
01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

MACHINE LEARNING:
A PROBABILISTIC PERSPECTIVE

Kevin P. Murphy
University of British Columbia, Canada

http://www.cs.ubc.ca/˜murphyk
murphyk@cs.ubc.ca

murphyk@stat.ubc.ca

c� all rights reserved

Draft of November 5, 2011

For use with the author’s permission only.
Please do not distribute.

http://www.cs.ubc.ca/~murphyk
murphyk@cs.ubc.ca
murphyk@stat.ubc.ca

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Chapter 1

Introduction

1.1 What is machine learning?
We are drowning in information and starving for knowledge. — John Naisbitt.

We are entering the era of big data. For example, as of 2008 there are about 1 trillion web pages1, 20 hours of video
are uploaded to YouTube every minute2, Walmart handles more than 1M transactions per hour and has databases containing
more than 2.5 petabytes (2.5 × 1015) of information [Cuk10], etc. This deluge of data calls for automated methods of data
analysis, which is what machine learning provides. In particular, we can define machine learning as a set of methods that can
automatically detect patterns in data, and then use the uncovered patterns to predict future data, or to perform other kinds of
decision making under uncertainty (such as planning how to collect more data!).

Machine learning is usually divided into two main types. In the predictive or supervised learning approach, the goal is to
learn a mapping from inputs x to outputs y, given a labeled set of input-output pairs D = {(xi, yi)}Ni=1. Here D is called the
training set, and N is the number of training examples.

In the simplest setting, each training input xi is a D-dimensional vector of numbers, representing, say, the height and weight
of a person. These are called features, attributes or covariates. In general, however, xi could be a complex structured object,
such as an image, a sentence, an email message, a time series, a molecular shape, a graph, etc.

Similarly the form of the output or response variable can in principle be anything, but most methods assume that yi is a
categorical or nominal variable from some finite set, yi ∈ {1, . . . , C} (such as male or female), or that yi is a real-valued
scalar (such as income level). When yi is categorical, the problem is known as classification or pattern recognition, and when
yi is real-valued, the problem is known as regression. Another variant, known as ordinal regression, occurs where label space
Y has some natural ordering, such as grades A–F.

The second main type of machine learning is the descriptive or unsupervised learning approach. Here we are only given
inputs, D = {xi}Ni=1, and the goal is to find “interesting patterns” in the data. This is sometimes called knowledge discovery.
This is a much less well-defined problem, since we are not told what kinds of patterns to look for, and there is no obvious error
metric to use (unlike supervised learning, where we can compare our predictions of y for a given x to the observed values in the
training set). However, unsupervised learning is arguably much more interesting than supervised learning, since most human
learning is unsupervised.

There is a third type of machine learning, known as reinforcement learning, which is somewhat less commonly used. This
is useful for learning how to act or behave when given occasional reward or punishment signals. (For example, consider how a
baby learns to walk.) Unfortunately, RL is beyond the scope of this book. See e.g., [KLM96, SB98, RN10, Sze10b] for more
information.

1.2 Supervised learning
We begin our investigation of machine learning by discussing supervised learning, which is arguably the most succesful form.

1.2.1 Classification
In this section, we discuss classification. Here the goal is to learn a mapping from inputs x to outputs y, where y ∈ {1, . . . , C},
with C being the number of classes. If C = 2, this is called binary classification (in which case we often assume y ∈ {0, 1});
if C > 2, this is called multiclass classification. If the class labels are not mutually exclusive (e.g., somebody may be classified
as tall and strong), we call it multi-label classification, but this is best viewed as predicting multiple related binary class labels

1 http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
2 http://youtube-global.blogspot.com/2009/05/zoinks-20-hours-of-video-uploaded-every_20.html.

1

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://youtube-global.blogspot.com/2009/05/zoinks-20-hours-of-video-uploaded-every_20.html

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

2 introBody.tex

(a) (b)

Figure 1.1: Left: Some labeled training examples of colored shapes, along with 3 unlabeled test cases. Right: Representing the training data
as an N × D design matrix. Row i represents the feature vector xi. The last column is the label, yi ∈ {0, 1}. Based on a figure by Leslie
Kaelbling.

(a so-called multiple output model). When we use the term “classification”, we will mean multiclass classification with a
single output, unless we state otherwise.

One way to formalize the problem is as function approximation. We assume y = f(x) for some unknown function f , and
the goal of learning is to estimate the function f given a labeled training set, and then to make predictions using ŷ = f̂(x). (We
use the hat symbol to denote an estimate.) Our main goal is to make predictions on novel inputs, meaning ones that we have
not seen before (this is called generalization), since predicting the response on the training set is easy (we can just lookup the
answer).

1.2.1.1 Example

As a simple toy example of classification, consider the problem illustrated in Figure 1.1(a). We have two classes of object which
correspond to labels 0 and 1. The inputs are colored shapes. These have been described by a set of D features or attributes,
which are stored in an N ×D design matrix X, shown in Figure 1.1(b). The input features x can be discrete, continuous or a
combination of the two. In addition to the inputs, we have a vector of training labels y.

In Figure 1.1, the test cases are a blue crescent, a yellow circle and a blue arrow. None of these have been seen before. Thus
we are required to generalize beyond the training set. A reasonable guess is that blue crescent should be y = 1, since all blue
shapes are labeled 1 in the training set. The yellow circle is harder to classify, since some yellow things are labeled y = 1 and
some are labeled y = 0, and some circles are labeled y = 1 and some y = 0. Consequently it is not clear what the right label
should be in the case of the yellow circle. Similarly, the correct label for the blue arrow is unclear.

1.2.1.2 The need for probabilistic predictions

To handle ambiguous cases, such as the yellow circle above, it is desirable to return a probability. The reader is assumed to
already have some familiarity with basic concepts in probability. If not, please consult Chapter 2 for a refresher, if necessary.

We will denote the probability distribution over possible labels, given the input vector x and training set D by p(y|x,D).
In general, this represents a a vector of length C. (If there are just two classes, it is sufficient to return the single number
p(y = 1|x,D), since p(y = 1|x,D) + p(y = 0|x,D) = 1.) In our notation, we make explicit that the probability is conditional
on the test input x, as well as the training set D, by putting these terms on the right hand side of the conditioning bar |. We are
also implicitly conditioning on the form of model that we use to make predictions. When choosing between different models,
we will make this assumption explicit by writing p(y|x,D,M), where M denotes the model. However, if the model is clear
from context, we will drop M from our notation for brevity.

Given a probabilistic output, we can always compute our “best guess” as to the “true label” using

ŷ = f̂(x) =
C

argmax
c=1

p(y = c|x,D) (1.1)

This corresponds to the most probable class label, and is called the mode of the distribution p(y|x,D); it is also known as a
MAP estimate (MAP stands for maximum a posteriori). Using the most probable label makes intuitive sense, but we will
give a more formal justification for this procedure in Section 8.2.

Now consider a case such as the yellow circle, where p(ŷ|x,D) is far from 1.0. In such a case we are not very confident
of our answer, so it might be better to say “I don’t know” instead of returning an answer that we don’t really trust. This is
particularly important in domains such as medicine and finance where we may be risk averse, as we explain in Section 8.2.
Another application where it is important to assess risk is when playing TV game shows, such as Jeopardy. In this game,
contestants have to solve various word puzzles and answer a variety of trivia questions, but if they answer incorrectly, they

c� Kevin P. Murphy. Draft — not for circulation.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 3

words

d
o

c
u

m
e

n
ts

10 20 30 40 50 60 70 80 90 100

100

200

300

400

500

600

700

800

900

1000

Figure 1.2: Subset of size 16242 x 100 of the 20-newsgroups data. We only show 1000 rows, for clarity. Each row is a document (represented
as a bag-of-words bit vector), each column is a word. The red lines separate the 4 classes, which are (in descending order) comp, rec, sci, talk
(these are the titles of USENET groups). We can see that there are subsets of words whose presence or absence is indicative of the class. The
data is available from http://cs.nyu.edu/˜roweis/data.html. Figure generated by newsgroupsVisualize.

lose money. In 2011, IBM unveiled a computer system called Watson which beat the top human Jeopary champion. Watson
uses a variety of interesting techniques [FBCC+10], but the most pertinent one for our present purposes is that it contains a
module that estimates how confident it is of its answer. The system only chooses to “buzz in” its answer if sufficiently confident
it is correct. Similarly, Google has a system known as SmartASS (ad selection system) that predicts the probability you will
click on an ad based on your search history and other user and ad-specific features [Met10]. This probability is known as the
click-through rate or CTR, and can be used to maximize expected profit. We will discuss some of the basic principles behind
systems such as SmartASS later in this book.

1.2.1.3 Real world applications

Classification is probably the most widely used form of machine learning, and has been used to solve many interesting and
often difficult real-world problems. We have already mentioned some important applciations. We give a few more examples
below.

Document classification and email spam filtering

In document classification, the goal is to classify a document, such as a web page or email message, into one of C classes, that
is, to compute p(y = c|x,D), where x is some representation of the text. A special case of this is email spam filtering, where
the classes are spam y = 1 or ham y = 0.

Most classifiers assume that the input vector x has a fixed size. A common way to represent variable-length documents in
feature-vector format is to use a bag of words representation. This is explained in detail in Section 5.2.1, but the basic idea is to
define xij = 1 iff word j occurs in document i. If we apply this transformation to every document in our data set, we get a binary
document × word co-occurrence matrix: see Figure 1.2 for an example. Essentially the document classification problem has
been reduced to one that looks for subtle changes in the pattern of bits. For example, we may notice that most spam messages
have a high probability of containing the words “buy”, “cheap”, “viagra”, etc. In Exercise 7.11.0.7 and Exercise 7.11.0.8, you
will get hands-on experience applying various classification techniques to the spam filtering problem.

Classifying flowers

Figure 1.3 gives another example of classification, due to the statistician Ronald Fisher. The goal is to learn to distinguish three
different kinds of iris flower, called setosa, versicolor and virginica. Fortunately, rather than working directly with images, a
botanist has already extracted 4 useful features or characteristics: sepal length and width, and petal length and width. (Such
feature extraction is an important, but difficult, task. Most machine learning methods use features chosen by some human.
Later we will discuss some methods that can learn good features from the data.) If we make a scatter plot of the iris data, as
in Figure 1.4, we see that it is easy to distinguish setosas (red circles) from the other two classes by just checking if their petal
length or width is below some threshold. However, distinguishing versicolor from virginica is slightly harder; any decision will
need to be based on at least two features.

