
Active Learning of Causal Bayes Net Structure
Kevin P. MurphyDepartment of Computer ScienceUniversity of CaliforniaBerkeley, CA 94720-1776murphyk@cs.berkeley.eduAbstractWe propose a decision theoretic approach fordeciding which interventions to perform soas to learn the causal structure of a model asquickly as possible. Without such interven-tions, it is impossible to distinguish betweenMarkov equivalent models, even given in�nitedata. We perform online MCMC to estimatethe posterior over graph structures, and useimportance sampling to �nd the best actionto perform at each step. We assume the datais discrete-valued and fully observed.1 IntroductionThere are essentially two kinds of approaches forlearning the structure of Bayesian networks (BNs)from data. The �rst approach tries to �nd a graphwhich satis�es all the constraints implied by the em-pirical conditional independencies measured in thedata [Pea00, SGS01]. The second approach searchesthrough the space of graphs and uses some scoringmetric to evaluate them [CH92, Hec95, Hec98], typi-cally returning the highest scoring model found.Both approaches to structure learning su�er fromthe fundamental problem that, even given in�nitedata, they can only identify the model up to Markovequivalence.1 This is adequate for density estimation(i.e., if our goal is just to predict future observations),but is inadequate if our goal is causal discovery, since1Two graphs are Markov equivalent if they imply thesame set of (conditional) independencies. For example,X!Y!Z, X Y!Z and X Y Z are Markov equiva-lent, since they all represent X ? ZjY . In general, twographs are Markov equivalent i� they have the same struc-ture ignoring arc directions, and have the same v-structures[VP90]. (A v-structure consists of converging directededges into the same node, such as X!Y Z.)

two BNs might be Markov equivalent and yet make dif-ferent predictions about the consequences of interven-tions (e.g., X ! Y and Y ! X are Markov equivalent,but make very di�erent assertions about the e�ect onY of changing X).The only way to distinguish members of the sameMarkov equivalence class is to perform experiments.By \experiments" we mean ideal interventions in thesense of Pearl [Pea00], i.e., the learning agent canclamp a subset of the variables to �xed values. Forexample, in the genetics domain, an experiment mightconsist of \knocking out" a gene, which we can thinkof as clamping it to a �xed value. The manipulationtheorem [SGS01, Pea00] says that we can compute theconsequences of such interventions by \cutting" all thearcs coming into the nodes which have been clampedby intervention, and then doing probabilistic inferencein the \mutilated" graph in the usual way. (We areassuming all nodes are observed; if there are hiddennodes, we must use Pearl's \do calculus" to computethe consequences of interventions [Pea00]).It is straightforward to modify existing Bayesian scor-ing methods to handle data obtained by interventionalstudies (in addition to the usual passive observationaldata). Speci�cally, we simply refrain from updatingthe parameters of the nodes that were clamped [CY99].(The intuitive justi�cation for this is that observingthat a clamped node has a certain value does not tellus anything about how likely it is that that value wouldoccur had we not forced it.) What has not been stud-ied | with the notable exception of [TK01], which wediscuss in Section 6 | is a way to decide which inter-ventions to perform so as to learn the causal structureas quickly/ cheaply as possible. This is the goal of thispaper.We adopt a standard decision theoretic approach tothe problem. The basic idea is to compute a pos-terior probability distribution over graph structuresgiven some data, P (GjD), and then, for each possibleexperimental action we can perform, compute the ex-



