Contextual models for object detection using
boosted random fields

Antonio Torralba Kevin P. Murphy William T. Freeman
MIT, CSAIL UBC, CS MIT, CSAIL
Cambridge, MA 02139  Vancouver, BC V6T 1Z4  Cambridge, MA 02139
torral ba@rit. edu mur phyk@s. ubc. edu billf@nt.edu

Abstract

We seek to both detect and segment objects in images. TaExgib lo-

cal image data as well as contextual information, we intcedBoosted
Random Fields (BRFs), which uses Boosting to learn the gshplt-

ture and local evidence of a conditional random field (CRRe §raph
structure is learned by assembling graph fragments in aitivaelchodel.

The connections between individual pixels are not veryrimfative, but
by using dense graphs, we can pool information from larg@nsgof
the image; dense models also support efficient inferencesite how
contextual information from other objects can improve diéte perfor-
mance, both in terms of accuracy and speed, by using a cotigmatia
cascade. We apply our system to detect stuff and things iceoéfnd
street scenes.

1 Introduction

Our long-term goal is to build a vision system that can exa&naimimage and describe what
objects are in it, and where. In many images, such as Fig,. &fg@cts of interest, such as
the keyboard or mouse, are so small that they are impossililetect just by using local
features. Seeing a blob next to a keyboard, humans can frigdikiely to be a mouse; we
want to give a computer the same abilities.

There are several pieces of related work. Murphy et al [9Hugebal scene context to
help object recognition, but did not model relationshipsugen objects. Fink and Perona
[4] exploited local dependencies in a boosting framewotk,dd not allow for multiple
rounds of communication between correlated objects. Hg@t@o not model connections
between objects directly, but rather they induce such taifoas indirectly, via a bank of
hidden variables, using a “restricted Boltzmann machimehigecture.

In this paper, we exploit contextual correlations betwdendbject classes by introducing
Boosted Random Fields (BRFs). Boosted random fields builtdath boosting [5, 10]
and conditional random fields (CRFs) [8, 7, 6]. Boosting isnapde way of sequentially
constructing “strong” classifiers from “weak” componerdaad has been used for single-
class object detection with great success [12]. Dietteetchl [3] combine boosting and
1D CREFs, but they only consider the problem of learning tlrallevidence potentials; we
consider the much harder problem of learning the structiiee2® CRF.

Standard applications of MRFs/ CRFs to images [7] assumei@adest neighbor grid
structure. While successful in low-level vision, this stare will fail in capturing im-
portant long distance dependencies between whole regimmhaaoss classes. We propose
a method for learning densely connected random fields wit lange connections. The



topology of these connections is chosen by a weak learnerhwias access to a library
of graph fragments, derived from patches of labeled trgiimmages, which reflect typical

spatial arrangments of objects (similar to the segmemtdtagments in [2]). At each round

of the learning algorithm, we add more connections from oligations in the image and

from other classes (detectors). The connections are asldorbe spatially invariant, which

means this update can be performed using convolution feliblay a sigmoid nonlinearity.

The resulting architecture is similar to a convolutionaliraé network, although we used a
stagewise training procedure, which is much faster thak peapagation.

In addition to recognizing things, such as cars and peopeans also interested in recog-
nizing spatially extended “stuff” [1], such as roads anddings. The traditional sliding
window approach to object detection does not work well faedéng “stuff”. Instead, we
combine object detection and image segmentation (c.). bj2]abeling every pixel in the
image. We do not rely on a bottom-up image segmentationighgerwhich can be fragile
without top-down guidance.

2 Learning potentials and graph structure

A conditional random field (CRF) is a distribution of the form

P(S|z) = H¢z H wi,j(shsj)

JEN;
wherex is the input (e.g., image)y; are the neighbors of node andS; are labels. We
have assumed pairwise potentials for notational simplic@ur goal is to learn the local
evidence potentialg);, the compatibility potentialg), and the set of neighbors;.

We propose the following simple approximation: use beliefgagation (BP) to estimate
the marginalsP(.S;|x), and then use boosting to maximize the likelihood of eacreisod
training data with respect t9; and+.

