̂∗. Denote the number of runs with a parameter setting θ
executed so far as N(θ) and their empirical performance as ĉ(θ).
For each selected setting θ, we iteratively perform runs until either
N(θ) ≥ N(θ̂∗) or ĉ(θ) > ĉ(θ̂∗).3 In the first case, if θ has reached
as many runs as the incumbent, θ̂∗, and ĉ(θ) ≤ ĉ(θ̂∗), then θ be-
comes the new incumbent. On the other hand, once ĉ(θ) becomes
larger than ĉ(θ̂∗), we reject θ as (probably) inferior and perform as
many additional runs for θ̂∗ as were just performed for evaluating θ;
this mechanism ensures that we use a comparable number of runs
for intensification and for exploration of new parameter settings.

3In order to reduce the overhead arising from performing many
algorithm runs one at a time, we batch runs, starting with a single
new run for each θ and doubling the number of new runs iteratively
up to a maximum of N(θ̂∗)−N(θ).

Note that the rejection is very aggressive and frequently occurs af-
ter a single run, long before a statistical test could conclude that θ
is worse than θ̂∗.

The parameter settings we evaluate against θ̂∗ at each iteration
include one new parameter setting selected based on an expected
improvement criterion (here E[I2], see Section 5.2). They also
include p previously evaluated parameter settings θ1:p, where for
each of these, a previously evaluated setting θ is selected with prob-
ability proportional to 1/ĉ(θ) and repetitions are not allowed (p is
an algorithm parameter and in this work always set to 5).

This mechanism guarantees that there will always be a positive
probability of re-evaluating a potentially optimal parameter setting;
it allows us to be aggressive in rejecting new candidates, since we
can always get back to the most promising ones. Note that if the
other SPO variants (0.3 and 0.4) discover the optimal parameter
setting but observe one or more very “unlucky” runs on it, there
is a high chance that they will never recover: once a parameter
setting has been evaluated, the noise-free Gaussian process model
attributes zero uncertainty to it, such that no expected improvement
criterion will pick it again in later iterations.

We denote as SPO+ the variant of SPO that uses a random LHD,
log-transformed data (for positive functions only; otherwise un-
transformed data), expected improvement criterion E[I2] and our
new intensification criterion. We compared SPO 0.3, SPO 0.4, and
SPO+ (all based on a random LHD and log-transformed data) for
our CMA-ES test cases and summarise the results in Table 4. For
the Ackley function, SPO 0.4 performed best on average, but only
insignificantly better than SPO+; for the Sphere function, SPO+

did insignificantly better than the other SPO variants. For the other
two functions, SPO+ performed significantly and substantially bet-
ter than either SPO 0.3 or SPO 0.4, finding parameter settings that
led to CMA-ES performance orders of magnitude better than those
obtained from SPO 0.3.

More importantly, as can be seen in Figure 3, over the course
of the optimisation process, SPO+ showed much less variation in
the quality of the incumbent parameter setting than the other SPO
variants. This is the case even for the Ackley function, where SPO+



did not perform best on average at the very end of its trajectory, and
can also be seen on the Griewank and Rastrigin functions, where
SPO+ clearly produced the best results.

5.2 Expected Improvement Criterion
In sequential model-based optimisation, parameter settings to be

investigated are selected based on an expected improvement crite-
rion (EIC). This aims to address the exploration/exploitation trade-
off faced in learning about new, unknown parts of the parameter
space, and intensifying the search locally in the best known region.
We briefly summarise two common versions of the EIC, and then
describe a novel variation, which we investigated.

The classic expected improvement criterion used by Jones et
al. [19] is defined as follows. Given a deterministic function f ,
and the minimal value fmin seen so far, the improvement at a new
design site θ is defined as

I(θ) := max{0, fmin − f(θ)}. (1)

Of course, this quantity cannot be computed, since f(θ) is un-
known. We therefore compute the expected improvement,E[I(θ)].
To do so, we require a probabilistic model of f , in our case the
Gaussian process model. Let µθ := E[f(θ)] be the mean, and σ2

θ

be the variance predicted by our model, and define u := fmin−µθ
σθ

.
Then one can show that E[I(θ)] has the following closed-form ex-
pression:

E[I(θ)] = σθ · [u · Φ(u) + ϕ(u)], (2)

where ϕ and Φ denote the probability density function and cumula-
tive distribution function of a standard normal distribution, respec-
tively.

A generalised expected improvement criterion was introduced
by Schonlau et al. [23], who considered the quantity

Ig(θ) := max{0, [fmin − f(θ)]g} (3)

for g ∈ {0, 1, 2, 3, . . .}, with larger g encouraging a more global
search. The value g = 1 corresponds to the classic EIC. SPO uses
g = 2, which takes into account the uncertainty in our estimate of
I(θ) since E[I2(θ)] = (E[I(θ)])2 + Var(I(θ)) and can be com-
puted by the closed form formula

E[I2(θ)] = σ2
θ · [(u2 + 1) · Φ(u) + u · ϕ(u)]. (4)

One issue that seems to have been overlooked in previous work
is the interaction of log transformations of the data with the EIC.
When we use a log transformation, we do so in order to increase
predictive accuracy, yet our loss function cares about the untrans-
formed data (e.g., actual runtimes). Hence we should optimise the
criterion

Iexp(θ) := max{0, fmin − ef(θ)}. (5)

Let v := ln(fmin)−µθ
σθ

. Then one can show that

E[Iexp(θ)] = fminΦ(v)− e
1
2σ

2
θ+µθ · Φ(v − σθ). (6)

In Table 5, we experimentally compare SPO+ with these three
EI criteria on the CMA-ES test cases, based on a random LHD and
log-transformed data. In one case, E[I2] yielded the best results,
and in three test cases our new criterion E[Iexp] performed best.
However, the overall impact of changing the expected improvement
criterion was small and only two of the 12 pairwise differences
were statistically significant.