Image classification and handwriting recognition

Now consider the harder problem of classifying images directly, where a human has not preprocessed the data. We might want
to classify the image as a whole, e.g., is it an indoors or outdoors scene? is it a horizontal or vertical photo? does it contain a

Machine Learning: a Probabilistic Perspective, draft of November 5, 2011

http://cs.nyu.edu/~roweis/data.html

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

4 introBody.tex

(a) (b) (c)

Figure 1.3: Three types of iris flowers: setosa, versicolor and virginica. Source: http://www.statlab.uni-heidelberg.de/
data/iris/ . Used with kind permission of Dennis Kramb and SIGNA.

Figure 1.4: Visualization of the Iris data as a pairwise scatter plot. The diagonal plots the marginal histograms of the 4 features. The off
diagonals contain scatterplots of all possible pairs of features. Red circle = setosa, green diamond = versicolor, blue star = virginica. Figure
generated by fisheririsDemo.

(a) (b)

Figure 1.5: (a) First 9 test MNIST gray-scale images. (b) Same as (a), but with the features permuted randomly. Classification per-
formance is identical on both versions of the data (assuming the training data is permuted in an identical way). Figure generated by
shuffledDigitsDemo.

c� Kevin P. Murphy. Draft — not for circulation.

http://www.statlab.uni-heidelberg.de/data/iris/
http://www.statlab.uni-heidelberg.de/data/iris/

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 5

(a) (b)

Figure 1.6: Example of face detection. (a) Input image (Murphy family, photo taken 5 August 2010 by Bernard Diedrich of Sherwood
Studios). (b) Output of classifier, which detected 5 faces at different poses. This was produced using the online demo at http://demo.
pittpatt.com/. The classifier was trained on 1000s of manually labeled images of faces and non-faces, and then was applied to a dense
set of overlapping patches in the test image. Only the patches whose probability of containing a face was sufficiently high were returned. Used
with kind permission of Pittpatt.com (For an example of this technology applied to a video, see http://www.youtube.com/watch?
v=P3FcX2n398E.)

dog or not? This is called image classification.
In the special case that the images consist of isolated handwritten letters and digits, for example, in a postal or ZIP code

on a letter, we can use classification to perform handwriting recognition. A standard dataset used in this area is known as
MNIST, which stands for “Modified National Institute of Standards”.3 (The term “modified” is used because the images have
been preprocessed to ensure the digits are mostly in the center of the image.) This dataset contains 60,000 training images and
10,000 test images of the digits 0 to 9, as written by various people. The images are size 28× 28 and have grayscale values in
the range 0 : 255. See Figure 1.5(a) for some example images.

Many generic classification methods ignore any structure in the input features, such as spatial layout. Consequently, they
can also just as easily handle data that looks like Figure 1.5(b), which is the same data except we have randomly permuted the
order of all the features. (You will verify this in Exercise 1.5.0.2.) This flexibility is both a blessing (since the methods are
general purpose) and a curse (since the methods ignore an obviously useful source of information). We will discuss methods
for exploiting structure in the input features later in the book.

Face detection and recognition

A harder problem is to find objects within an image; this is called object detection or object localization. An important
special case of this is face detection. One approach to this problem is to divide the image into many small overlapping patches
at different locations, scales and orientations, and to classify each such patch based on whether it contains face-like texture
or not. This is called a sliding window detector. The system then returns those locations where the probability of face is
sufficiently high. See Figure 1.6 for an example. Such face detection systems are built-in to most modern digital cameras; the
locations of the detected faces are used to determine the center of the auto-focus. Another application is automatically blurring
out faces in Google’s StreetView system.

Having found the faces, one can then proceed to perform face recognition, which means estimating the identity of the
person (see Figure 1.11(a)). In this case, the number of class labels might be very large. Also, the features one should use are
likely to be different than in the face detection problem: for recognition, subtle differences between faces such as hairstyle may
be important for determining identity, but for detection, it is important to be invariant to such details, and to just focus on the
differences between faces and non-faces. For more information about visual object detection, see e.g., [Sze10a].

Although detecting and recognizing faces and other visual object categories might look like an easy problem, since people
are so good at visual pattern recognition, bear in mind that what the machine sees is just an array of numbers. This is illustrated
in Figure 1.7. On the left we see a picture of a flower, with several overlapping leaves, with a sub-image highlighted by a box.
On the right we see a representation of the contents of the box, as seen by the computer. It is hard to tell from the numbers that
this is a leaf, and detecting the edge between the two leaves is even harder. There is widespead concensus that what the brain
is doing is inferring surfaces etc. from more global properties of the image, using a lot of prior knowledge derived from past
experience [Mar82, DIPR07].

1.2.2 Regression
Regression is just like classification except the response variable is continuous. Figure 1.8 shows a simple example: we have a
single real-valued input xi ∈ R, and a single real-valued response yi ∈ R. We consider fitting two models to the data: a straight

3 Available from http://yann.lecun.com/exdb/mnist/.

Machine Learning: a Probabilistic Perspective, draft of November 5, 2011

http://demo.pittpatt.com/
http://demo.pittpatt.com/
http://www.youtube.com/watch?v=P3FcX2n398E
http://www.youtube.com/watch?v=P3FcX2n398E
http://yann.lecun.com/exdb/mnist/

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

6 introBody.tex

(a) (b)

Figure 1.7: Left: an image of a flower. Right: what the computer sees. The array of numbers represents pixel intensities in the highlighted
box. Source: [Mar82, p273] Used with kind permission of MIT Press.

−5 0 5 10 15 20 25
−30

−20

−10

0

10

20

30

(a)
0 5 10 15 20

−10

−5

0

5

10

15
degree 2

(b)

Figure 1.8: (a) Linear regression on some 1d data. Figure generated by linregDemo1. (b) Polynomial regression on some 1d data. Figure
generated by linregPolyVsDegree.

c� Kevin P. Murphy. Draft — not for circulation.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 7

55 60 65 70 75 80
80

100

120

140

160

180

200

220

240

260

280

height

w
ei
gh
t

(a)

55 60 65 70 75 80
80

100

120

140

160

180

200

220

240

260

280

height

w
ei
gh
t

K=2

(b)

55 60 65 70 75 80
80

100

120

140

160

180

200

220

240

260

280

height

w
ei
gh
t

K=3

(c)

Figure 1.9: (a) The height and weight of some people. (b) A possible clustering using K = 2 clusters. (c) A possible clustering using K = 3
clusters. Figure generated by kmeansHeightWeight.

line and a quadratic function. (We explain how to fit such models below.) Various extensions of this basic problem can arise,
such as having high-dimensional inputs, outliers, non-smooth responses, etc. We will discuss ways to handle such problems
later in the book.

Here are some examples of real-world regression problems.

• Predict tomorrow’s stock market price given current market conditions and other possible side information.

• Predict the age of a viewer watching a given video on YouTube.

• Predict the location in 3d space of a robot arm end effector, given control signals (torques) sent to its various motors.

• Predict the amount of prostate specific antigen (PSA) in the body as a function of a number of different clinical measure-
ments.

• Predict the temperature at any location inside a building using weather data, time, door sensors, etc.

1.3 Unsupervised learning
We now consider unsupervised learning, where we are just given output data, without any inputs. The goal is to discover
“interesting structure” in the data; this is sometimes called knowledge discovery. Unlike supervised learning, we are not told
what the desired output is for each input. Instead, we will formalize our task as one of density estimation, that is, we want to
build models of the form p(xi|θ). There are two differences from the supervised case. First, we have written p(xi|θ) instead
of p(yi|xi,θ); that is, supervised learning is conditional density estimation, whereas unsupervised learning is unconditional
density estimation. Second, xi is a vector of features, so we need to create multivariate probability models. By contrast, in
supervised learning, yi is usually just a single variable that we are trying to predict (although see Chapter 17). This means that
for most supervised learning problems, we can use univariate probability models (with input-dependent parameters), which
significantly simplifies the problem.

Unsupervised learning is arguably more typical of human and animal learning. It is also more widely applicable than
supervised learning, since it does not require a human expert to manually label the data. Labeled data is not only expensive to
acquire4, but it also contains relatively little information, certainly not enough to reliably estimate the parameters of complex
models. As Geoff Hinton has said,

When we’re learning to see, nobody’s telling us what the right answers are – we just look. Every so often, your
mother says ’that’s a dog,’ but that’s very little information. You’d be lucky if you got a few bits of information —
even one bit per second — that way. The brain’s visual system has 1014 neural connections. And you only live for
109 seconds. So it’s no use learning one bit per second. You need more like 105 bits per second. And there’s only
one place you can get that much information: from the input itself. — Geoffrey Hinton, 1996 (quoted in [Gor06]).

Below we describe some canonical examples of unsupervised learning.

1.3.1 Discovering clusters
As a canonical example of unsupervised learning, consider the problem of clustering data into groups. For example, Fig-
ure 1.9(a) plots some 2d data, representing the height and weight of a group of 210 people. It seems that there might be various

4 The advent of crowd sourcing web sites such as Mechanical Turk, (https://www.mturk.com/mturk/welcome), which outsource data process-
ing tasks to humans all over the world, has reduced the cost of labeling data. Nevertheless, the amount of unlabeled data is still orders of magnitude larger than
the amount of labeled data.

Machine Learning: a Probabilistic Perspective, draft of November 5, 2011

https://www.mturk.com/mturk/welcome

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

8 introBody.tex

−8 −6 −4 −2 0 2 4 6 8
−4

−2
0

2
4

−2

0

2

(a)

−5
0

5
−4

−2
0

2
4

(b)

−6 −4 −2 0 2 4
−2

0
2

(c)

Figure 1.10: (a) A set of points that live on a 2d linear subspace embedded in 3d. The solid red line is the first principal component direction.
The dotted black line is the second PC direction. (b) 2D representation of the data. (c) 1D representation of the data. Figure generated by
pcaDemo3d.

(a) (b)

Figure 1.11: a) 25 randomly chosen 64×64 pixel images from the Olivetti face database. (b) The mean and the first three principal component
basis vectors (eigenfaces). Figure generated by pcaImageDemo.

clusters, or subgroups, although it is not clear how many. Let K denote the number of clusters. Our first goal is to estimate the
distribution over the number of clusters, p(K|D); this tells us if there are subpopulations within the data. For simplicity, we
often approximate the distribution p(K|D) by its mode, K∗ = argmaxK p(K|D). In the supervised case, we were told that
there are two classes (male and female), but in the unsupervised case, we are free to choose as many or few clusters as we like.
Picking a model of the “right” complexity is called model selection, and will be discussed in detail below.