In more detail, the algorithm is as follows. At iterationthe goal is to minimize the

negative log-likelihood of the training data. As in [11], wensider the per-label loss (i.e.,
we use marginal probabilities), as opposed to requiringttieajoint labeling be correct (as
in Viterbi decoding). Hence the cost function to be minintize

J' = H Jf = H Hbz,m(sz m) = H Hb 5 mbt (7 )1753,711 (1)

whereS; ,,, € {—1,+1} is the true label for plxed in training casen, S;,, = (Sim +
1)/2 € {0,1} is just a relabeling, antf ,,, = [P(S; = —1|zm, t), P(S; = 1|z, t)] is the
belief state at nodegiven input imagex,, aftert iterations of the algorithm.

The belief at node is given by the following (dropping the dependence on cade
bi(£1) o< ¢t(£1) Mf(+1) where M} is the product of all the messages coming into
from all its neighbors at timeéand where the message tlagends ta is given by

b
) = [ ED i@ = Y v ) 2 )
kEN; z—)k(sk)
skG{ 1,+1}
wherey, ; is the compatility between nodésands. If we assume that the local potentials
have the formp! (s;) = [ef%/2; e~ /2], whereF! is some function of the input data, then:
bi(+1) = o(F} + G}),  Gi=log M{(+1) —log M}(~1) ®)

whereo(u) = 1/(1+e~*) is the sigmoid function. Hence each term in Eq. 1 simplifies to
a cost function similar to that used in boosting:

log J} = Zlog (1 + e Sim(FimtGim )) . (4)



1. Input: a set of labeled pairgz;,m; Si,m }, boundT
Output: Local evidence functiong/ (z) and message update functiaigbx, ).

2. Initialize: b{3) = 0; F}50 =0, GI0 =0
3. Fort=1..T.
(a) Fitlocal potentialf; (zi,m) by weighted LS to
)/itm — Sz m(l + e_si,'m(Fit"’G;m))
(b) Fit compatibilitiesgf (b} *,,) to Y',,, by weighted LS.
(c) Compute local potentidﬁm = Ff,,_nl + fi(im)
(d) Compute compatibilitieé;t = z; Lo
(e) Update the beliefs; ,,, = o(F},, + G .,.)
(f) Update weightsy! "' = b;m( )b;m(+1)

Figure 1:BRF training algorithm.

We assume that the graph is very densely connected so thainfibrenation that
one single node sends to another is so small that we can makepproximation
pitt (+1)/ubtl (1) ~ 1. (This is a reasonable approximation in the case of images,

where each node represents a single pixel; only when theeirdkiof many pixels is taken
into account will the messages become informative.) Hence
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With this simplification, G is now a non-linear function of the beliets!™ (b¢,) at
iterationt. Therefore, We can write the beliefs at iteratioms a function of the local
evidences and the beliefs at time- 1: b!(+1) = o(F!(x;m) + GL(b,1)). The key idea
behind BRFs is to use boosting to learn thdunctions, which approximately implement
message passing in densely connected graphs. We expkin thore detail below.

2.1 Learning local evidence potentials

Defining F} (zim) = F{ ' (zim) + fi(zi,m) as an additive model, where ,,, are the
features of training sample: at nodei, we can learn this function in a stagewise fashion
by optimizing the second order Taylor expansion of Eq. 4 f#ras in logitBoost [5]:

arg min lo JtNar min w Yt — Z-t:vim 2 7
gminlog gk %: fi(@im)) 7

whereY/, = Siym(l+e*5i’m(pi’+G%=m)). In the case that the weak learner is a “regression
stump”, f;(z) = ah(z)+b, we can find the optimal, b by solving a weighted least squares
problem, with weightsv; ,, = bf(—1) b}(+1); we can find the best basis functibz) by
searching over all elements of a dictionary.

2.2 Learning compatibility potentials and graph structure

In this section, we discuss how to learn the compatibilityclions«;;, and hence the
structure of the graph. Instead of learning the compatiybilinctionss;;, we propose to



1. Input: a set of input{x; ., } and functionsf{, g:
Output: Set of beliefd; ,,, and MAP estimates .

2. Initialize: b{3) = 0; F}50 =0, GI0 =0

3. Fromt = 1to T, repeat
(a) Update local evidencds! ,,, = F, " + f!(zim)
(b) Update compatibilities ,,, = >°! _ g . g ()
(c) Compute current beliets ,,, = o(Fy,, + G%.,,.)