pected utility of this action with respect to our currentbeliefs about the model. We then update our beliefsgiven the outcome of the experiment and repeat. Thebasic framework is discussed in Sections 2 and 3.Since the number of directed acylic graphs (DAGs)grows super-exponentially with the number of nodes2,we use a form of online MCMC to approximate ourbelief state, P (GjD1:t), where D1:t is the data we haveseen up to time-step t (i.e., t is the number of exam-ples we have seen so far). In addition, computing theexpected utility of an action requires enumerating allpossible observations, which takes O(2n) time (assum-ing binary nodes). We approximate this using impor-tance sampling. We discuss these approximations inSection 4. In Section 5, we show some experimentalresults using these approximations with three di�erentBayes nets.Before diving into the technical details, we remark onthe controversy concerning attempts to learn causalityfrom data. Our claim is merely that statistical signa-tures in the data can suggest causal hypotheses thatcan be checked by experiment.2 Active learningThe basic idea of our approach is illustrated in thein
uence diagram in Figure 1. We de�ne the value(expected utility) of performing an action A = a asV (a) =Xg2GXy2Y P (yjg; a;D)P (gjD)U(g; a; y;D)where U(�) is a utility function, and P (yjg; a;D) isthe probability of generating observation y given thatwe have performed action a on graph g (e.g., if a is anintervention action, we need to mutilate g). G is the setof hypotheses (DAGs) we are considering, Yg;a is theset of possible observations that g could generate afteraction a, and D is the past data. The best (myopic)action is de�ned to be a� = argmaxa2A V (a), whereA is the set of possible actions (i.e., the set of valuesto which we can clamp the settable nodes).If the goal is to infer the model structure, and allactions cost the same, we can use the following util-ity function: U(g; a; y;D) = logP (gja; y;D). In Sec-tion 5, we will show experimentally that inferring the\correct" model structure is necessary if we are to pre-dict the e�ect of interventions, but is not necessary ifwe are simply to predict future observations.2No closed-form formula is known for the number ofDAGs on n nodes, f(n), but the �rst few values of f , forn = 1; : : : ; 10, are 1, 3, 25, 543, 29281, 3781503, 1:1� 109,7:8�1011, 1:2�1015 and 4:2�1018 [Coo99]. A crude upperbound is O(2n2 ), the number of boolean matrices.
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Figure 1: An in
uence diagram for one-shot experi-ment design. The dotted line is an informational arc,and speci�es that the data D is observed before theaction A (square node) is chosen. Y is a random vari-able that will be observed after action A. G is theunknown graph (its parameters are not shown, sincethey are integrated out). The diamond node U is theutility.Before going into details, we will show that maximiz-ing logP (gja; y;D) is equivalent to maximizing the ex-pected KL divergence between our posterior and ourprior, or equivalently, to minimizing the conditionalentropy of H(GjY; a;D) [Ber79], which are perhapsmore familiar criteria.V � = maxa EYKL(P (Gja; Y;D)jjP (GjD))= maxa Xy P (yja;D)"Xg P (gja; y;D) log P (gja; y;D)P (gjD) #Since the denominator P (gjD) is independent of a, wemay drop it to getV � = mina �Xg P (gjD)Xy P (yjg; a;D) logP (gja; y;D)3 Optimal algorithmLet G be the (�nite) set of all DAGs that we are con-sidering. If all nodes are discrete (and hence Y andA are also �nite sets), we can compute the optimalaction by exhaustive enumeration, as follows.for each a 2 AV (a) = 0for each y 2 YCompute P (yjg; a;D) 8g 2 GCompute P (gja; y;D) 8g 2 GV (a)+=Pg P (yjg; a;D)P (gjD) logP (gja; y;D)For completeness, we brie
y summarise how to com-pute the various equations in the above algorithm. Weuse standard techniques for sequential Bayesian struc-ture learning in fully observed, discrete domains (see[SL90, Bun94, Hec98] for details).The expression P (yjg; a;D) is the predictive density ofga (the graph g modi�ed by action a) given the past