5.3 Final Evaluation
In Sections 5.1 and 5.2, we fixed the design choices of using log

transformations and initial designs based on random LHDs. Now,
we revisit these choices: using our new SPO+ intensification cri-
terion and expected improvement criterion E[I2], we studied how

Procedure SAPS median run-time [search steps]
SAPS default from [18] 85.5× 103

CALIBRA(100) from [17] 10.7× 103 ± 1.1× 103

BasicILS(100) from [17] 10.9× 103 ± 0.6× 103

FocusedILS from [17] 10.6× 103 ± 0.5× 103

SPO 0.3 18.3× 103 ± 13.7× 103

SPO 0.4 10.4× 103 ± 0.7× 103

SPO+ 10.0× 103 ± 0.4× 103

Table 6: Comparison of final performance of various pa-
rameter optimisation procedures for optimising SAPS on in-
stance QWH. We report mean ± standard deviation of per-
formance p20000 (median search steps SAPS required on in-
stance QWH in 1000 test runs using the parameter settings the
method chose after 20 000 algorithm runs), across 25 repeti-
tions of each method. Based on a Mann-Whitney U test, SPO+

performed significantly better than CALIBRA, BasicILS, Fo-
cusedILS, and SPO 0.3 with p-values 0.015, 0.0002, 0.0009,
and 4×10−9, respectively; the p-value for a comparison against
SPO 0.4 was 0.06.
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Figure 4: Comparison of SPO variants (all based on a random
LHD and log-transformed data) for minimising SAPS median
runtime on instance QWH. We plot the performance pk of each
method (median search steps SAPS required on instance QWH
in 1000 test runs using the parameter settings the method chose
after k algorithm runs), as a function of the number of algo-
rithm runs, k, it was allowed to perform; these values are aver-
aged across 25 runs of each method.

much the final performance of SPO+ changed when not using a
log transform and when using different methods to create the ini-
tial design. Unsurprisingly, no initial design led to significantly
better final performance than any of the others. The result for the
log transform was more surprising: although we saw in Section 4
that the log transform consistently improved predictive model per-
formance, based on a Mann-Whitney U test it only turned out to
significantly improve final parameter optimisation performance for
CMA-ES-sphere.

As a final experiment, we compared the performance of SPO
0.3, 0.4, and SPO+ (all based on random LHDs and using log-
transformed data) to the parameter optimisation methods studied
by Hutter et al. [17]. We summarise the results in Table 6. While
SPO 0.3 performed worse than those methods, SPO 0.4 performed
comparably, and SPO+ outperformed all methods with the excep-
tion of SPO 0.4 significantly. Figure 4 illustrates the difference
between SPO 0.3, SPO 0.4, and SPO+ for this SAPS benchmark.
Similar to what we observed for CMA-ES (Figure 3), SPO 0.3 and
SPO 0.4 changed their incumbents very frequently, with SPO 0.4
showing more robust behaviour than SPO 0.3, and SPO+ in turn
much more robust behaviour than SPO 0.4.



Sphere Ackley Griewank Rastrigin
E[I] from [19] 8.60× 10−7 ± 1.03× 10−7 8.36± 2.65 3.51× 10−4 ± 3.06× 10−4 2.66± 0.57
E[I2] from [23] 5.56× 10−7 ± 5.15× 10−7 8.48± 2.61 2.66× 10−4 ± 2.53× 10−4 2.62± 0.51
E[Iexp] (new) 8.01× 10−7 ± 12.90× 10−7 8.30 ± 2.65 2.48 × 10−4 ± 2.51 × 10−4 2.56 ± 0.66

p-value E[I] vs E[I2] 0.29 0.55 0.016 0.90
p-value E[I] vs E[Iexp] 0.63 0.25 0.11 0.030
p-value E[I2] vs E[Iexp] 0.54 0.32 0.77 0.38

Table 5: Comparison of different expected improvement criteria for optimising CMA-ES performance on a number of functions.
We report mean ± standard deviation of performance p1000 (mean solution quality CMA-ES achieved in 100 test runs using the
parameter settings the method chose after 1 000 algorithm runs) of SPO 0.3, SPO 0.4, and SPO+, across 25 repetitions of each
method, and p-values as discussed in Section 2.

6. CONCLUSIONS AND FUTURE WORK
In this work, we experimentally investigated model-based ap-

proaches for optimising the performance of parameterised, ran-
domised algorithms. We restricted our attention to procedures based
on Gaussian process models, the most widely-studied family of
models for this problem. We evaluated two approaches from the
literature, and found that sequential parameter optimisation (SPO)
[4] offered more robust performance than the sequential kriging
optimisation (SKO) approach [15]. We then investigated key de-
sign decisions within the SPO paradigm, namely the initial design,
whether to fit models to raw or log-transformed data, the expected
improvement criterion, and the intensification criterion. Out of
these four, the log-transformation and the intensification criterion
substantially affected performance. Based on our findings, we pro-
posed a new version of SPO, dubbed SPO+, which yielded sub-
stantially better performance than SPO for optimising the solution
quality of CMA-ES [14, 13] on a number of test functions, as well
as the run-time of SAPS [18] on a SAT instance. In this latter do-
main, for which performance results for other (model-free) param-
eter optimisation approaches are available, we demonstrated that
SPO+ achieved state-of-the-art performance.

In the future, we plan to extend our work to deal with optimisa-
tion of runtime across a set of instances, along the lines of the ap-
proach of Williams et al. [25]. We also plan to compare other types
of models, such as random forests [10], to the Gaussian process
approach. Finally, we plan to develop methods for the sequential
optimisation of categorical variables.
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