Active Learning of Causal Bayes Net Structure

Kevin P. Murphy
Department of Computer Science
University of California
Berkeley, CA 94720-1776
murphyk@cs.berkeley. edu

Abstract

We propose a decision theoretic approach for
deciding which interventions to perform so
as to learn the causal structure of a model as
quickly as possible. Without such interven-
tions, it is impossible to distinguish between
Markov equivalent models, even given infinite
data. We perform online MCMC to estimate
the posterior over graph structures, and use
importance sampling to find the best action
to perform at each step. We assume the data
is discrete-valued and fully observed.

1 Introduction

There are essentially two kinds of approaches for
learning the structure of Bayesian networks (BNs)
from data. The first approach tries to find a graph
which satisfies all the constraints implied by the em-
pirical conditional independencies measured in the
data [Pea00, SGS01]. The second approach searches
through the space of graphs and uses some scoring
metric to evaluate them [CH92, Hec95, Hec98], typi-

cally returning the highest scoring model found.

Both approaches to structure learning suffer from
the fundamental problem that, even given infinite
data, they can only identify the model up to Markov
equivalence.! This is adequate for density estimation
(i.e., if our goal is just to predict future observations),
but is inadequate if our goal is causal discovery, since

'Two graphs are Markov equivalent if they imply the
same set of (conditional) independencies. For example,
X—=Y—Z XY —=Z and XY+ Z are Markov equiva-
lent, since they all represent X L Z|Y. In general, two
graphs are Markov equivalent iff they have the same struc-
ture ignoring arc directions, and have the same v-structures
[VP90]. (A v-structure consists of converging directed
edges into the same node, such as X —»Y+Z.)

two BNs might be Markov equivalent and yet make dif-
ferent predictions about the consequences of interven-
tions (e.g., X = Y and Y — X are Markov equivalent,
but make very different assertions about the effect on
Y of changing X).

The only way to distinguish members of the same
Markov equivalence class is to perform experiments.
By “experiments” we mean ideal interventions in the
sense of Pearl [Pea00], i.e., the learning agent can
clamp a subset of the variables to fixed values. For
example, in the genetics domain, an experiment might
consist of “knocking out” a gene, which we can think
of as clamping it to a fixed value. The manipulation
theorem [SGS01, Pea00] says that we can compute the
consequences of such interventions by “cutting” all the
arcs coming into the nodes which have been clamped
by intervention, and then doing probabilistic inference
in the “mutilated” graph in the usual way. (We are
assuming all nodes are observed; if there are hidden
nodes, we must use Pearl’s “do calculus” to compute
the consequences of interventions [Pea00]).

It is straightforward to modify existing Bayesian scor-
ing methods to handle data obtained by interventional
studies (in addition to the usual passive observational
data). Specifically, we simply refrain from updating
the parameters of the nodes that were clamped [CY99].
(The intuitive justification for this is that observing
that a clamped node has a certain value does not tell
us anything about how likely it is that that value would
occur had we not forced it.) What has not been stud-
ied with the notable exception of [TK01], which we
discuss in Section 6 is a way to decide which inter-
ventions to perform so as to learn the causal structure
as quickly/ cheaply as possible. This is the goal of this
paper.

We adopt a standard decision theoretic approach to
the problem. The basic idea is to compute a pos-
terior probability distribution over graph structures
given some data, P(G|D), and then, for each possible
experimental action we can perform, compute the ex-

pected utility of this action with respect to our current
beliefs about the model. We then update our beliefs
given the outcome of the experiment and repeat. The
basic framework is discussed in Sections 2 and 3.

Since the number of directed acylic graphs (DAGs)
grows super-exponentially with the number of nodes?,
we use a form of online MCMC to approximate our
belief state, P(G|D1.t), where Dy is the data we have
seen up to time-step ¢ (i.e., t is the number of exam-
ples we have seen so far). In addition, computing the
expected utility of an action requires enumerating all
possible observations, which takes O(2") time (assum-
ing binary nodes). We approximate this using impor-
tance sampling. We discuss these approximations in
Section 4. In Section 5, we show some experimental
results using these approximations with three different
Bayes nets.

Before diving into the technical details, we remark on
the controversy concerning attempts to learn causality
from data. Our claim is merely that statistical signa-
tures in the data can suggest causal hypotheses that
can be checked by experiment.