data D evaluated at y. This is given by the followingequation:P (yjg; a;D)= nYi=1 qiYj=1 riYk=1 Z �1ijk(y)ijk P (�ijk jg;D)d�ijk= nYi=1 qiYj=1 riYk=1 �1ijk(y)ijkwhere 1ijk(y) is an indicator function that is 1 if theevent (Xi = k;�i = j) occurs in case y, and is 0otherwise. ri is the number of values Xi can take on,qi = Qj2�i rj is the number of values Xi's parentscan take on. For unclamped nodes, we de�ne �ijk =P (Xi = kj�i = j). For clamped nodes, we de�ne�ijk = 1 if Xi is clamped to k and �ijk = 0 otherwise.(Hence P (yjg; a;D) is 0 if y contradicts the values ofthe clamped nodes implied by a). If we assume theparameters of each node have independent Dirichletpriors with hyperparameters �ijk , the posterior meanparameters are given by�ijk = E[�ijk jg;D] = �ijk +NijkPril=1 �ijl +Nijlwhere Nijk = Py2D 1ijk(y). In this paper, we usethe priors �ijk = 1=(riqi); [HGC95] call this the BDeumetric. This ensures that Markov equivalent modelshave the same marginal likelihood given observationaldata alone, unlike using �ijk = 1.Since many of the graphs in G will share the samefamilies, we can use a cache to eÆciently computeP (yjg; a;D) for all g 2 G. (For example, if g1 andg2 only di�er by a single edge addition/deletion, thenP (yjg1; a;D) and P (yjg2; a;D) will only di�er by oneterm.) Given the marginal likelihoods P (yjg; a;D) andthe priors P (gjD) we can compute the posterior prob-ability of each graph as follows:P (gja; y;D) = P (yjg; a;D)P (gjD)Pg0 P (yjg0; a;D)P (g0jD)In this paper, we use uniform structural priors, P (g).4 Sampling algorithmThe optimal algorithm assumes we can exhaustivelyevaluate G, Y and A. Typically this will be too ex-pensive. We now discuss how to approximate each ofthese in turn.4.1 Sampling graphsThe basic idea is to use the Metropolis-Hastings (MH)algorithm to draw samples from P (GjD). The al-

gorithm is summarized below, where Q(G0jG) is theprobability of proposing a move from G to G0, B isthe burn-in period, and N is the number of sampleswe want to draw. (See [MY95] for details.)Choose G1 somehow e.g., at randomFor t = 1; : : : ; B +NSample G0 � Q(�jGt)Compute R = P (G0jD)Q(GtjG0)P (GtjD)Q(G0jGt)Sample u � Unif(0; 1)If u < minf1; Rgthen Gt+1 := G0else Gt+1 = GtReturn GB+1; : : : ; GB+NThe proposal distribution we use is to sample uni-formly from the neighborhood of G, de�ned to bethe set of all DAGs that di�er from G by a singleedge addition, deletion or reversal. (A way of quicklychecking that the proposed graph is acyclic, based onthe ancestor matrix, is described in [GC01].) In otherwords, Q(G0jG) = 1=jnbd(G)j, for G0 2 nbd(G), andQ(G0jG) = 0 for G0 62 ndb(G), soR = jnbd(G)jP (G0)P (DjG0)jnbd(G0)jP (G)P (DjG))where the marginal likelihood is given by [CH92]P (DjG) = nYi=1 qiYj=1 �(�ij)�(�ij +Nij) � riYk=1 �(�ijk +Nijk)�(�ijk)The main advantage of this proposal distributionis that it is eÆcient to compute the Bayes factorP (DjG0)=P (DjG), since all but one (or two, in thecase of an edge reversal) terms in the marginal likeli-hood ratio cancel.[MAPV96] suggested searching the (smaller) space of(Markov) equivalence classes of DAGs, but this is in-appropriate when we have interventional data. [FK00]suggested searching the (even smaller) space of totalorderings of the nodes, marginalizing out the actualstructure. Although this converges much faster, wechose not to pursue this technique, since we �nd iteasier to design priors and heuristic proposal distribu-tions in the space of graphs rather than orderings (seeSection 6).The MH algorithm as described above is appropriatefor o�ine (batch) computation. However, we need tocompute P (GjD1:t) online (sequentially). We there-fore combine the ideas of particle �ltering (see e.g.,[DdFG01]) with MH as follows. The belief state,P (GjD1:t), is represented as a set of weighted particles(samples). When a new observation arrives, we applya small number, B, of MH moves to each particle to



get an approximation to P (GjD1:t+1). The justi�ca-tion for this is that the new belief state is likely to bevery similar to the old one (since we only have one newobservation). We initialise by sampling from our priorP (G).Finally, we remark that in some domains, we haveenough prior knowledge to construct a small set ofhypothetical models, so we can feasibly enumerate allof G without needing to use MCMC.4.2 Sampling observationsEven if we can �nd a small set of probable candidatemodels, the size of each model in this set, n, mightbe large, making it expensive to sum over all possi-ble observations. (If all nodes are binary, there areO(2n) possible observations, and for continuous-valuednodes, there are an in�nite number.) In this case, wecan use importance sampling. The basic idea is tomake the following approximationEY f(Y ) � Xy2Ys wyf(y)where f(y) = P (gjD) logP (gja; y;D), Ys is a set ofsampled y's drawn from some proposal distributionQ(�), and wy are the