Our second goal is to estimate which cluster each point belongs to. Let zi ∈ {1, . . . ,K} represent the cluster to which data
point i is assigned. (zi is an example of a hidden or latent variable, since it is never observed in the training set.) We can infer
which cluster each data point belongs to by computing z∗i = argmaxk p(zi = k|xi,D). This is illustrated in Figure 1.9(b-c),
where we use different colors to indicate the assignments.

In this book, we focus on model based clustering, which means we fit a probabilistic model to the data, rather than running
some ad hoc algorithm. The advantages of the model-based approach are that one can compare different kinds of models in an
objective way (in terms of the likelihood they assign to the data), we can combine them together into larger systems, etc.

Here are some real world applications of clustering.

• In astronomy, the autoclass system [CKS+88] discovered a new type of star, based on clustering astrophysical measure-
ments.

• In e-commerce, it is common to cluster users into groups, based on their purchasing or web-surfing behavior, and then to
send customized targeted advertising to each group (see e.g., [Ber06]).

• In biology, it is common to cluster flow-cytometry data into groups, to discover different sub-populations of cells (see
e.g., [LHB+09]).

1.3.2 Discovering latent factors
When dealing with high dimensional data, it is often useful to reduce the dimensionality by projecting the data to a lower
dimensional subspace which captures the “essence” of the data. This is called dimensionality reduction. A simple example is

c� Kevin P. Murphy. Draft — not for circulation.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 9
lambda=7.00, nedges=18

Figure 1.12: A sparse undirected Gaussian graphical model learned using graphical lasso (Section 25.7.2) applied to some flow cytometry
data (from [SPP+05]), which measures the phosphorylation status of 11 proteins. Figure generated by ggmLassoDemo.

shown in Figure 1.10, where we project some 3d data down to a 2d plane, and then down to a 1d line. The 2d approximation
is quite good, since there is little variation off this plane, but the 1d approximation is a very poor approximation to the original
data.

The motivation behind this technique is that although the data may appear high dimensional, there may only be a small
number of degrees of variability, corresponding to latent factors. For example, when modeling the appearance of face images,
there may only be a few underlying latent factors which describe most of the variability, such as lighting, pose, identity, etc, as
illustrated in Figure 1.11.

When used as input to other statistical models, such low dimensional representations often result in better predictive accu-
racy, because they focus on the “essence” of the object, filtering out inessential features. Also, low dimensional representations
are useful for enabling fast nearest neighbor searches and two dimensional projections are very useful for visualizing high
dimensional data.

The most common approach to dimensionality reduction is called principal components analysis or PCA. This can be
thought of as an unsupervised version of (multi-output) linear regression, where we observe the high-dimensional response y,
but not the low-dimensional “cause” z. Thus the model has the form z → y; we have to “invert the arrow”, and infer the latent
low-dimensional z from the observed high-dimensional y. See Section 10.1 for details.

Dimensionality reduction, and PCA in particular, has been applied in many different areas. Some examples include the
following:

• In biology, it is common to use PCA to interpret gene microarray data, to account for the fact that each measurement is
usually the result of many genes which are correlated in their behavior by the fact that they belong to different biological
pathways.

• In natural language processing, it is common to use a variant of PCA called latent semantic analysis for document retrieval
(see Section 24.2.2).

• In signal processing (e.g., of acoustic or neural signals), it is common to use ICA (which is a variant of PCA) to separate
signals into their different sources (see Section 10.6).

• In computer graphics, it is common to project motion capture data to a low dimensional space, and use it to create
animations. See Section 13.5 for one way to tackle such problems.

1.3.3 Discovering graph structure
Sometimes we measure a set of correlated variables, and we would like to discover which ones are most correlated with which
others. This can be represented by a graph G, in which nodes represent variables, and edges represent direct dependence
between variables (we will make this precise in Chapter 6, when we discuss graphical models). We can then learn this graph
structure from data, i.e., we compute Ĝ = argmax p(G|D).

As with unsupervised learning in general, there are two main applications for learning sparse graphs: to discover new
knowledge, and to get better joint probability density estimators. We now give an example of each.

• Much of the motivation for learning sparse graphical models comes from the systems biology community. For example,
suppose we measure the phosphorylation status of some proteins in a cell [SPP+05]. Figure 1.12 gives an example
of a graph structure that was learned from this data using methods discussed in Section 25.7.2). As another example,
[SaTSHJ06] showed that one can recover the neural “wiring diagram” of a certain kind of bird from time-series EEG
data. The recovered structure closely matched the known functional connectivity of this part of the bird brain.

Machine Learning: a Probabilistic Perspective, draft of November 5, 2011

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

10 introBody.tex

Figure 1.13: (a) A noisy image with an occluder. (b) An estimate of the underlying pixel intensities, based on a pairwise MRF model.
Source: Figure 8 of [FH06]. Used with kind permission of Pedro Felzenszwalb.

Figure 1.14: Netflix movie-rating data. The matrix consists of 17,770 movies and 480,189 users. Only 100,480,507 entries (on the scale 1:5)
are known. A subset of these, denoted by ?, are known, but must be predicted during the competition; the rest are available as training data.
Empty cells are unknown.

• One application of (Gaussian) graphical models is in financial portfolio management, where accurate models of the
covariance between large numbers of different stocks is important. [CW07] show that by learning a sparse graph, and
then using this as the basis of a trading strategy, it is possible to outperform (i.e., make more money than) methods that
do not exploit sparse graphs.

1.3.4 Matrix completion
Sometimes we have missing data, that is, variables whose values are unknown. For example, we might have conducted a
survey, and some people might not have answered certain questions. Or we might have various sensors, some of which fail.
The corresponding design matrix will then have “holes” in it; these missing entries are often represented by NaN, which stands
for “not a number”. The goal of imputation is to infer plausible values for the missing entries. This is sometimes called matrix
completion. Below we give some example applications.

1.3.4.1 Image inpainting

An interesting example of an imputation-like task is known as image inpainting. The goal is to “fill in” holes (e.g., due to
scratches or occlusions) in an image with realistic texture. This is illustrated in Figure 1.13, where we denoise the image, as well
as impute the pixels hidden behind the occlusion. This can be tackled by building a joint probability model of the pixels, given
a set of clean images, and then inferring the unknown variables (pixels) given the known variables (pixels). This is somewhat
like masket basket analysis, except the data is real-valued and spatially structured, so the kinds of probability models we use
are quite different. See Sections 17.2.3 and 11.8.4 for some possible choices.

1.3.4.2 Collaborative filtering

Another interesting example of an imputation-like task is known as collaborative filtering. A common example of this concerns
predicting which movies people will want to watch based on how they, and other people, have rated movies which they have
already seen. The key idea is that the prediction is not based on features of the movie or user (although it could be), but merely
on a ratings matrix. More precisely, we have a matrix X where X(m,u) is the rating (say an integer between 1 and 5, where
1 is dislike and 5 is like) by user u of movie m. Note that most of the entries in X will be missing or unknown, since most
users will not have rated most movies. Hence we only observe a tiny subset of the X matrix, and we want to predict a different
subset. In particular, for any given user u, we might want to predict which of the unrated movies he/she is most likely to want
to watch. See Figure 1.14 for an example.

c� Kevin P. Murphy. Draft — not for circulation.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 11

(a) (b)

Figure 1.15: (a) Illustration of a K-nearest neighbors classifier in 2d for K = 3. The 3 nearest neighbors of test point x1 have labels 1,
1 and 0, so we predict p(y = 1|x1,D,K = 3) = 2/3. The 3 nearest neighbors of test point x2 have labels 0, 0, and 0, so we predict
p(y = 1|x2,D,K = 3) = 0/3. (b) Illustration of the Voronoi tesselation induced by 1-NN. Based on Figure 4.13 of [DHS01]. Figure
generated by knnVoronoi.

In order to encourage research in this area, the DVD rental company Netflix created a competition, launched in 2006,
with a $1M USD prize (see http://netflixprize.com/). On 21 September 2009, the prize was awarded to a team of
researchers known as “BellKor’s Pragmatic Chaos”. Section 24.6.2 discusses some of their methodology. Further details on
the teams and their methods can be found at http://www.netflixprize.com/community/viewtopic.php?id=
1537.

1.3.4.3 Market basket analysis

In commercial data mining, there is much interest in a task called market basket analysis. The data consists of a (typically
very large but sparse) binary matrix, where each column represents an item or product, and each row represents a transaction.
We set xij = 1 if item j was purchased on the i’th transaction. Many items are purchased together (e.g., bread and butter), so
there will be correlations amongst the bits. Given a new partially observed bit vector, representing a subset of items that the
consumer has bought, the goal is to predict which other bits are likely to turn on, representing other items the consumer might
be likely to buy. (Unlike collaborative filtering, we often assume there is no missing data in the training data, since know the
past shopping behavior of each customer.)

This task arises in other domains besides modeling purchasing patterns. For example, similar techniques can be used to
model dependencies between files in complex software systems. In this case, the task is to predict, given a subset of files that
have been changed, which other ones need to be updated to ensure consistency (see e.g., [HvdMC+10]).

It is common to solve such tasks using frequent itemset mining, which create association rules (see e.g., [HTF09, sec
14.2] for details). Alternatively, we can adopt a probabilistic approach, and fit a joint density model p(x1, . . . , xD) to the bit
vectors, see e.g., [HvdMC+10]. Such models often have better predictive acccuracy than association rules, although they may
be less interpretible. This is typical of the difference between data mining and machine learning: in data mining, there is more
emphasis on interpretable models, whereas in machine learning, there is more emphasis on accurate models.

1.4 Some basic concepts in machine learning

In this Section, we provide an introduction to some key ideas in machine learning. We will expand on these concepts later in
the book, but we introduce them briefly here, to give a flavor of things to come.

1.4.1 Parametric vs non-parametric models

In this book, we will be focussing on probabilistic models of the form p(y|x) or p(x), depending on whether we are interested
in supervised or unsupervised learning respectively. There are many ways to define such models, but the most important
distinction is this: does the model have a fixed number of parameters, or does the number of parameters grow with the amount
of training data? The former is called a parametric model, and the latter is called a non-parametric model. Parametric models
have the advantage of often being faster to use, but the disadvantage of making stronger assumptions about the nature of the
data distributions. Non-parametric models are more flexible, but often computationally intractable for large datasets. We will
give examples of both kinds of models in the sections below. We focus on supervised learning for simplicity, although much of
our discussion also applies to unsupervised learning.