2 Active learning

The basic idea of our approach is illustrated in the
influence diagram in Figure 1. We define the value
(expected utility) of performing an action A = a as

V(a)=>_ > Plylg,a,D)P(g|D)U(g,a,y, D)
9€G yey

where U(-) is a utility function, and P(y|g,a, D) is
the probability of generating observation y given that
we have performed action a on graph g (e.g., if a is an
intervention action, we need to mutilate g). G is the set
of hypotheses (DAGs) we are considering,), , is the
set of possible observations that g could generate after
action a, and D is the past data. The best (myopic)
action is defined to be a* = argmaxyc 4 V (a), where
A is the set of possible actions (i.e., the set of values
to which we can clamp the settable nodes).

If the goal is to infer the model structure, and all
actions cost the same, we can use the following util-
ity function: U(g,a,y, D) = log P(gla,y, D). In Sec-
tion 5, we will show experimentally that inferring the
“correct” model structure is necessary if we are to pre-
dict the effect of interventions, but is not necessary if
we are simply to predict future observations.

2No closed-form formula is known for the number of
DAGSs on n nodes, f(n), but the first few values of f, for
n=1,...,10, are 1, 3, 25, 543, 29281, 3781503, 1.1 x 10°,
7.8x 10, 1.2 x 10% and 4.2 x 10*® [C0099]. A crude upper

bound is 0(2"’2), the number of boolean matrices.

Figure 1: An influence diagram for one-shot experi-
ment design. The dotted line is an informational arc,
and specifies that the data D is observed before the
action A (square node) is chosen. Y is a random vari-
able that will be observed after action A. G is the
unknown graph (its parameters are not shown, since
they are integrated out). The diamond node U is the
utility.

Before going into details, we will show that maximiz-
ing log P(g|a,y, D) is equivalent to maximizing the ex-
pected KL divergence between our posterior and our
prior, or equivalently, to minimizing the conditional
entropy of H(G|Y,a,D) [Ber79], which are perhaps
more familiar criteria.
V* = maxEyKL(P(G|a,Y,D)||P(G|D))
a
P(gla,y, D)

= max 3 P(yla, D) |3 Plgla,y, D)log —5rims

Yy g

Since the denominator P(g|D) is independent of a, we
may drop it to get

9 y
3 Optimal algorithm

Let G be the (finite) set of all DAGs that we are con-
sidering. If all nodes are discrete (and hence) and
A are also finite sets), we can compute the optimal
action by exhaustive enumeration, as follows.

for each a € A
V(a) =0
for each y € Y
Compute P(y|g,a,D) Vg€ G
Compute P(gla,y,D) Vg€ G
Via)+=3_, P(ylg,a, D)P(g|D)log P(gla,y, D)

For completeness, we briefly summarise how to com-
pute the various equations in the above algorithm. We
use standard techniques for sequential Bayesian struc-
ture learning in fully observed, discrete domains (see
[SLI0, Bun94, Hec98] for details).

The expression P(y|g, a, D) is the predictive density of
ga (the graph ¢ modified by action a) given the past

data D evaluated at y. This is given by the following
equation:

P(ylg, a, D)
n qi T
= TITITI [¢ P6iielg, D)6y
i=1j=1k=1"
n qi T
z]k
= IIII 1%
i=1j=1k=1

where 1;;;(y) is an indicator function that is 1 if the
event (X; = k,II; = j) occurs in case y, and is 0
otherwise. r; is the number of values X; can take on,
qG = H_iem r; is the number of values X;’s parents
can take on. For unclamped nodes, we define 6;;; =
P(X; = k|II; = j). For clamped nodes, we define
0ijr = 1if X; is clamped to k and 6;;;, = 0 otherwise.
(Hence P(ylg,a, D) is 0 if y contradicts the values of
the clamped nodes implied by a). If we assume the
parameters of each node have independent Dirichlet
priors with hyperparameters i, the posterior mean
parameters are given by

Qg + Nzyk
Zz 1 @ijt + Niji

where Njjp = veD 1ijk(y). In this paper, we use
the priors a;;, = 1/(r,ql) [HGC95] call this the BDeu
metric. This ensures that Markov equivalent models
have the same marginal likelihood given observational
data alone, unlike using a;;, = 1.

bijx = Blbijrlg, D] =

Since many of the graphs in G will share the same
families, we can use a cache to efficiently compute
P(y|g,a,D) for all ¢ € G. (For example, if g; and
g2 only differ by a single edge addition/deletion, then
P(y|g1,a,D) and P(y|g2,a, D) will only differ by one
term.) Given the marginal likelihoods P(y|g, a, D) and
the priors P(g|D) we can compute the posterior prob-
ability of each graph as follows:

P(ylg,a, D)P(g|D)
> Pylg’,a, D)P(g'|D)

In this paper, we use uniform structural priors, P(g).