normalized importance weights:wy / P (yjg; a;D)=Q(y).Combining these two approximations, we modify theabove active learning algorithm as follows.Sample Gs � P (�jD) using MCMCfor each a 2 AV (a) = 0Sample Ys � Q(�ja;D)for each y 2 YsCompute wy(g) = P (yjg; a;D)=Q(y) 8g 2 GsCompute P (gja; y;D) 8g 2 GsSet wy(g) = wy(g)Py0 wy0 (g) 8g 2 GsV (a)+=PgPy wy(g)P (gjD) logP (gja; y;D)The simplest proposal distribution for y is the uniformone: Q(y) = 1=2n�k, where we have assumed that allnodes are binary and the action a has clamped k nodes.The optimal proposal is of course Q(y) = P (yjg; a;D).In this case, the algorithm becomesSample Gs � P (�jD) using MCMCfor each a 2 AV (a) = 0for each g 2 GsSample Ys � P (�jg; a;D)Set wy = 1=jYsjfor each y 2 YsCompute P (g0ja; y;D) 8g0 2 Gs

V (a)+ = wyP (gjD) logP (gja; y;D)Since this is O(jGsj2), it is typically too expensive. Acheaper approximation would be to sample from themixture distribution Pg P (yjg; a;D)P (gjD). In thispaper, however, we just sample from the uniform dis-tribution.4.3 Sampling actionsFinally, we consider the maxa computation. If we canclamp up to k nodes simultaneously, and all nodes arebinary, then jAj � �nk� 2k = O(nk). Since it is oftendiÆcult or expensive to clamp many nodes simultane-ously, k is often small; hence nk is a low order poly-nomial. Nevertheless, since we must do O(jGsj � jYjs)computations per action, this can be expensive. Weare currently working on some heuristic methods toavoid this brute force enumeration.For continuous-valued nodes, the number of actionsis in principle in�nite, although in practice it mightbe reasonable to discretize the action space. For ex-ample, in the genetics domain, we might be able toclamp a node to its \wildtype" (mean) value �, to\overexpress" it (clamp it to � + �, where � is thestandard or to \underexpress" it (clamp it to � � �).(See [BMI99] for an interesting MCMC approach toselecting continuous-valued actions.)4.4 How many samples?The question of how many samples we need to take isan interesting one. The key insight is that, for actionselection, it is the relative values of V (a) that matter.This idea has been exploited in [OK00] to reduce thenumber of samples used (see also the \Hoe�ding races"approach of [MM93]). However, in this paper, we justuse a �xed number of samples.5 Results3We compare the behavior of the active learner with twoother algorithms: passive observation, and random in-terventions. We assume we can clamp up to two nodessimultaneously to any of their legal values. There arevarious ways to compare the algorithms. Since theposterior over all graphs is too big to easily visualize,one way of compressing it, following [TK01], is to com-pute the L1 edge error induced by belief state at time3All of the experiments were performed in Matlabusing the Bayes Net Toolbox, which is available fromwww.cs.berkeley.edu/ �murphyk/Bayes/bnt.html.
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Figure 2: L1 edge error against number of examplesfor the cancer network using random CPD parametersfrom a uniform distribution. The lines from top tobottom represent passive, random and active learning.We used 10 sampled observations, 100 sampled graphs.and averaged over 5 trials.
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Figure 3: L1 edge error against number of examplesfor the Asia network using the published CPD param-eters. The lines from top to bottom represent passive,random and active learning. We computed Py ex-actly, used 100 sampled graphs, and averaged over 10trials.
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Figure 4: L1 edge error against number of examplesfor the car troubleshooter network using random CPDparameters from a Beta(0.2,0.2) distribution. The top,dotted line is the passive learner, the other two linesare the random and active learners. We used 100 sam-pled observations, 300 sampled graphs, and averagedover 5 trials.
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Figure 5: Prediction performance after 0, 1, 2 or 3interventions to the Asia network. The vertical axis isnegative log likelihood, the horizontal axis is numberof examples. The dotted line is the passive learner, theother two lines are the random and active learners. Weaveraged over 10 trials.