Machine Learning: a Probabilistic Perspective, draft of November 5, 2011

http://netflixprize.com/
http://www.netflixprize.com/community/viewtopic.php?id=1537
http://www.netflixprize.com/community/viewtopic.php?id=1537

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

12 introBody.tex

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

4

5

train

(a)

p(y=1|data,K=10)

20 40 60 80 100

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

p(y=2|data,K=10)

20 40 60 80 100

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)
−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

4

5

predicted label, K=10

c1
c2
c3

(d)

Figure 1.16: (a) Some synthetic 3-class training data in 2d. (b) Probability of class 1 for KNN with K = 10. (c) Probability of class 2. (d)
MAP estimate of class label. Figure generated by knnClassifyDemo.

c� Kevin P. Murphy. Draft — not for circulation.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 13

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

5

predicted label, K=1

c1
c2
c3

(a)
−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

4

5

predicted label, K=5

c1
c2
c3

(b)
−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

4

5

predicted label, K=10

c1
c2
c3

(c)

Figure 1.17: Prediction surface for KNN on the data in Figure 1.16(a). (a) K=1. (b) K=5. (c) K=10. Figure generated by
knnClassifyDemo.

1.4.2 A simple non-parametric model for classification: the K-nearest neighbor classifier
Another example of a simple classifier is the K nearest neighbor (KNN) classifier. This simply “looks at” the K points in the
training set that are nearest to the test input x, counts how many members of each class are in this set, and returns that empirical
fraction as the estimate, as illustrated in Figure 1.15. More formally,

p(y = c|x,D,K) =
1

K

�

i∈NK(x,D)

I(yi = c) (1.2)

where NK(x,D) are the (indices of the) K nearest points to x in D and I(e) is the indicator function defined as follows:

I(e) =

�
1 if e is true
0 if e is false (1.3)

This method is an example of memory-based learning or instance-based learning. It can be derived from a probabilistic
framework as explained in Section 12.7.3. The most common distance metric to use is Euclidean distance (which limits the
applicability of the technique to data which is real-valued).

Figure 1.16 gives an example of the method in action, where the input is two dimensional, we have three classes, and
K = 10. (We discuss the effect of K below.) Panel (a) plots the training data. Panel (b) plots p(y = 1|x,D) where x is
evaluated on a grid of points. Panel (c) plots p(y = 2|x,D). We do not need to plot p(y = 3|x,D), since probabilities sum to
one. Panel (d) plots the MAP estimate ŷ(x) = argmaxc(y = c|x,D).

1.4.3 Overfitting and model selection
If the distance function is fixed, then the only free parameter in the KNN model is the value K. This can have a large effect on
the predictions, as we now discuss. In particular, a KNN classifier with K = 1 induces a Voronoi tessellation of the points (see
Figure 1.15(b)). This is a partition of space which associates a region V (xi) with each point xi in such a way that all points in
V (xi) are closer to xi than to any other point. Within each cell, the predicted label is the label of the corresponding training
point. This is illustrated in Figure 1.17(a).

When K = 1, the method clearly makes no errors on the training set, but the result prediction surface is very “wiggly”.
Therefore the method may not work well at predicting future data. A function that fits the training data well but that is overly
complex, and that does not generalize well to novel test data, is said to have overfit the data. Avoiding overfitting is one of the
most important issues in machine learning.

In Figure 1.17(b), we see that using K = 5 results in a smoother prediction surface, because we are averaging over a larger
neighborhood. As K increases, the predictions becomes smoother until, in the limit of K = N , we end up predicting the
majority label of the whole data set.

How, then, should we pick K? A natural approach is to compute the misclassification rate on the training set. This is
defined as follows:

err(f,D) =
1

N

N�

i=1

I(f(xi) �= yi) (1.4)

where f(x;K) is our classifier. In Figure 1.18(a), we plot this error rate vs K (in blue). We see that increasing K increases
our error rate on the training set, because we are over-smoothing. As we said above, we can get minimal error on the training
set by using K = 1, since this model is just memorizing the data.

However, what we care about is generalization error, which is the expected value of the misclassification rate when
averaged over future data (see Section 8.3 for details). This can be approximated by computing the misclassification rate on a

Machine Learning: a Probabilistic Perspective, draft of November 5, 2011

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

14 introBody.tex

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

K

m
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

train

test

(a)

0 20 40 60 80 100 120
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

m
is

cl
as

si
fic

at
io

n
ra

te

5−fold cross validation, ntrain = 200

(b) (c)

Figure 1.18: (a) Misclassification rate vs K in a K-nearest neighbor classifier. Complexity of the model decreases as we move to the right.
Dotted blue line: training set (size 200). Solid red line: test set (size 500). (b) 5-fold cross-validation estimate of the generalization error.
Error bars indicate standard error of the mean. The vertical blue indicates the chosen model. (c) Schematic of 5-fold cross validation. Figure
generated by knnClassifyDemo.

large independent test set, not used during model training. We plot the test error vs K in Figure 1.18(a) in red. Now we see a
U-shaped curve: for complex models (small K), the method overfits, and for simple models (big K), the method underfits.
Therefore, an obvious way to pick K is to pick the value with the minimum error on the test set (in this example, any value
between 10 and 100 should be fine).

Unfortunately, when training the model, we don’t have access to the test set (by assumption), so we cannot use the test set
to pick the model of the right complexity.5 However, we can create a test set by partitioning the training set into two: the part
used for training the model, and a second part, called the validation set, used for selecting the model complexity. We then fit
all the models on the training set, and evaluate their performance on the validation set, and pick the best. Once we have picked
the best, we can refit it to all the available data, and use the resulting model on future test data. (If we want to estimate the
performance of this resulting best model on future data, we need a third, separate test set that was not used at all for model
selection or training.)

Often we use about 80% of the data for the training set, and 20% for the validation set. But if the number of training cases
is small, this technique runs into problems, because the model won’t have enough data to train on, and we won’t have enough
data to make a reliable estimate of the future performance.

A simple but popular solution to this is to use cross validation (CV). The idea is simple: we split the training data into K
folds; then, for each fold k ∈ {1, . . . ,K}, we train on all the folds but the k’th, and test on the k’th, in a round-robin fashion,
as sketched in Figure 1.18(c). We then compute the error averaged over all the folds, and use this as a proxy for the test error.
(Note that each point gets predicted only once, although it will be used for training K − 1 times.) It is common to use K = 5;
this is called 5-fold CV. If we set K = N , then we get a method called leave-one out cross validation, or LOOCV, since in
fold i, we train on all the data cases except for i, and then test on i.

In Figure 1.18(b) we show the results of 5-fold CV for our KNN example. We see that this is a reasonable proxy for the
generalization error, in the sense that it has the same general U-shape, and the minimum (indicated by the vertical blue line) is
in roughly the same location. The meaning of the error bars is explained in Section 8.3.8.2.

Choosing K for a KNN classifier is a special case of a more general problem known as model selection, where we have
to choose between models with different degrees of flexibility. Cross-validation is widely used for solving such problems,
although later we will discuss a more probabilistic approach to this problem.

1.4.4 The curse of dimensionality
The KNN classifier is simple and can work quite well, provided it is given a good distance metric and has enough labeled
training data. In fact, it can be shown that the KNN classifier can come within a factor of 2 of the best possible possible
performance if N → ∞ [CH67].

However, the main problem with KNN classifiers is that they do not work well with high dimensional inputs. The poor
performance in high dimensional settings is due to the curse of dimensionality.

To explain the curse, we give some examples from [HTF09, p22]. Consider applying a KNN classifier to data where the
inputs are uniformly distributed in the D-dimensional unit cube. Suppose we estimate the density of class labels around a test
point x by “growing” a hyper-cube around x until it contains a desired fraction f of the data points. The expected edge length of
this cube will be eD(f) = f1/D. If D = 10, and we want to base our estimate on 10% of the data, we have e10(0.1) = 0.8, so
we need to extend the cube 80% along each dimension around x. Even if we only use 1% of the data, we find e10(0.01) = 0.63:
see Figure 1.19. Since the entire range of the data is only 1 along each dimension, we see that the method is no longer very

5 In academic settings, we usually do have access to the test set, but we should not use it for model fitting or model selection, otherwise we will get an
unrealistically optimistic estimate of performance of our method. This is one of the “golden rules” of machine learning research.

c� Kevin P. Murphy. Draft — not for circulation.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 15

s

1

1

0

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of data in neighborhood

E
d

g
e

 le
n

g
th

 o
f

cu
b

e

d=1

d=3

d=5
d=7
d=10

(b)

Figure 1.19: Illustration of the curse of dimensionality. (a) We embed a small cube of side s inside a larger unit cube. (b) We plot the edge
length of a cube needed to cover a given volume of the unit cube as a function of the number of dimensions. Based on Figure 2.6 from
[HTF09]. Figure generated by curseDimensionality.

(a) (b)
−5 0 5 10 15 20 25

−30

−20

−10

0

10

20

30

(c)

Figure 1.20: (a) A Gaussian pdf with mean 0 and variance 1. Figure generated by gaussPlotDemo. (b) Visualization of the conditional
density model p(y|x,θ) = N (y|w0 + w1x,σ

2). The density falls off exponentially fast as we move away from the regression line. Figure
generated by linregWedgeDemo2. (c) We plot the mean and 95% credible interval of p(y|x,θ) = N (y|w0 + w1x,σ

2) for a linear
regression model. Figure generated by linregDemo1.

local, despite the name “nearest neighbor”. The trouble with looking at neighbors that are so far away is that they may not be
good predictors about the behavior of the input-output function at a given point.

1.4.5 Simple parametric models for classification and regression
The main way to combat the curse of dimensionality is to make assumptions about the nature of the input-output mapping. This
is usually done by using a parametric model to represent the mapping. That is, we use a model of the form p(y|x) = f(y,x,θ),
where f is some kind of function, and θ are the parameters of this function. We give some examples below.

1.4.5.1 Linear regression

The simplest parametric model for regression is known as linear regression. This is a model of the form

y = wTx+ � (1.5)

where wTx =
�D

j=1 wjxj is a linear combination of the inputs, and � represents the deviation away from a straight line,
known as the residual error or noise. We often add an offset or bias term w0 to the mean, which changes the overall level of
the response. To simplify notation we often add a dummy 1 term to x, so that wTx = w0 +

�D
j=1 wjxj .

We typically assume the noise term � has a Gaussian6 distribution with mean 0 and variance σ2, which we write as � ∼
N (0,σ2). The corresponding probability density function or pdf is given by

N (y|µ,σ2) :=
1√
2πσ2

e−
1

2σ2 (y−µ)2 (1.6)

6 Carl Friedrich Gauss (1777–1855) was a German mathematician and physicist.

Machine Learning: a Probabilistic Perspective, draft of November 5, 2011

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

16 introBody.tex

(a)
0 5 10 15 20

−10

−5

0

5

10

15
degree 14

(b)
0 5 10 15 20

−10

−5

0

5

10

15
degree 20

(c)

Figure 1.21: Polynomial of degrees 10, 14, 20 fit by least squares to 21 data points. Figure generated by linregPolyVsDegree.