P(gla,y, D) =

4 Sampling algorithm

The optimal algorithm assumes we can exhaustively
evaluate G, Y and A. Typically this will be too ex-
pensive. We now discuss how to approximate each of
these in turn.

4.1 Sampling graphs

The basic idea is to use the Metropolis-Hastings (MH)
algorithm to draw samples from P(G|D). The al-

gorithm is summarized below, where Q(G’'|G) is the
probability of proposing a move from G to G', B is
the burn-in period, and N is the number of samples
we want to draw. (See [MY95] for details.)

Choose GG somehow e.g., at random
Fort=1,...,.B+ N
Sample G’ ~ Q(-|Gy)

_ P(G'ID)Q(G4]G)
Compute R = PGIID)OG G

Sample u ~ Unif (0, 1)
If w < min{1, R}
then Gt+1 = GI
else Gt+1 = Gt
Return Gp41,...,GB+N

The proposal distribution we use is to sample uni-
formly from the neighborhood of G, defined to be
the set of all DAGs that differ from G by a single
edge addition, deletion or reversal. (A way of quickly
checking that the proposed graph is acyclic, based on
the ancestor matrix, is described in [GCO01].) In other
words, Q(G'|G) = 1/|nbd(G)], for G' € nbd(G), and
Q(G'G) =0 for G' ¢ ndb(G), so

Inbd(G)|P(G")P(D|G")

= @) P(G)P(DIG))

where the marginal likelihood is given by [CH92]

ﬁ H _ Dleyy) ﬁ I(aiji + Niji)
azy + Nzy) F(ai.ik)

i=1j=1 k=1

P(D|G)

The main advantage of this proposal distribution
is that it is efficient to compute the Bayes factor
P(D|G")/P(D|@G), since all but one (or two, in the
case of an edge reversal) terms in the marginal likeli-
hood ratio cancel.

[MAPV96] suggested searching the (smaller) space of
(Markov) equivalence classes of DAGs, but this is in-
appropriate when we have interventional data. [FKO00]
suggested searching the (even smaller) space of total
orderings of the nodes, marginalizing out the actual
structure. Although this converges much faster, we
chose not to pursue this technique, since we find it
easier to design priors and heuristic proposal distribu-
tions in the space of graphs rather than orderings (see
Section 6).

The MH algorithm as described above is appropriate
for offline (batch) computation. However, we need to
compute P(G|D;.+) online (sequentially). We there-
fore combine the ideas of particle filtering (see e.g.,
[DAFGO1]) with MH as follows. The belief state,
P(G|D.), is represented as a set of weighted particles
(samples). When a new observation arrives, we apply
a small number, B, of MH moves to each particle to

get an approximation to P(G|D1.441). The justifica-
tion for this is that the new belief state is likely to be
very similar to the old one (since we only have one new
observation). We initialise by sampling from our prior
P(G).

Finally, we remark that in some domains, we have
enough prior knowledge to construct a small set of
hypothetical models, so we can feasibly enumerate all
of G without needing to use MCMC.

4.2 Sampling observations

Even if we can find a small set of probable candidate
models, the size of each model in this set, n, might
be large, making it expensive to sum over all possi-
ble observations. (If all nodes are binary, there are
O(2") possible observations, and for continuous-valued
nodes, there are an infinite number.) In this case, we
can use importance sampling. The basic idea is to
make the following approximation

Eyf(Y)= Z wy f(y)

ZISRA

where f(y) = P(g|D)log P(gla,y, D), Vs is a set of

sampled y’s drawn from some proposal distribution
Q(-), and w,, are the normalized importance weights:

wy x P(ylg,a,D)/Q(y).

Combining these two approximations, we modify the
above active learning algorithm as follows.