t, Pt = P (GjD1:t):errL1t (Pt) = nXi=1 nXj=i+1 IG�(Xi!Xj)(1� P (Xi!Xj))+ IG�(Xi Xj)(1� P (Xi Xj))+ IG�(Xi?Xj)(1� P (Xi?Xj))where IG�(Xi!Xj) is an indicator variable that is 1if there is an edge from Xi to Xj in the true graphstructureG�, andXi?Xj means there is no connectionbetween Xi and Xj . (Henceforth we shall call the truemodel the \oracle".)Another metric is to evaluate the ability of the modelsto predict future observations, either drawn from theoracle, or generated in response to an intervention inthe oracle. To do this, we simply generate a test setof size M using the (possibly mutilated) oracle, andcompute its average negative log likelihood accordingto the current belief state of the learner:errpredt (Pt) = �1M MXm=1Xg logP (ymjg)P (gjD1:t)We consider performing 0, 1 and 2 interventions in theoracle, which corresponds to clamping 0, 1 and 2 nodessimultaneously to random values, and then samplingthe other nodes. A test set consists of M = 20 suchcases.To be comparable with [TK01], we test our algorithmon three commonly-used networks: the 5 node cancernetwork [FMR98], the 8 node Asia network [LS88], andthe 12 node car trouble-shooter network [HBR94]. Allnetworks have binary nodes with multinomial condi-tional probability distributions (CPDs). For the Asianetwork, we used the published parameters. For theother networks, we sampled the CPD parameters froma Dirichlet distribution. By changing the parametersof the Dirichlet, we can control the degree of deter-minism. Speci�cally, as �ijk!0, the CPTs becomemore deterministic; for �ijk = 1, the CPT entries arechosen uniformly on [0; 1] (subject to the sum-to-oneconstraint); and as �ijk!1, each row of the CPTtends towards the maximum entropy distribution of[1=ri; : : : ; 1=ri].In Figures 2, 3 and 4, we show how the L1 errordecreases as the number of examples increases. Forthe cancer and Asia networks, we see that the activelearner identi�es the structure much more quickly thanthe random or passive learners. For the car troubleshooter network, however, the active learner does notseem to do any better than the random learner; pre-sumably this is because we are not sampling for longenough. This is something we plan to investigate fur-ther.

In Figure 5, we plot the prediction performance of thelearners for the Asia network. In Figure 5(a) we seethat the passive learner can predict observations fromthe unmutilated oracle slightly better than the otherlearners (initially, at least), even though it has the\wrong" structure. However, Figures 5(b-d) indicatethat knowing the right structure helps to predict thee�ect of interventions, as expected, especially as thenumber of clamped nodes increases. We have foundthis to be true for the other models as well, especiallyin the more deterministic parameter regime.6 Related workMost previous work on active learning has been in thecontext of classi�cation, regression or function opti-mization. In the case of linear regression, the mini-mum posterior entropy criterion discussed in Section 2is called D-optimality, and can be maximized in closedform. Many other results (such as A-optimility, G-optimality, etc.) have been derived for the linear re-gression model, in both a Bayesian and non-Bayesiansetting (see e.g., [CV95] for a review). There has alsobeen work on active learning for non-linear regres-sion models (e.g., neural networks [Mac92] and locallyweighted regression [CGJ96]), where the objective isto minimize the expected variance of the predictor.In the above works, the active learner can choose anypoint in the input space. By contrast, in the query�ltering paradigm, the learner can choose to see thelabel of certain items from a stream of inputs (see e.g.,[FSST97]).In the PAC setting, [Ang88] showed how the ability toask questions reduces the problem of identifying cer-tain kinds of boolean functions from NP-complete topolynomial time. [BHH95] and [TR98] have exendedthis to active learning of tree-structured boolean func-tions, where the internal nodes are hidden. [AKMM98]have some results concerning upper and lower boundson the number of experiments necessary to learn (pos-sibly cyclic) boolean networks. [ITK00] discusses ac-tive learning techniques for learning boolean networksusing an entropy-based cost function.The most closely related work is that of Tong andKoller [TK01], who also use a decision theoretic frame-work for BN structure learning. (We shall henceforthrefer to this as the \TK" algorithm.) The TK algo-rithm builds upon [FK00], who do MCMC over totalorderings of the nodes, instead of over DAGs. Thespace of orderings is \only" of size n!, much smallerthan the space of DAGs, which is a space of sizeO(2n2). The key insight is that, conditioned on anordering �, the parents for each node can be chosenindependently (because there is no longer any global