4. Output classification i§; ., = § (b;m > 0.5)

Figure 2:BRF run-time inference algorithm.

learn directly the functiorG:™'. We propose to use an additive model tof™! as we
did for learningF: Gerl = Z; 19 (bt ), whereb! is a vector with the beliefs of all

nodes in the graph at iteratiarfor the training samplm The weak learnerg (5’5 ) can

be regression stumps with the forgjf\(l?ﬁn) — ad(i - b, > 0) + b, wherea, b, 0 are the
parameters of the regression stump, ahds a set of Welghts selected from a dictionary.
In the case of a graph with weak and almost symmetrical cdimmec(which holds if
¥(s1, $2) = 1, forall (s1, s2), which implies the messages are not very informative) we can
further simplify the func:tiorGﬁJr1 by approximating it as a linear function of the beliefs:

Gt = anibm(+1) + Br ®)
keEN;

This step reduces the computational cost. The weak Ieagtﬁcél_s;éh will also be linear
functions. Hence the belief update S|mpllf|esbft(;1 +1) =o(d;- bt +ﬁl+Ft ), which

1, m
is similar to the mean-field update equations. The nelghhm‘bN over which we sum
incoming messages is determined by the graph structurehvidiencoded in the non-zero
values ofa;. Each weak learng)? will compute a weighted combination of the beliefs of
the some subset of the nodes; this subset may change fratidteto iteration, and can be

quite large. At iteratiort, we choose the weak learngrso as to minimize

log JH (0" 1) Zlog (1+e Sim (Fl gt bl )+ 0 g (ol 1)))

which reduces to a weighted least squares problem simil&gto/. See Fig. 1 for the
pseudo-code for the complete learning algorithm, and Figr Zhe pseudo-code for run-
time inference.

3 BRFs for multiclass object detection and segmentation

With the BRF training algorithm in hand, we describe our aggh for multiclass object
detection and region-labeling using densely connectedsBRF

3.1 Weak learners for detecting stuff and things

The square sliding window approach does not provide a natarpof working with irreg-
ular objects. Using region labeling as an image representallows dealing with irregular
and extended objects (buildings, bookshelf, road, ...)teded stuff [1] may be a very
important source of contextual information for other oltgec



= IS0 E M

(a) Examples from the dictionary of about 2000 patches arsksé,, ,,, V. .
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(b) Examples from the dictionary of 30 graphs,, , ..
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(c) Example feedforward segmentation for screens.

Figure 3: Examples of patches from the dictionary and an example of the segmantatained
using boosting trained with patches from (a).

Truth

The weak learners we use for the local evidence potentialbased on the segmentation
fragments proposed in [2]. Specifically, we create a dietigrof about 2000 image patches
U, chosen at random (but overlapping each object), plus @sponding set of binary (in-
class/ out-of-class) image mashs, see Fig. 3(a). At each round for each class, and
for each dictionary entry, we construct the following weadrher, whose output is a binary
matrix of the same size as the imafe

vI)=((IeU)>0)xV >0 9
where® represents normalized cross-correlation anepresents convolution. The in-
tuition behind this is thaf ® U will produce peaks at image locations that contain this
patch/template, and then convolving withwill superimpose the segmentation mask on
top of the peaks. As a function of the threshé|dhe feature will behave more as a template
detector § ~ 1) or as a texture descriptof < 1).

To be able to detect objects at multiple scales, we first dampde the image to scate
computev(I | o), and then upsample the result. The final weak learner dosdahi
multiple scales, ORs all the results together, and therstalimear transformation.

fd)=a(Velo(I | o) To])+p (10)
Fig. 3(c) shows an example of segmentation obtained by usiogting without context.
The weak learners we use for the compatibility functionseregimilar form:

c
b) =« (Z bc/*WC/> +8 (11)
c'=1
whereb, is the image formed by the beliefs at all pixels for class This convolution
corresponds to eq. 8 in which the nodis one pixelx, y of classc. The binary kernels
(graph fragments)l define, for each node, y of object clasg, all the nodes from which it
will receive messages. These kernels are chosen by sanpgaliclges of various sizes from
the labeling of images from the training set. This allowsegating complicated patterns
of connectivity that reflect the statistics of object co4mrences in the training set. The
overall incoming message is given by adding the kernelsimdxaat each boosting round.
(This is the key difference from mutual boosting [4], whene incoming message is just
the output of a single weak learner; thus, in mutual boospingviously learned inter-class
connections are only used once.) Although it would seenkis@t) time to compute?,
we can precompute a single equivalent kefi&| so at runtime the overall complexity is
still linear in the number of boosting rounds(T").