Sample G5 ~ P(:|D) using MCMC
for each a € A
Via)=0
Sample V; ~ Q(:|a, D)
for each y € Vs
Compute wy(g) = P(ylg,a,D)/Q(y) Vg € G
Compute P(gla,y, D) Vg € G

wy(g)
o V9E s

Set wy(g) = y
V(a)+=3, 3, wy(9)P(g|D)log P(gla,y, D)

The simplest proposal distribution for y is the uniform
one: Q(y) = 1/2" %, where we have assumed that all
nodes are binary and the action a has clamped & nodes.
The optimal proposal is of course Q(y) = P(ylg, a, D).
In this case, the algorithm becomes

Sample G; ~ P(-|D) using MCMC
for eacha € A
V(a)=0
for each g € G,
Sample Y, ~ P(:|g,a,D)
Set wy, =1/|Ys|
for each y €)s
Compute P(¢'|a,y, D) Yg' € G

V(a)+ = w, P(g|D)log P(g|a,y, D)

Since this is O(|G4|?), it is typically too expensive. A
cheaper approximation would be to sample from the
mixture distribution » P(ylg,a, D)P(g|D). In this
paper, however, we just sample from the uniform dis-
tribution.

4.3 Sampling actions

Finally, we consider the max, computation. If we can
clamp up to k nodes simultaneously, and all nodes are
binary, then |A| < <Z> 2F = O(n*). Since it is often
difficult or expensive to clamp many nodes simultane-
ously, k is often small; hence n* is a low order poly-
nomial. Nevertheless, since we must do O(|Gs| - |V|s)
computations per action, this can be expensive. We
are currently working on some heuristic methods to
avoid this brute force enumeration.

For continuous-valued nodes, the number of actions
is in principle infinite, although in practice it might
be reasonable to discretize the action space. For ex-
ample, in the genetics domain, we might be able to
clamp a node to its “wildtype” (mean) value pu, to
“overexpress” it (clamp it to u + o, where o is the
standard or to “underexpress” it (clamp it to yu — o).
(See [BMI99] for an interesting MCMC approach to
selecting continuous-valued actions.)

4.4 How many samples?

The question of how many samples we need to take is
an interesting one. The key insight is that, for action
selection, it is the relative values of V' (a) that matter.
This idea has been exploited in [OKO00] to reduce the
number of samples used (see also the “Hoeffding races”
approach of [MM93]). However, in this paper, we just
use a fixed number of samples.

5 Results®

We compare the behavior of the active learner with two
other algorithms: passive observation, and random in-
terventions. We assume we can clamp up to two nodes
simultaneously to any of their legal values. There are
various ways to compare the algorithms. Since the
posterior over all graphs is too big to easily visualize,
one way of compressing it, following [TKO01], is to com-
pute the L edge error induced by belief state at time

3All of the experiments were performed in Matlab
using the Bayes Net Toolbox, which is available from
www.cs.berkeley.edu/ ~murphyk/Bayes/bnt.html.

8.5

7.5 [H

L1 error
(2]
(o)) [6)]
N - \
/i
]
7
' J i 1
/
F) 1 r
L

551

35 ' ' ' '
0 10 20 30 40
number of examples

Figure 2: L, edge error against number of examples
for the cancer network using random CPD parameters
from a uniform distribution. The lines from top to
bottom represent passive, random and active learning.
We used 10 sampled observations, 100 sampled graphs.
and averaged over 5 trials.

L1 error

60 10 20 30 40 50 60 70 80

number of examples
Figure 3: L; edge error against number of examples
for the Asia network using the published CPD param-
eters. The lines from top to bottom represent passive,
random and active learning. We computed Zy ex-

actly, used 100 sampled graphs, and averaged over 10
trials.

36

347t

32}
30-..'.

28 1Y

L1 error

261

241

22

0 10 20 30 40 50
number of examples

Figure 4: L, edge error against number of examples
for the car troubleshooter network using random CPD
parameters from a Beta(0.2,0.2) distribution. The top,
dotted line is the passive learner, the other two lines
are the random and active learners. We used 100 sam-
pled observations, 300 sampled graphs, and averaged
over 5 trials.