acyclicity constraint), and hence can marginalized out.TK extend this by showing how, conditioned on �, onecan performPy (needed for the expected utility com-putation) using the variable elimination algorithm.The advantages of our algorithm over TK are its sim-plicity, the fact that it makes no assumptions about theform of the loss function, and the fact that it can incor-porate prior structural knowledge. The loss functionused by TK is Loss(P (Gja; y;D)) = Pij Hij , whereHij is the entropy associated with the edge distribu-tion between nodes i and j. Although this is fairlyintuitive, it is not as theoretically well motivated asH(GjY; a;D), which we used above.The advantage of the TK algorithm over ours is speed.Firstly, it computes Py analytically, instead of usingimportance sampling. And secondly, it uses MCMCin the smaller space of orderings. However, it is notclear how big the former speedup is: the cost of vari-able elimination depends on the induced width of thegraph, which in turn depends on the summation order-ing and the structure of the graphs induced by the setof all possible families; hence the induced width canbecome quite large. Also, while [FK00] have shownthat MCMC in the space of orderings converges fasterthan in the space of DAGs, we believe that for eitherapproach to be really practical, one will need strongprior knowledge, and it is easier to specify a prior asP (G) rather than the much less natural P (Gj �).7 Future workThere are many issues we would like to pursue inthe future, the main ones being: continuous variables,missing data, online learning, and dynamical systems.and applications to biology.For continuous variables, we plan to use linear-Gaussian CPDs, possibly with non-linear basis func-tions, as discussed above. (The use of such non-linearities makes this di�erent from the global jointlyGaussian approach of [HG95].) For missing data, weplan to use sampling (data augmentation). The ac-tions might now also consist of choosing to measurea hidden variable, as in classical value-of-informationcomputations. For online learning, we can no longerkeep the whole dataset D, nor can we store the (ex-pected) suÆcient statistics for all possible models. Oneapproach would be to keep the statistics just for a\fringe" of probable models, as in [FG97].It is straightforward to adapt the above techniquesto learn the structure of a dynamic Bayesian network(DBN) from time series data c.f., [FMR98]. If we onlyallow arcs between time-slices (\diachronic" arcs), theparents for each node can be chosen independently,

as in feature subset selection. Hence we can get theadvantages of the TK algorithm without the need tosample node orderings.Finally, we eventually hope to apply the algorithmto the problem of experiment design for inferring thestructure of gene regulatory networks.AcknowledgementsI would like to thank Stuart Russell and Michael Jor-dan for comments on an earlier draft of this paper.References[AKMM98] T. Akutsu, S. Kuhara, O. Muruyama, andS. Miyano. Indenti�cation of gene regulatorynetworks by strategic gene disruptions andgene overexpressions. In SIAM Symposium onDiscrete Algorithms, 1998.[Ang88] D. Angluin. Queries and concept learning.Machine Learning, 2:319{342, 1988.[Ber79] J. Bernardo. Expected information as ex-pected utility. Annals of Statistics, 7:686{690,1979.[BHH95] N. Bshouty, T. Hancock, and L. Hellerstein.Learning Boolean read-once formulas overgeneralized bases. J. Comp. and Systems Sci-ences, 50(3):521{542, 1995.[BMI99] C. Bielza, P. Mueller, and D. R�ios Insua. Deci-sion analysis by augmented probability simu-lation. Management Science, 45(7):995{1007,1999.[Bun94] W. L. Buntine. Operations for learning withgraphical models. J. of AI Research, pages159{225, 1994.[CGJ96] D. Cohn, Z. Ghahramani, and M. Jordan. Ac-tive learning with statistical models. J. of AIResearch, 4:129{145, 1996.[CH92] G. Cooper and E. Herskovits. A Bayesianmethod for the induction of probabilistic net-works from data. Machine Learning, 9:309{347, 1992.[Coo99] G. Cooper. An overview of the representa-tion and discovery of causal relationships us-ing Bayesian networks. In C. Glymour andG. Cooper, editors, Computation, Causation& Discovery. MIT Press, 1999.[CV95] K. Chaloner and I. Verdinelli. Bayesian exper-imental design: A review. Technical report,Univ. Minnesota, 1995.www.stat.umn.edu/PAPERS/tr607.html.[CY99] G. Cooper and C. Yoo. Causal discovery froma mixture of experimental and observationaldata. In UAI, 1999.