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)
460 480 500 520 540 560 580 600 620 640

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 1.22: (a) The sigmoid or logistic function. We have sigm(−∞) = 0, sigm(0) = 0.5, and sigm(∞) = 1. Figure generated by
sigmoidPlot. (b) Logistic regression for SAT scores. Solid black dots are the data. The open red circles are the predicted probabilities.
The green crosses denote two students with the same SAT score of 525 (and hence same input representation x) but with different training
labels (one student passed, y = 1, the other failed, y = 0). Hence this data is not perfectly separable using just the SAT feature. Figure
generated by logregSATdemo.

When we plot this distribution, we get the well-known bell curve shown in Figure 1.20(a).
Another way to write the linear regression model is as follows:

p(y|x,θ) = N (y|wTx,σ2) (1.7)

This makes it clear that the mean is a linear function of the inputs, but the variance is fixed. This is illustrated in 1d in
Figure 1.20(b-c).

Linear regression can be made to model non-linear relationships by replacing x with some non-linear function of the inputs,
φ(x). That is, we use

p(y|x,θ) = N (y|wTφ(x),σ2) (1.8)

This is known as basis function expansion. A simple example are polynomial basis functions, where the model has the form

φ(x) = [1, x, x2, . . . , xd] (1.9)

Figure 1.21 illustrates the effect of changing d: increasing the degree d allows us to create increasingly complex functions.
However, we need to be careful to avoid overfitting. For example, consider what happens if we only have N = 21 data

points, and we fit a degree d = 20 polynomial: such a model can perfectly interpolate the data (just as a straight line can
perfectly fit any two points), but the resulting function is very “wiggly”, as shown in Figure 1.21. One way to pick a model of
the “right” complexity is to use cross-validation. We will discuss other methods below.

1.4.5.2 Logistic regression

We can generalize linear regression to the (binary) classification setting by making two changes. First we replace the Gaussian
distribution for y with a Bernoulli distribution7, which is more appropriate for the case when y ∈ {0, 1}. That is, we use

p(y|x,w) = Ber(y|µ(x)) (1.10)
7 Daniel Bernoulli (1700–1782) was a Dutch-Swiss mathematician and physicist.

c� Kevin P. Murphy. Draft — not for circulation.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 17
where µ(x) = E [y|x] = p(y = 1|x). Second, we compute a linear combination of the inputs, as before, but then we pass this
through a function that ensures 0 ≤ µ(x) ≤ 1 by defining

µ(x) = sigm(wTx) (1.11)

where sigm(η) refers to the sigmoid function, also known as the logistic or logit function. This is defined as

sigm(η) :=
1

1 + exp(−η)
=

eη

eη + 1
(1.12)

The term “sigmoid” means S-shaped: see Figure 1.22(a) for a plot. It is also known as a squashing function, since it maps the
whole real line to [0, 1], which is necessary for the output to be interpreted as a probability.

Putting these two steps together we get

p(y|x,w) = Ber(y|sigm(wTx)) (1.13)

This is called logistic regression due to its similarity to linear regression, although it is actually a form of classification.
Logistic regression is very widely used. For example, it forms the basis of Google’s SmartASS ad system mentioned earlier. It
also forms the basis of several more sophisticated models, such as neural networks (Section 14.5), relevance vector machines
(Section 12.3.2), etc.

A simple example of logistic regression is shown in Figure 1.22(b), where we plot

p(yi = 1|xi,w) = sigm(w0 + w1xi) (1.14)

where xi is the SAT8 score of student i and yi is whether they passed or failed a class. The solid black dots show the training
data, and the red circles plot p(y = 1|xi, ŵ), where ŵ are the parameters estimated from the training data (we discuss how to
compute these estimates in Section 7.4.4).

If we threshold the output probability at 0.5, we can induce a decision rule of the form

ŷ(x) = 1 ⇐⇒ p(y = 1|x) > 0.5 (1.15)

By looking at Figure 1.22(b), we see that sigm(w0 +w1x) = 0.5 for x ≈ 545 = x∗. We can imagine drawing a vertical line at
x = x∗; this is known as a decision boundary. Everything to the left of this line is classified as a 0, and everything to the right
of the line is classified as a 1.

We notice that this decision rule has a non-zero error rate even on the training set. This is because the data is not linearly
separable, i.e., there is no straight line we can draw to separate the 0s from the 1s. We can create models with non-linear
decision boundaries using basis function expansion, just as we did with non-linear regression. We will see many examples of
this later in the book.

In Figure 1.22, the input data was one-dimensional. However, logistic regression can easily be extended to higher-
dimensional inputs. For example, Figure 1.23 shows plots of p(y = 1|x,w) = sigm(wTx) for 2d input and different weight
vectors w. If we threshold these probabilities at 0.5, we induce a linear decision boundary, whose normal (perpendicular) is
given by w.

1.4.6 Parameter estimation
Given a parametric model, such as linear or logistic regression, how should we estimate the parameters, θ? A natural approach
is to compute a MAP estimate of the parameters, given by

θ̂ = argmax p(θ|D) (1.16)

This captures the intuitive notion that we should use the parameter values that are most probable given the data. The function
that we are maximizing, p(θ|D), is known as the posterior distribution of the parameters, and reflects what we know about
them after having seen the data. We can compute this using Bayes rule (Section 2.2.2.4), which tells us that

p(θ|D) =
p(D|θ)p(θ)

p(D)
(1.17)

Here p(θ) is the prior distribution for θ, and encodes what we know before we saw the data. The term p(D|θ) is the likelihood
of the data, and measures how well θ predicts the observed data. Finally, p(D) is a normalization constant given by

p(D) =

�
p(D|θ)p(θ)dθ (1.18)

8 SAT stands for “Scholastic Aptitude Test”. This is a standardized test for college admissions used in the United States (the data in this example is from
[JA99, p87]).

Machine Learning: a Probabilistic Perspective, draft of November 5, 2011

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

18 introBody.tex

Figure 1.23: Plots of sigm(w1x1 + w2x2). Here w = (w1, w2) defines the normal to the decision boundary. Points to the right of
this have sigm(wTx) > 0.5, and points to the left have sigm(wTx) < 0.5. Based on Figure 39.3 of [Mac03]. Figure generated by
sigmoidplot2D.

We can ignore this constant if we are only interested in estimating θ. In other words, we can rewrite the MAP estimate as
follows:

θ̂ = argmax p(D|θ)p(θ) (1.19)

It is conventional to maximize the log of the posterior, rather than the posterior; this converts the product into a sum, but
does not affect the location of the maximum, since log is a monotonic function. Thus we can write

θ̂ = argmax log p(D|θ) + log p(θ) (1.20)

All that remains is to specify the form of p(D|θ) and p(θ), and to devise a suitable optimization algorithm. We will discuss
these issues at length later in the book. However, we give one some simple example below, in order to introduce to some key
concepts.

1.4.6.1 Maximum likelihood estimation and least squares

If we do not know anything about what parameter values are good ones to use, we can use a uniform prior, p(θ) ∝ 1, which
says that all values are equally likely. (This will be justified in Section 2.8.2.) In this case, the MAP estimate becomes equivalent
to the maximum likelihood estimate or MLE, which is defined as

θ̂ := argmax
θ

log p(D|θ) (1.21)

It is common to assume the training examples are independent and identically distributed, commonly abbreviated to iid.
This means we can write the log-likelihood as follows:

�(θ) := log p(D|θ) =
N�

i=1

log p(yi|xi,θ) (1.22)

Instead of maximizing the log-likelihood, we can equivalently minimize the negative log likelihood or NLL:

NLL(θ) := −
N�

i=1

log p(yi|xi,θ) (1.23)

The NLL formulation is sometimes more convenient, since many optimization software packages are designed to find the
minima of functions, rather than maxima.

c� Kevin P. Murphy. Draft — not for circulation.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 19

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

5

prediction
truth

(a)

Sum of squares error contours for linear regression

w0

w
1

−1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

(b)

Figure 1.24: (a) In linear least squares, we try to minimize the sum of squared distances from each training point (denoted by a red circle)
to its approximation (denoted by a blue cross), that is, we minimize the sum of the lengths of the little vertical blue lines. The red diagonal
line represents ŷ(x) = w0 + w1x, which is the least squares regression line. Note that these residual lines are not perpendicular to the least
squares line, in contrast to Figure 10.5. Figure generated by residualsDemo. (b) Contours of the RSS error surface for the same example.
The red cross represents the MLE, w = (1.45, 0.93). Figure generated by contoursSSEdemo.

Now let us apply the method of MLE to the linear regression setting. Inserting the definition of the Gaussian into the above,
we find that the log likelihood is given by

�(θ) =
N�

i=1

log

��
1

2πσ2

� 1
2

exp

�
− 1

2σ2
(yi −wTxi)

2

��
(1.24)

=
−1

2σ2
RSS(w)− N

2
log(2πσ2) (1.25)

RSS stands for residual sum of squares and is defined by

RSS(w) :=
N�

i=1

(yi −wTxi)
2 (1.26)

The RSS is also called the sum of squared errors, or SSE, and SSE/N is called the mean squared error or MSE. It can also
be written as the square of the �2 norm of the vector of residual errors:

RSS(w) = ||�||22 =
N�

i=1

�2i (1.27)

where �i = (yi −wTxi).
We see that the MLE for w is the one that minimizes the RSS, so this method is known as least squares. This method is

illustrated in Figure 1.24(a). The training data (xi, yi) are shown as red circles, the estimated values (xi, ŷi) are shown as blue
crosses, and the residuals �i = yi − ŷi are shown as vertical blue lines. The goal is to find the setting of the parameters (the
slope w1 and intercept w0) such that the resulting red line minimizes the sum of squared residuals (the lengths of the vertical
blue lines).

In Figure 1.24(b), we plot the NLL surface for our linear regression example. We see that it is a quadratic “bowl” with
a unique minimum. It turns out that there is a simple closed form solution for this MLE, which we derive in Section 7.2.1.
Importantly, this is true even if we use basis function expansion, such as polynomials, because the NLL is still linear in the
parameters w, even if it is not linear in the inputs x.