0O 20 40 60 80 "0 20 40 60 80

Figure 5: Prediction performance after 0, 1, 2 or 3
interventions to the Asia network. The vertical axis is
negative log likelihood, the horizontal axis is number
of examples. The dotted line is the passive learner, the
other two lines are the random and active learners. We
averaged over 10 trials.

t, Pt = P(G‘D]:t)Z

i1 j=it1
+ g (Xi<X;)(1 - P(X;Xj)))
+ I+ (X; LX;5)(1 — P(X;1X;))

errt (P,) =

where Ig-(X;—X;) is an indicator variable that is 1
if there is an edge from X; to X; in the true graph
structure G*, and X; L X; means there is no connection
between X; and Xj;. (Henceforth we shall call the true
model the “oracle”.)

Another metric is to evaluate the ability of the models
to predict future observations, either drawn from the
oracle, or generated in response to an intervention in
the oracle. To do this, we simply generate a test set
of size M using the (possibly mutilated) oracle, and
compute its average negative log likelihood according
to the current belief state of the learner:

M
»d -1
err?re (Py) = =7 Z ZlogP(ym|g)P(g|D1:t)
m=1 g

We consider performing 0, 1 and 2 interventions in the
oracle, which corresponds to clamping 0, 1 and 2 nodes
simultaneously to random values, and then sampling
the other nodes. A test set consists of M = 20 such
cases.

To be comparable with [TK01], we test our algorithm
on three commonly-used networks: the 5 node cancer
network [FMRO98], the 8 node Asia network [LS88], and
the 12 node car trouble-shooter network [HBR94]. All
networks have binary nodes with multinomial condi-
tional probability distributions (CPDs). For the Asia
network, we used the published parameters. For the
other networks, we sampled the CPD parameters from
a Dirichlet distribution. By changing the parameters
of the Dirichlet, we can control the degree of deter-
minism. Specifically, as a;;z—0, the CPTs become
more deterministic; for a;;; = 1, the CPT entries are
chosen uniformly on [0,1] (subject to the sum-to-one
constraint); and as a;j;—00, each row of the CPT
tends towards the maximum entropy distribution of

[]./T,j,.. ,1/7"1]

In Figures 2, 3 and 4, we show how the L; error
decreases as the number of examples increases. For
the cancer and Asia networks, we see that the active
learner identifies the structure much more quickly than
the random or passive learners. For the car trouble
shooter network, however, the active learner does not
seem to do any better than the random learner; pre-
sumably this is because we are not sampling for long
enough. This is something we plan to investigate fur-
ther.

In Figure 5, we plot the prediction performance of the
learners for the Asia network. In Figure 5(a) we see
that the passive learner can predict observations from
the unmutilated oracle slightly better than the other
learners (initially, at least), even though it has the
“wrong” structure. However, Figures 5(b-d) indicate
that knowing the right structure helps to predict the
effect of interventions, as expected, especially as the
number of clamped nodes increases. We have found
this to be true for the other models as well, especially
in the more deterministic parameter regime.

6 Related work

Most previous work on active learning has been in the
context of classification, regression or function opti-
mization. In the case of linear regression, the mini-
mum posterior entropy criterion discussed in Section 2
is called D-optimality, and can be maximized in closed
form. Many other results (such as A-optimility, G-
optimality, etc.) have been derived for the linear re-
gression model, in both a Bayesian and non-Bayesian
setting (see e.g., [CV95] for a review). There has also
been work on active learning for non-linear regres-
sion models (e.g., neural networks [Mac92] and locally
weighted regression [CGJ96]), where the objective is
to minimize the expected variance of the predictor.
In the above works, the active learner can choose any
point in the input space. By contrast, in the query
filtering paradigm, the learner can choose to see the
label of certain items from a stream of inputs (see e.g.,
[FSSTI7]).

In the PAC setting, [Ang88] showed how the ability to
ask questions reduces the problem of identifying cer-
tain kinds of boolean functions from NP-complete to
polynomial time. [BHH95] and [TR98] have exended
this to active learning of tree-structured boolean func-
tions, where the internal nodes are hidden. [AKMMO98]
have some results concerning upper and lower bounds
on the number of experiments necessary to learn (pos-
sibly cyclic) boolean networks. [ITKO00] discusses ac-
tive learning techniques for learning boolean networks
using an entropy-based cost function.