[DdFG01] A. Doucet, N. de Freitas, and N. J. Gordon.Sequential Monte Carlo Methods in Practice.Springer Verlag, 2001.[FG97] N. Friedman and M. Goldszmidt. Sequentialupdate of Bayesian network structure. In UAI,1997.[FK00] N. Friedman and D. Koller. Being Bayesianabout network structure. In UAI, 2000.[FMR98] N. Friedman, K. Murphy, and S. Russell.Learning the structure of dynamic probabilis-tic networks. In UAI, 1998.[FSST97] Y. Freund, H. Seung, E. Shamir, andN. Tishby. Selective sampling using the queryby committee algorithm. Machine Learning,28:133{168, 1997.[GC01] P. Giudici and R. Castelo. Improving Markovchain Monte Carlo model search for data min-ing. Machine Learning, 2001. To appear.[HBR94] D. Heckerman, J. Breese, and K. Rommelse.Troubleshooting under uncertainty. TechnicalReport MSR-TR-94-07, Microsoft Research,1994.[Hec95] D. Heckerman. A Bayesian approach to learn-ing causal networks. In UAI, 1995.[Hec98] D. Heckerman. A tutorial on learning withBayesian networks. In M. Jordan, editor,Learning in Graphical Models. MIT Press,1998.[HG95] D. Heckerman and D. Geiger. LearningBayesian networks: a uni�cation for discreteand Gaussian domains. In UAI, volume 11,pages 274{284, 1995.[HGC95] D. Heckerman, D. Geiger, and M. Chickering.Learning Bayesian networks: the combinationof knowledge and statistical data. MachineLearning, 1995.[ITK00] T. Ideker, V. Thorsson, and R. Karp. Discov-ery of regulatory interactions through pertur-bation: inference and experimental design. InProc. of the Paci�c Symp. on Biocomputing,2000.[LS88] S. L. Lauritzen and D. J. Spiegelhalter. Localcomputations with probabilities on graphicalstructures and their applicatins to expert sys-tems. J. R. Stat. Soc. B, B(50):127{224, 1988.[Mac92] D. MacKay. Information-based objective func-tions for active data selection. Neural Compu-tation, 4:589{603, 1992.[MAPV96] D. Madigan, S. Anderson, M. Perlman, andC. Volinsky. Bayesian model averaging andmodel selection for Markov equivalence classesof acyclic graphs. Communications in Statis-tics: Theory and Methods, 25:2493{2519,1996.

[MM93] O. Maron and A. W. Moore. Hoe�ding races:Accelerating model selection search for classi-�cation and function approximation. In NIPS-6, 1993.[MY95] D. Madigan and J. York. Bayesian graphicalmodels for discrete data. Intl. Statistical Re-view, 63:215{232, 1995.[OK00] L. Ortiz and L. Kaelbling. Sampling methodsfor action selection in in
uence diagrams. InAAAI, 2000.[Pea00] J. Pearl. Causality: Models, Reasoning andInference. Cambridge Univ. Press, 2000.[SGS01] P. Spirtes, C. Glymour, and R. Scheines. Cau-sation, Prediction, and Search. MIT Press,2001. 2nd edition.[SL90] D. J. Spiegelhalter and S. L. Lauritzen. Se-quential updating of conditional probabilitieson directed graphical structures. Networks, 20,1990.[TK01] S. Tong and D. Koller. Active learning forstructure in Bayesian networks. In IJCAI,2001. Submitted.[TR98] P. Tadepalli and S. Russell. Learning fromexamples and membership queries with struc-tured determinations. Machine Learning,32:245{295, 1998.[VP90] T. Verma and J. Pearl. Equivalence and syn-thesis of causal models. In UAI, 1990.