1.4.6.2 Regularization

One problem with ML estimation is that it can result in overfitting. The reason is that it is picking the parameter values that
are the “best” for modeling the training data; buti if the data is noisy, such parameters often result in complex functions. As a
simple example, suppose we fit a degree 14 polynomial to N = 21 data points. The resulting curve is very “wiggly”, as shown
in Figure 1.25(a). The corresponding least squares coefficients (excluding w0) are as follows:

6.560, -36.934, -109.255, 543.452, 1022.561, -3046.224, -3768.013,
8524.540, 6607.897, -12640.058, -5530.188, 9479.730, 1774.639, -2821.526

Machine Learning: a Probabilistic Perspective, draft of November 5, 2011

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

20 introBody.tex

0 5 10 15 20
−10

−5

0

5

10

15

20

ln lambda −20.135

(a)
0 5 10 15 20

−15

−10

−5

0

5

10

15

20

ln lambda −8.571

(b)
0 5 10 15 20

−10

−5

0

5

10

15

20

ln lambda 0.102

(c)

Figure 1.25: Degree 14 Polynomial fit to N = 21 data points with increasing amounts of �2 regularization. Data was generated from noise
with variance σ2 = 4. The error bars, representing the noise variance σ2, get wider since we are ascribing more of the data variation to the
noise. Figure generated by linregPolyVsRegDemo.

−25 −20 −15 −10 −5 0 5
0

5

10

15

20

25

log lambda

mean squared error

train mse
test mse

(a)

−25 −20 −15 −10 −5 0 5
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

log lambda

m
se

5−fold cross validation, ntrain = 21

(b)

−25 −20 −15 −10 −5 0 5
−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

log alpha

log evidence

(c)

Figure 1.26: (a) Training and test set error for a degree 14 polynomial fit by ridge regression, plotted vs log(λ). Data was generated from
noise with variance σ2 = 4. Note: Models are ordered from complex (small regularizer) on the left to simple (large regularizer) on the right.
The stars correspond to the values used to plot the functions in Figure 1.25. (b) Estimate of test MSE produced by 5-fold cross-validation
(see Section 1.4.3). The lowest CV error is indicated by the vertical line. Note the vertical scale is in log units. (c) Log marginal likelihood
vs log(λ). The largest value is indicated by the vertical line. Figure generated by linregPolyVsRegDemo.

c� Kevin P. Murphy. Draft — not for circulation.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 21

(a) (b)

Figure 1.27: (a) Illustration of a convex set. (b) Illustration of a nonconvex set.

We see that there are many large positive and negative numbers. These balance out exactly to make the curve “wiggle” in
just the right way so that it almost perfectly interpolates the data. But this situation is unstable: if we changed the data a little,
the coefficients would change a lot.

We can encourage the parameters to be small, thus resulting in a smoother curve, by using a zero-mean Gaussian prior:

p(w) =
�

j

N (wj |0, τ2) (1.28)

where 1/τ2 controls the strength of the prior. The corresponding MAP estimation problem becomes

argmax
w

N�

i=1

logN (yi|w0 +wTxi,σ
2) +

D�

j=1

logN (wj |0, τ2) (1.29)

It is a simple exercise to show that this is equivalent to minimizing the following:

J(w) =
1

N

N�

i=1

(yi − (w0 +wTxi))
2 + λ||w||22 (1.30)

where λ := σ2/τ2. Here the first term is the MSE/ NLL as usual, and the second term, λ ≥ 0, is a complexity penalty. This
technique is known as ridge regression, or penalized least squares. In general, adding a Gaussian prior to the parameters
of a model to encourage them to be small is called �2 regularization or weight decay. Note that the offset term w0 is not
regularized, since this just affects the height of the function, not its complexity. By penalizing the sum of the magnitudes of the
weights, we ensure the function is simple (since w = 0 corresponds to a straight line, which is the simplest possible function,
corresponding to a constant.)

We illustrate this idea in Figure 1.25, where we see that increasing λ results in smoother functions. The resulting coefficients
also become smaller. For example, using λ = 10−3, we have

2.128, 0.807, 16.457, 3.704, -24.948, -10.472, -2.625, 4.360, 13.711,
10.063, 8.716, 3.966, -9.349, -9.232

In Figure 1.26(a), we plot the MSE on the training and test sets vs log(λ). We see that, as we increase λ (so the model
becomes more constrained), the error on the training set increases. For the test set, we see the characteristic U-shaped curve,
where the model overfits and then underfits. It is common to use cross validation to pick λ, as shown in Figure 1.26(b). In
Section 1.4.8, we will discuss a more probabilistic approach.

We will consider a variety of different priors in this book. Each of these corresponds to a different form of regularization.
This technique is very widely used to prevent overfitting.

1.4.6.3 Convexity

When discussing least squares, we noted that the NLL had a bowl shape with a unique minimum. The technical term for
functions like this is convex. Convex functions play a very important role in machine learning.

Let us define this concept more precisely. We say a set S is convex if for any θ,θ� ∈ S , we have

λθ + (1− λ)θ� ∈ S, ∀ λ ∈ [0, 1] (1.31)

That is, if we draw a line from θ to θ�, all points on the line lie inside the set. See Figure 1.27(a) for an illustration of a convex
set, and Figure 1.27(b) for an illustration of a non-convex set.

A function f(θ) is called convex if its epigraph (the set of points above the function) defines a convex set. Equivalently, a
function f(θ) is called convex if it is defined on a convex set and if, for any θ,θ� ∈ S , and for any 0 ≤ λ ≤ 1, we have

f(λθ + (1− λ)θ�) ≤ λf(θ) + (1− λ)f(θ�) (1.32)

Machine Learning: a Probabilistic Perspective, draft of November 5, 2011

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

22 introBody.tex

x y

!
1 − !

(a) (b)

A B

(c)

Figure 1.28: (a) Illustration of a convex function. We see that the chord joining (x, f(x)) to (y, f(y)) lies above the function. (b) Illustration
of a concave function. (c) A function that is neither convex nor concave. A is a local minimum, B is a global minimum. Figure generated by
convexFnHand.

See Figure 1.28 for a 1d example. A function is called strictly convex if the inequality is strict. A function f(θ) is concave
if −f(θ) is convex. Examples of scalar convex functions include θ2, eθ, and θ log θ (for θ > 0). Examples of scalar concave
functions include log(θ) and

√
θ.

Intuitively, a (strictly) convex function has a “bowl shape”, and hence has a unique global minimum θ∗ corresponding to the
bottom of the bowl. Hence its second derivative must be positive everywhere, d

dθf(θ) > 0. A twice-continuously differentiable,
multivariate function f is convex iff its Hessian is positive definite for all θ.9 In the machine learning context, the function f
corresponds to the NLL or penalized NLL.

Models where the penalized NLL is convex are desirable, since this means we can always find the globally optimal MAP
estimate. We will see many examples of this later in the book. However, many models of interest will not have concave
likelihoods or priors. In such cases, we will discuss ways to derive locally optimal parameter estimates.

1.4.6.4 The benefits of more data

Regularization is the most common way to avoid overfitting. However, another effective approach — which is not always
available — is to use lots of data. It should be intuitively obvious that the more training data we have, the better we will able to
learn.10 So we expect the test set error to decrease to some plateau as N increases.

This is illustrated in Figure 1.29, where we plot the mean squared error incurred on the test set achieved by polynomial
regression models of different degrees vs N (a plot of error vs training set size is known as a learning curve). The level of the
plateau for the test error consists of two terms: an irreducible component that all models incur, due to the intrinsic variability of
the generating process (this is called the noise floor); and a component that depends on the discrepancy between the generating
process (the “truth”) and the model: this is called structural error.

In Figure 1.29, the truth is a degree 2 polynomial, and we try fitting polynomials of degrees 1, 2 and 25 to this data. Call the
3 models M1, M2 and M25. We see that the structural error for models M2 and M25 is zero, since both are able to capture
the true generating process. However, the structural error for M1 is substantial, which is evident from the fact that the plateau
occurs high above the noise floor.

For any model that is expressive enough to capture the truth (i.e., one with small structural error), the test error will go to
the noise floor as N → ∞. However, it will typically go to zero faster for simpler models, since there are fewer parameters to
estimate. In particular, for finite training sets, there will be some discrepancy between the parameters that we estimate and the
best parameters that we could estimate given the particular model class. This is called approximation error, and goes to zero
as N → ∞, but it goes to zero faster for simpler models. This is illustrated in Figure 1.29.

So far, we have been talking about test error, which is what we mostly care about. But it is also interesting to look at the
training error vs N for the different models. For models that can capture the truth, the training error will increase to some
plateau as N increases. The reason is this: initially the model is sufficiently powerful to simply memorize the training data, but
as we are given more examples, it becomes harder to fit them perfectly given a fixed-complexity model. Eventually the error
on the training set will match the error on the test set, as shown in Figure 1.29. (If the error on the training set increases with
N , it is a sure sign that we are overfitting.)

In domains with lots of data, simple methods can work surprisingly well [HNP09]. However, there are still reasons to study
more sophisticated learning methods, because there will always be problems for which we have little data. For example, even in
such a data-rich domain as web search, as soon as we want to start personalizing the results, the amount of data available for any

9 Recall that the Hessian is the matrix of second partial derivatives, defined by Hjk = ∂f2(θ)
∂θj∂θk

. Also, recall that a matrix H is positive definite iff

v
T
Hv > 0 for any non-zero vector v.

10 This assumes the training data is randomly sampled, and we don’t just get repetitions of the same examples. Having informatively sampled data can help
even more; this is the motivation for an approach known as active learning, where you get to choose your training data.

c� Kevin P. Murphy. Draft — not for circulation.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 23

0 50 100 150 200
0

2

4

6

8

10

12

14

16

18

20

22

size of training set

m
se

truth=degree 2, model = degree 1

train
test

(a)

0 50 100 150 200
0

2

4

6

8

10

12

14

16

18

20

22

size of training set

m
se

truth=degree 2, model = degree 2

train
test

(b)

0 50 100 150 200
0

2

4

6

8

10

12

14

16

18

20

22

size of training set

m
se

truth=degree 2, model = degree 25

train
test

(c)

Figure 1.29: MSE on training and test sets vs size of training set, for data generated from a degree 2 polynomial with Gaussian noise of
variance σ2 = 4. We fit polynomial models of varying degree to this data. (a) Degree 1. (b) Degree 2. (c) Degree 25. Note that for
small training set sizes, the test error of the degree 25 polynomial is higher than that of the degree 2 polynomial, due to overfitting, but this
difference vanishes once we have enough data. Note also that the degree 1 polynomial is too simple and has high test error even given large
amounts of training data. Figure generated by linregPolyVsN.