The most closely related work is that of Tong and
Koller [TKO01], who also use a decision theoretic frame-
work for BN structure learning. (We shall henceforth
refer to this as the “TK” algorithm.) The TK algo-
rithm builds upon [FK00], who do MCMC over total
orderings of the nodes, instead of over DAGs. The
space of orderings is “only” of size n!, much smaller
than the space of DAGs, which is a space of size
()(2”2). The key insight is that, conditioned on an
ordering <, the parents for each node can be chosen
independently (because there is no longer any global

acyclicity constraint), and hence can marginalized out.
TK extend this by showing how, conditioned on <, one
can perform Zu (needed for the expected utility com-
putation) using the variable elimination algorithm.

The advantages of our algorithm over TK are its sim-
plicity, the fact that it makes no assumptions about the
form of the loss function, and the fact that it can incor-
porate prior structural knowledge. The loss function
used by TK is Loss(P(Gla,y, D)) = >_,; Hi;, where
H;; is the entropy associated with the edge distribu-
tion between nodes i and j. Although this is fairly
intuitive, it is not as theoretically well motivated as
H(G|Y,a, D), which we used above.

The advantage of the TK algorithm over ours is speed.
Firstly, it computes Zy analytically, instead of using
importance sampling. And secondly, it uses MCMC
in the smaller space of orderings. However, it is not
clear how big the former speedup is: the cost of vari-
able elimination depends on the induced width of the
graph, which in turn depends on the summation order-
ing and the structure of the graphs induced by the set
of all possible families; hence the induced width can
become quite large. Also, while [FK00] have shown
that MCMC in the space of orderings converges faster
than in the space of DAGs, we believe that for either
approach to be really practical, one will need strong
prior knowledge, and it is easier to specify a prior as
P(G) rather than the much less natural P(G| <).

7 Future work

There are many issues we would like to pursue in
the future, the main ones being: continuous variables,
missing data, online learning, and dynamical systems.
and applications to biology.

For continuous variables, we plan to use linear-
Gaussian CPDs, possibly with non-linear basis func-
tions, as discussed above. (The use of such non-
linearities makes this different from the global jointly
Gaussian approach of [HG95].) For missing data, we
plan to use sampling (data augmentation). The ac-
tions might now also consist of choosing to measure
a hidden variable, as in classical value-of-information
computations. For online learning, we can no longer
keep the whole dataset D, nor can we store the (ex-
pected) sufficient statistics for all possible models. One
approach would be to keep the statistics just for a
“fringe” of probable models, as in [FG97].

It is straightforward to adapt the above techniques
to learn the structure of a dynamic Bayesian network
(DBN) from time series data c.f., [FMR98]. If we only
allow arcs between time-slices (“diachronic” arcs), the
parents for each node can be chosen independently,

as in feature subset selection. Hence we can get the
advantages of the TK algorithm without the need to
sample node orderings.

Finally, we eventually hope to apply the algorithm
to the problem of experiment design for inferring the
structure of gene regulatory networks.

Acknowledgements

I would like to thank Stuart Russell and Michael Jor-
dan for comments on an earlier draft of this paper.

References

[AKMM98] T. Akutsu, S. Kuhara, O. Muruyama, and
S. Miyano. Indentification of gene regulatory
networks by strategic gene disruptions and
gene overexpressions. In STAM Symposium on
Discrete Algorithms, 1998.

[Ang88] D. Angluin. Queries and concept learning.

Machine Learning, 2:319-342, 1988.

[Ber79] J. Bernardo. Expected information as ex-

pected utility. Annals of Statistics, 7:686—690,

1979.

[BHH95] N. Bshouty, T. Hancock, and L. Hellerstein.

Learning Boolean read-once formulas over

generalized bases. J. Comp. and Systems Sci-

ences, 50(3):521 542, 1995.

C. Bielza, P. Mueller, and D. Rios Insua. Deci-
sion analysis by augmented probability simu-
lation. Management Science, 45(7):995-1007,
1999.

[BMI99]

[Bun94] W. L. Buntine. Operations for learning with
graphical models. J. of AI Research, pages
159-225, 1994.

[CGJ96] D. Cohn, Z. Ghahramani, and M. Jordan. Ac-
tive learning with statistical models. J. of AT
Research, 4:129 145, 1996.

[CH92] G. Cooper and E. Herskovits. A Bayesian
method for the induction of probabilistic net-
works from data. Machine Learning, 9:309—
347, 1992.

[Co099] G. Cooper. An overview of the representa-
tion and discovery of causal relationships us-
ing Bayesian networks. In C. Glymour and
G. Cooper, editors, Computation, Causation
& Discovery. MIT Press, 1999.