7yc Zbc’* <Za > +ZﬂndebeC/*Wl/ /
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Figure 4:Street scene. The BRF is trained to detect cars, buildings and the road.

In Fig. 4(a-b), we show the structures of the graph and thghtelV’ defined byG for
a BRF trained to detect cars, buildings and roads in strestesc

3.2 Learning and inference

For training we used a labeled dataset of office and streatscgith about 100 images in
each set. During the training, in the first 5 rounds we onlyatpdhe local potentials, to
allow local evidence to accrue. After the 5th iteration watstipdating also the compatibil-
ity functions. At each round, we update only the local patdraind compatibility function
associated with a single object class that reduces the mosttlticlass cost. This allows
objects that need many features to have more complicatatipotentials.

The algorithm learns to first detect easy (and large) ohjsatse these reduce the error of
all classes the fastest. The easy-to-detect objects carptses information to the harder
ones. For instance, in office scenes, the system first detei@ens, then keyboards, and
finally computer mice. Fig. 5 illustrates this behavior oa thst set. A similar behavior is
obtained for the car detector (Fig. 4(d)). The detectionuiifiing and road provides strong
constraints for the locations of the car.

3.3 Cascade of classifiers with BRFs

The BRF can be turned into a cascade [12] by thresholding ¢fief®. Computations
can then be reduced by doing the convolutions (requireddorputing f andg) only in
pixels that are still candidates for the presence of thestargt each round we update a
binary rejection mask for each object claﬁ,’y)c, by thresholding the beliefs at round

R .= RLL.6(b, . . > 6). A pixel in the rejection mask is set to zero when we can

x,Yy,C x,Y,C x,Y,C
decide that the object is not present (Wtbgr;,c is below the threshold! ~ 0), and it is set

to 1 when more processing is required. The threskblid chosen so that the percentage
of missed detections is below a predefined level (weldsg Similarity we can define a
detection mask that will indicate pixels in which we decide bbject is present. The mask
is then used for computing the featurgd) and messages by applying the convolutions
only on the pixels not yet classified. We can denote thoseabperasxz andx*g. This
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Figure 5:Top. In this desk scene, it is easy to identify objects like the screen, keylodrthouse,
even though the local information is sometimes insufficidvitddle: the evolution of the beliefs
(b and F' and G) during detection for a test imag&ottom. The graph bellow shows the average
evolution of the area under the ROC for the three objects on 120 test images
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results in a more efficient classifier with only a slight dese of performance. In Fig. 6 we
compare the reduction of the search space when implememntiagcade using independent
boosting (which reduces to Viola and Jones [12]), and whémguBRF’s. We see that for
objects for which context is the main source of informatilike the mouse, the reduction
in search space is much more dramatic using BRFs than usosiibg alone.

4 Conclusion

The proposed BRF algorithm combines boosting and CRF'sjigiray an algorithm that
is easy for both training and inference. We have demonsiti@igect detection in cluttered
scenes by exploiting contextual relationships betweeaatdj The BRF algorithm is com-
putationally efficient and provides a natural extensiorhefcascade of classifiers by inte-
grating evidence from other objects in order to quickly ceertain image regions. The
BRF's densely connected graphs, which efficiently colleérimation over large image
regions, provide an alternative framework to nearesthimg grids for vision problems.
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Figure 6: Contextual information reduces the search space in the frameworkagcade and im-
proves performances. The search space is defined as the pgecehfaixels that require further
processing before a decision can be reached at each round. BRde better performance and
requires fewer computations. The graphs (search space and R@@gpond to the average results
on a test set of 120 images.
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