−8 −6 −4 −2 0 2 4 6 8
−10

0

10

20

30

40

50

60
plugin approximation (MLE)

prediction
training data

(a)
−8 −6 −4 −2 0 2 4 6 8

−10

0

10

20

30

40

50

60

70

80
Posterior predictive (known variance)

prediction
training data

(b)
−8 −6 −4 −2 0 2 4 6 8

−20

−10

0

10

20

30

40

50

60

70
functions samples from posterior

(c)

Figure 1.30: (a) Plug-in approximation to predictive density (we plug in the MLE of the parameters). (b) Posterior predictive density. Black
curve is posterior mean, error bars are 2 standard deviations of the posterior predictive density. (c) 10 samples from the posterior predictive.
Figure generated by linregPostPredDemo.

given user starts to look small again (relative to the complexity of the problem). In such cases, we may want to learn multiple
related models at the same time, which is known as multi-task learning. This will allow us to “borrow statistical strength” from
tasks with lots of data and to share it with tasks with little data. We will discuss ways to do later in the book.

1.4.7 Predicting the future
It’s tough to make predictions, especially about the future. — Yogi Berra

To predict a future ouput y given an input x and some training data D, we should compute p(y|x,D). This is called the
posterior predictive distribution, since it is the predictive distribution of the response variable y given the input x, after having
seen the training data D. By the law of total probability (Equation 2.4), this can be computed as follows

p(y|x,D) =

�
p(y|x,θ)p(θ|D)dθ (1.33)

where we have assumed that p(y|x,D,θ) = p(y|x,θ), since knowing the parameters θ renders the past training data irrelevant.
Now suppose we approximate the posterior by a best guess, such as the MLE or MAP estimate:

p(θ|D) ≈ δθ̂(θ) (1.34)

where δθ̂(θ) represents a delta-function, that puts all of its mass on one point (see Section 2.4.2). Inserting that into the above
equation we get

p(y|x,D) ≈
�

p(y|x,θ)δθ̂(θ)dθ = p(y|x, θ̂) (1.35)

This is called a plug-in approximation to the posterior predictive density. However, this approximation is suboptimal, since it
ignores uncertainty in our parameter estimate. The Bayesian method often gives better results than the plug-in, since it averages
over many possible predictions, and therefore avoids overfitting. In addition, it more accurately reflects the uncertainty in our

Machine Learning: a Probabilistic Perspective, draft of November 5, 2011

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

24 introBody.tex

460 480 500 520 540 560 580 600 620 640

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.31: Posterior predictive density. The red circles is the median prediciton, and the lines denote the 5th and 95th percentiles of the
predictive distribution. Figure generated by logregSATdemoBayes.

predictions. For example, Figure 1.30(b) shows that the Bayesian approach to linear regression has error bars that get wider
as we move farther from the training data, whereas a plug-in approximation (even if we use MAP estimation) will result in
fixed-sized error bars, since σ̂2 will be treated as a constant.

We can also sample from the posterior predictive, by sampling θs ∼ p(θ|D), and then use these samples as a plug-in
estimate p(y|x,θs). The result is shown in Figure 1.30(c). This illustrates the set of functions that we think are probable given
the data that we have seen so far.

As another example of this, consider logistic regression. In Figure 1.31, we plot the median and the 95% quantiles of the
posterior predictive distribution, p(y = 1|xi,D) for the SAT data; we approximate this by sampling from the posterior p(θ|D)
(see Section 7.5 for details). We see that the confidence in our predictions varies depending on the input that we observe. In
particular, if we see a very low/ high SAT score, we are very confident the person will fail/pass the class, but we have more
uncertainty about scores in the middle, which makes sense.

1.4.8 Bayesian model selection and Occam’s razor
In Figure 1.21, we saw that using too high a degree polynomial results in overfitting, and using too low a degree results in
underfitting. Similarly, in Figure 1.26(a), we saw that using too small a regularization parameter results in overfitting, and too
large a value results in underfitting. In general, when faced with a set of models of different complexity (different effective
number of parameters), how should we choose the best one? This is called the model selection problem, and is another
important issue in machine learning.

One approach is to use cross-validation to estimate the generalization error of all the candiate models, and then to pick the
model that seems the best. However, this requires fitting each model K times, where K is the number of CV folds. A more
efficient approach is to compute the posterior over models,

p(m|D) =
p(D|m)p(m)�
m∈M p(m,D)

(1.36)

From this, we can easily compute the MAP model, m̂ = argmax p(m|D). This is called Bayesian model selection.
If we use a uniform prior over models, p(m) ∝ 1, this amounts to picking the model which maximizes

p(D|m) =

�
p(D|θ)p(θ|m)dθ (1.37)

This quantity is called the marginal likelihood integrated likelihood, or the evidence for model m. The details on how to
perform this integral will be discussed in Section 3.8.1. (Note that we were able to ignore this quantity for the purposes of
parameter estimation, but it is necessary to compute it when performing model selection.)

One might think that using p(D|m) to select models would always favor the model with the most parameters. This is true
if we use p(D|θ̂m) to select models, where θ̂m is the MLE or MAP estimate of the parameters for model m, because models
with more parameters will fit the data better, and hence achieve higher likelihood. However, if we integrate out the parameters,
rather than maximizing them, we are automatically protected from overfitting: models with more parameters do not necessarily
have higher marginal likelihood. This is called the Bayesian Occam’s razor effect [Mac95b, MG05], named after the principle
known as Occam’s razor, which says one should pick the simplest model that adequately explains the data.11

11 William of Occam (also spelt Ockham) was an English monk and philosopher, 1288–1348.

c� Kevin P. Murphy. Draft — not for circulation.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 25

Figure 1.32: A schematic illustration of the Bayesian Occam’s razor. The broad (green) curve corresponds to a complex model, the narrow
(blue) curve to a simple model, and the middle (red) curve is just right. Based on Figure 3.13 of [Bis06a]. See also [MG05, Figure 2] for a
similar plot produced on real data.

One way to understand the Bayesian Occam’s razor is to notice that the marginal likelihood can be rewritten as follows,
based on the chain rule of probability (Equation 2.5):

p(D) = p(y1)p(y2|y1)p(y3|y1:2) . . . p(yN |y1:N−1) (1.38)

where we have dropped the conditioning on x for brevity. This is similar to a leave-one-out cross-validation estimate (Sec-
tion 1.4.3) of the likelihood, since we predict each future point given all the previous ones. (Of course, the order of the data
does not matter in the above expression.) If a model is too complex, it will overfit the “early” examples and will then predict
the remaining ones poorly.

Another way to understand the Bayesian Occam’s razor effect is to note that probabilities must sum to one. Hence�
D� p(D�|m) = 1, where the sum is over all possible data sets. Complex models, which can predict many things, must

spread their probability mass thinly, and hence will not obtain as large a probability for any given data set as simpler models.
This is sometimes called the conservation of probability mass principle, and is illustrated in Figure 1.32. On the horizontal
axis we plot all possible data sets in order of increasing complexity (measured in some abstract sense). On the vertical axis we
plot the predictions of 3 possible models: a simple one, M1; a medium one, M2; and a complex one, M3. We also indicate the
actually observed data D0 by a vertical line. Model 1 is too simple and assigns low probability to D0. Model 3 also assigns
D0 relatively low probability, because it can predict many data sets, and hence it spreads its probability quite widely and thinly.
Model 2 is “just right”: it predicts the observed data with a reasonable degree of confidence, but does not predict too many
other things. Hence model 2 is the most probable model.

As a concrete example of the Bayesian Occam’s razor, consider the data in Figure 1.33. We plot polynomials of degrees 1,
2 and 3 fit to N = 5 data points. It also shows the posterior over models, where we use a Gaussian prior (see Section 7.3 for
details). There is not enough data to justify a complex model, so the MAP model is d = 1. Figure 1.34 shows what happens
when N = 30. Now it is clear that d = 2 is the right model (the data was in fact generated from a quadratic).

As another example, Figure 1.26(c) plots log p(D|λ) vs log(λ), for the polynomial ridge regression model, where λ ranges
over the same set of values used in the CV experiment. We see that the maximum evidence occurs at roughly the same point as
the minimum of the test MSE, which also corresponds to the point chosen by CV.

When using the Bayesian approach, we are not restricted to evaluating the evidence at a finite grid of values. Instead, we
can use numerical optimization to find λ∗ = argmaxλ p(D|λ). This technique is called empirical Bayes or type II maximum
likelihood (see Section 8.5 for details). An example is shown in Figure 1.26(c): the vertical line shows the EB estimate, which
is close to the CV estimate, which in turn is close to the value that yields minimal test error.

1.4.9 No free lunch theorem
All models are wrong, but some models are useful. — George Box [BD87, p424].12

We have now seen several examples of classifiers: K-nearest neighbors, logistic regression, logistic regression with poly-
nomial basis function expansion, etc. Similarly, we can define several kinds of regression models and unsupervised density
models. Each model differs in terms of the assumptions it makes about the nature of the distribution, either p(y|x) or p(x).
These assumptions are known as inductive bias.

Much of machine learning is concerned with devising different models (and different algorithms to fit them). Which model
is best? In fact, there is no universally best model; this is sometimes called the no free lunch theorem [Wol96]. The basic idea

12 George Box is a retired statistics professor at the University of Wisconsin.

Machine Learning: a Probabilistic Perspective, draft of November 5, 2011

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

26 introBody.tex

−2 0 2 4 6 8 10 12
−20

−10

0

10

20

30

40

50

60

70
d=1, logev=−18.593, EB

(a)
−2 0 2 4 6 8 10 12

−80

−60

−40

−20

0

20

40

60

80
d=2, logev=−20.218, EB

(b)

−2 0 2 4 6 8 10 12
−200

−150

−100

−50

0

50

100

150

200

250

300
d=3, logev=−21.718, EB

(c)

1 2 3
0

0.2

0.4

0.6

0.8

1

M

P
(M

|D
)

N=5, method=EB

(d)

Figure 1.33: (a-c) We plot polynomials of degrees 1, 2 and 3 fit to N = 5 data points using empirical Bayes. The solid green curve is the
true function, the dashed red curve is the prediction (dotted blue lines represent ±σ around the mean). (d) We plot the posterior over models,
p(d|D), assuming a uniform prior p(d) ∝ 1. Based on A figure by Zoubin Ghahramani. Figure generated by linregEbModelSelVsN.

c� Kevin P. Murphy. Draft — not for circulation.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 27

−2 0 2 4 6 8 10 12
−10

0

10

20

30

40

50

60

70
d=1, logev=−106.110, EB

(a)
−2 0 2 4 6 8 10 12

−10

0

10

20

30

40

50

60

70

80
d=2, logev=−103.025, EB

(b)

−2 0 2 4 6 8 10 12
−20

0

20

40

60

80

100
d=3, logev=−107.410, EB

(c)

1 2 3
0

0.2

0.4

0.6

0.8

1

M

P
(M

|D
)

N=30, method=EB

(d)

Figure 1.34: Same as Figure 1.33 except now N = 30. Figure generated by linregEbModelSelVsN.

