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1 Introduction

In [Pea88], Pearl gives the equations for belief propagation in a directed graphical model in which all nodes
are scalar Gaussians. The generalization to vector-value nodes can be found in [Ala96]. We state, without
proof, the results of [Ala96], with a few modifications. In particular, we use the information (canonical)
form to represent A messages, so that we don’t try to invert matrices that might be uninvertible. This
problem arises because A messages, just like # in the forwards-backwards algorithm, represent conditional
likelihoods, not probability distributions = messages, by contrast, represent probability distributions, and
can be represented in moment form (using a mean and covariance matrix).

Another issue that arises is that the covariance matrix for a A message from a perfectly observed node is 0,
i.e., the precision is infinite. This cannot be represented in information (canonical) form, because z = ¥z
does not exist. Hence we must represent this special case in moment form. However, it is straightforward to

manipulate this “delta function”, as we show below.

2 Computing bel
Alag Eqn 2.38, Pearl Eqn 7.22.

belx (3, Z) X compute-bel(x (Sr, Fr), Ax (S5, Z2))

where z, = Z;lfx. If 7x has infinite variance, we set belx = (Xx,Z)). If Ax has infinite variance, we
set belx = (X,,T,). If Ax is a delta function, we set belx = (0,z*), where z* is the observed value of X.
Otherwise we proceed as follows.

s= (St

T=Y(X;'T, +X,'7))

3 Computing 7

Alag eqn 2-36, Pearl eqn 7.21.



Let P(X|Uy,...,Uy) = N(X;p+ Y1, B;U;, Q). Call all the parameters 0x. Let the m message sent from
U; to X be Wi(Ei,ﬂ{r).
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X (S, Tr) € compute-pi({r;},6x)
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4 Computing A

We define the following subroutine which multiplies together a set of A\ messages, excluding any in the set
E (Alag eqn 2-28):

A7) def prod-lamdba-msgs({\;}, E)

=5t

JgE

Z:E 24

J¢E

If the A message from self is a delta function, we simply pass it on, representing complete certainty (all the
A messages from the other children are ignored).

Since Ax(z) = Hje(}h(X) Aj(x), we have (Pearl eqn 7.20; different from Alag eqn 2-37):

Ax (X1, Z)) = prod-lamdba-msgs({}; }, )

5 Computing the 7 messages X sends to its children
Since m;(z) = bel(X|e; = @), we have

7;(X,T") = compute-bel(rx, prod-lamdba-msgs({\; }, j))

6 Computing the A messages X sends to its parents

First we present the result in the non-information form (Alag eqn 2-46).

(26, %) def compute-lambda-msg(Ax, {7}, 0x)



Covariance:
S = (B CB;)™!
where
C=|S\+Q+)> BiSiBf
k#i
Mean:
7; = 5Bl C(Z) —u)
where

u=pu+ ZBkﬂz
ki

In the special case of scalar nodes, we can use a simpler form of 2-24 to rewrite the mean as follows, which
corresponds to Pearl Eqn 7.24.

T :B;l(f)\ —’LL)

If Ax is a delta function, we can use the above form by simply setting ¥y = 0 and Ty = z*, the observed
value.

Unfortunately, the above assumes that ¥ and Z) can be computed. We can lift this assumption by using
the matrix inversion lemma (Alag Eqn 2-2), which, in its simplest form, is

(Prt+P Y =P —P(PL+P)' Py
Using this, we can rewrite C' as follows:
—1 —1 gy—1
C=%" —-X, A%,
where
A= 3" +(Q+>_ BiZiBl)™!
ki
Hence

;' =Bl'CB;



and

Zi = %;
= BzC(A_’U‘)
= B (Z7'Ty - ZTAS'E - S w4+ BT AT )
= B} (I-%'4)z — (I - =742 )
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