[CV95] K. Chaloner and I. Verdinelli. Bayesian exper-
imental design: A review. Technical report,
Univ. Minnesota, 1995.
www.stat.umn.edu/PAPERS/tr607.html.
[CY99] G. Cooper and C. Yoo. Causal discovery from
a mixture of experimental and observational

data. In UAI 1999.

[DAFGO1]

[FGO7]

[FKO00]

[FMROS]

[FSST97]

[GCO1]

[HBRY4]

[Hec95]

[Hec98]

[HG95]

[HGC95]

[ITKO00]

[1.588]

[Mac92]

[MAPV96]

A. Doucet, N. de Freitas, and N. J. Gordon.
Sequential Monte Carlo Methods in Practice.
Springer Verlag, 2001.

N. Friedman and M. Goldszmidt. Sequential
update of Bayesian network structure. In UAI,
1997.

N. Friedman and D. Koller. Being Bayesian
about network structure. In UAT 2000.

N. Friedman, K. Murphy, and S. Russell.
Learning the structure of dynamic probabilis-
tic networks. In UAI 1998.

Y. Freund, H. Seung, E. Shamir, and
N. Tishby. Selective sampling using the query
by committee algorithm. Machine Learning,
28:133 168, 1997.

P. Giudici and R. Castelo. Improving Markov
chain Monte Carlo model search for data min-
ing. Machine Learning, 2001. To appear.

D. Heckerman, J. Breese, and K. Rommelse.
Troubleshooting under uncertainty. Technical
Report MSR-TR-94-07, Microsoft Research,
1994.

D. Heckerman. A Bayesian approach to learn-
ing causal networks. In UAI 1995.

D. Heckerman. A tutorial on learning with
Bayesian networks. In M. Jordan, editor,
Learning in Graphical Models. MIT Press,
1998.

D. Heckerman and D. Geiger. Learning
Bayesian networks: a unification for discrete
and Gaussian domains. In UAI volume 11,
pages 274-284, 1995.

D. Heckerman, D. Geiger, and M. Chickering.
Learning Bayesian networks: the combination
of knowledge and statistical data. Machine
Learning, 1995.

T. Ideker, V. Thorsson, and R. Karp. Discov-
ery of regulatory interactions through pertur-
bation: inference and experimental design. In
Proc. of the Pacific Symp. on Biocomputing,
2000.

S. L. Lauritzen and D. J. Spiegelhalter. Local
computations with probabilities on graphical
structures and their applicatins to expert sys-
tems. J. R. Stat. Soc. B, B(50):127 224, 1988.

D. MacKay. Information-based objective func-
tions for active data selection. Neural Compu-
tation, 4:589 603, 1992.

D. Madigan, S. Anderson, M. Perlman, and
C. Volinsky. Bayesian model averaging and
model selection for Markov equivalence classes
of acyclic graphs. Communications in Statis-
tics: Theory and Methods, 25:2493-2519,
1996.

[MM93]

[MY95]

[OK00]

[Pea00]

[SGS01]

[SL90]

[TKO1]

[TROS]

[VP90]

0. Maron and A. W. Moore. Hoeffding races:
Accelerating model selection search for classi-
fication and function approximation. In NIPS-
6, 1993.

D. Madigan and J. York. Bayesian graphical
models for discrete data. Intl. Statistical Re-
view, 63:215 232, 1995.

L. Ortiz and L. Kaelbling. Sampling methods
for action selection in influence diagrams. In

AAAT 2000.

J. Pearl. Causality: Models, Reasoning and
Inference. Cambridge Univ. Press, 2000.

P. Spirtes, C. Glymour, and R. Scheines. Cau-
sation, Prediction, and Search. MIT Press,
2001. 2nd edition.

D. J. Spiegelhalter and S. L. Lauritzen. Se-
quential updating of conditional probabilities
on directed graphical structures. Networks, 20,
1990.

Active learning for
In IJCAL

S. Tong and D. Koller.
structure in Bayesian networks.
2001. Submitted.

P. Tadepalli and S. Russell. Learning from
examples and membership queries with struc-
tured determinations. Machine Learning,
32:245-295, 1998.

T. Verma and J. Pearl. Equivalence and syn-
thesis of causal models. In UAI 1990.