Machine Learning: a Probabilistic Perspective, draft of November 5, 2011

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

28 pml.tex

is that a set of assumptions that works well in one domain may work poorly in another. For example, in the SAT example of
Figure 1.22, we see that the assumptions behind logistic regression are quite reasonable; the use of something more complicated
would not be advisable in such a simple setting, due to the risk of overfitting. However, more complex data sets may demand
more complex models.

As a consequence of the no free lunch theorem, we need to develop many different types of model (likelihoods and priors),
each of which corresponds to a different set of assumptions. This explains why you will encounter so many different models in
this book. And for each model, there are often many different algorithms we can use to train the model, which make different
speed-accuracy-complexity tradeoffs, as we will see.

1.5 Exercises
1.5.0.1 Approximate KNN classifiers
Use the Matlab/C++ code at http://people.cs.ubc.ca/˜mariusm/index.php/FLANN/FLANN to perform approximate nearest neighbor search,
and combine it with mnist1NNdemo to classify the MNIST data set. How much speedup do you get, and what is the drop (if any) in accuracy?

1.5.0.2 KNN classifier on shuffled MNIST data
Run mnist1NNdemo and verify that the misclassification rate (on the first 1000 test cases) of MNIST of a 1-NN classifier is 3.8%. (If you run it all on all
10,000 test cases, the error rate is 3.09%.) Modify the code so that you first randomly permute the features (columns of the training and test design matrices),
as in shuffledDigitsDemo, and then apply the classifier. Verify that the error rate is not changed.

1.5.0.3 Dummy encoding and linear models
(Source: [Hof09, p151])

Consider a linear regression model of the form

yi = w1xi1 + w2xi2 + w3xi3 + w4xi4 + �i (1.39)

where xi1 = 1, xi2 = gi ∈ {0, 1} specifies if person i is in a control group or not, xi3age of person i, and xi4 = xi2 × xi3. So we have

E [y|xi, gi = 0] = w1 + w3agei (1.40)
E [y|xi, gi = 1] = (w1 + w2) + (w3 + w4)agei (1.41)

Hence the difference in offsets between the two groups is w2, and the difference in slopes is w4. Sketch the regression line for the two groups assuming
w1 = 1, w3 = 1 and with the following settings for the other parameters: (1) w2 = 0, w4 = 0, (2) w2 = 0, w4 = 1, (3) w2 = 1, w4 = 0, (4) w3 = 1,
w4 = 1. You should have 4 figures, each with 2 lines. You can draw the figures by hand, or use Matlab. Assume the age ranges from 0 to 10.

c� Kevin P. Murphy. Draft — not for circulation.

http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

	Preface
	Introduction
	What is machine learning?
	Supervised learning
	Classification
	Regression

	Unsupervised learning
	Discovering clusters
	Discovering latent factors
	Discovering graph structure
	Matrix completion

	Some basic concepts in machine learning
	Parametric vs non-parametric models
	A simple non-parametric model for classification: the K-nearest neighbor classifier
	Overfitting and model selection
	The curse of dimensionality
	Simple parametric models for classification and regression
	Parameter estimation
	Predicting the future
	Bayesian model selection and Occam's razor
	No free lunch theorem

	Exercises

	Probability
	Introduction
	A brief review of probability theory
	Discrete random variables
	Fundamental rules
	Independence and conditional independence
	Continuous random variables
	Mean and variance

	Some common discrete distributions
	The binomial and Bernoulli distributions
	The multinomial and multinoulli distributions
	The Poisson distribution
	The hypergeometric distribution
	The negative binomial distribution *
	The empirical distribution

	Some common continuous distributions
	Gaussian (normal) distribution
	Degenerate pdf
	The Student t distribution
	The Laplace distribution
	The gamma distribution
	The beta distribution

	Joint probability distributions
	Covariance and correlation
	The multivariate Gaussian
	Multivariate Student t distribution
	Dirichlet distribution
	The Wishart distribution *

	Transformations of random variables
	Linear transformations of random variables
	General transformation
	Sum of random variables
	Central limit theorem

	Monte Carlo approximation
	Example: change of variables, the MC way
	Example: estimating by Monte Carlo integration
	Accuracy of Monte Carlo approximation

	Information theory
	Entropy
	KL divergence
	Mutual information

	Exercises

	Statistics
	Introduction
	Bayesian inference of a discrete parameter (the number game)
	Likelihood
	Prior
	Posterior
	Posterior predictive distribution
	A more complex prior
	Philosophical significance of the result

	Bayesian inference of a continuous parameter (the healthy levels game)
	Likelihood
	Prior
	Posterior
	Posterior predictive distribution

	Bayesian inference in everyday cognition *
	Gaussian prior
	Power-law prior
	Gamma prior
	Philosophical implications

	The Beta-Binomial model
	Likelihood
	Prior
	Posterior
	Posterior predictive distribution

	The Dirichlet-multinomial model
	Likelihood
	Prior
	Posterior
	Posterior predictive

	Summarizing posterior distributions
	Point estimates
	Credible intervals
	Highest posterior density regions

	Bayesian model selection
	Computing the marginal likelihood (evidence)
	Bayes factors
	Jeffreys-Lindley paradox *
	p-values *

	Priors
	Uninformative priors
	Jeffreys priors *
	Robust priors
	Mixtures of conjugate priors

	Exercises

	Gaussian models
	Introduction
	Notation
	Basics
	Maxent derivation of the Gaussian *

	Inference in jointly Gaussian distributions
	Statement of the result
	Examples
	Proof of the result *

	Linear Gaussian systems
	Statement of the result
	Examples
	Proof of the result *

	Inferring the parameters of an MVN
	MLE
	Posterior distribution of bold0mu mumu
	Posterior distribution of bold0mu mumu
	Posterior distribution of bold0mu mumu and bold0mu mumu *
	Sensor fusion with unknown precisions *

	Exercises

	Generative classifiers
	Introduction
	Naive Bayes classifiers
	Application: document classification
	Model fitting
	Using the model for prediction
	The log-sum-exp trick
	Feature selection using mutual information
	Classifying documents using bag of words
	Using naive Bayes for information retrieval *

	Gaussian Discriminant analysis
	Quadratic discriminant analysis (QDA)
	Linear discriminant analysis (LDA)
	Binary LDA
	MLE for discriminant analysis
	Strategies for preventing overfitting
	Regularized LDA *
	Diagonal LDA
	Nearest shrunken centroids classifier *

	Fisher's linear discriminant analysis (FLDA) *
	Derivation of the optimal 1d projection direction for the two-class case
	Extension to higher dimensions and multiple classes
	Probabilistic interpretation of FLDA *

	Dealing with missing data
	Missing data at test time
	Missing data at training time

	The exponential family *
	Definition
	Examples
	Log partition function
	MLE for the exponential family
	Bayes for the exponential family *
	Maximum entropy derivation of the exponential family *

	Exercises

	Graphical models
	Introduction
	Chain rule
	Conditional independence
	Graphical models
	Graph terminology

	Directed graphical models (Bayes nets)
	Representing the joint distribution
	Example: Naive Bayes and tree-augmented naive Bayes classifiers
	Example: Markov and hidden Markov models
	Example: Genetic linkage analysis
	Example: Medical diagnosis

	Undirected graphical models (Markov random fields)
	Representing the joint distribution
	Example: Ising and Potts models
	Markov logic networks *

	Factor graphs
	Inference
	Learning
	Plate notation
	Learning DAGs with no latent variables
	Learning DAGs with latent variables
	Learning UGMs

	CI properties of GMs
	CI properties of UGMs
	CI properties of DGMs
	Comparing directed and undirected graphical models *

	Gaussian graphical models *
	Undirected GGMs
	Directed GGMs
	Comparing Gaussian DAGs and MRFs
	Inference
	Learning

	Exercises

	Discriminative linear models for regression and classification
	Introduction
	Generative vs discriminative classifiers

	Linear regression
	Derivation of the MLE
	Ridge regression
	Robust linear regression *

	Bayesian linear regression
	Bayesian inference when 2 is known
	Bayesian inference when 2 is unknown *

	Logistic regression
	Gradient and Hessian
	Steepest descent
	Newton's method
	Iteratively reweighted least squares (IRLS)
	Quasi-Newton (variable metric) methods
	2 regularization
	Multi-class logistic regression

	Bayesian logistic regression
	Gaussian/ Laplace approximation
	Derivation of the BIC
	Gaussian approximation for logistic regression
	Approximating the posterior predictive
	Residual analysis (outlier detection) *

	Online learning and stochastic optimization
	Online learning and regret minimization
	Stochastic optimization and risk minimization
	The LMS algorithm
	The perceptron algorithm
	A Bayesian view

	Generalized linear models (GLMs)
	Basics
	ML and MAP estimation
	Bayesian inference

	Probit regression
	ML/ MAP estimation using gradient-based optimization
	Latent variable interpretation
	Ordinal probit regression *
	Multinomial probit models *

	Analysis of variance (ANOVA) *
	One-way ANOVA
	Two-way ANOVA
	Multi-way ANOVA
	Priors
	Other variants

	Multi-task learning and mixed effect GLMs *
	Basic model
	Example: semi-parametric GLMMs for medical data
	Example: discrete choice modeling
	Computational issues
	Other kinds of prior

	Exercises

	Decision theory
	Introduction
	Bayesian decision theory
	Bayes estimators for common loss functions
	The false positive vs false negative tradeoff
	False discovery rates
	More general action spaces
	Multi-stage decision problems

	Frequentist decision theory
	Bayes risk
	Minimax risk
	Empirical risk
	ROC curves and all that
	Surrogate loss functions
	Regularized risk minimization
	Structural risk minimization
	Estimating the risk using cross validation
	Upper bounding the risk using statistical learning theory *

	Frequentist heuristics for picking estimators *
	Sampling distribution of an estimator
	Consistent estimators
	Unbiased estimators
	Undesirable behavior of unbiased estimators
	Minimum variance estimators
	The bias-variance tradeoff
	Admissable estimators

	Empirical Bayes
	EB for Gaussian-Gaussian model
	EB for Beta-Binomial model
	EB for linear regression (evidence procedure)

	Exercises

	Mixture models and the EM algorithm
	Latent variable models
	Mixture models
	Mixtures of Gaussians
	Mixture of multinoullis
	Using mixture models for clustering
	Mixtures of experts

	Parameter estimation for mixture models
	Unidentifiability
	Computing a MAP estimate is non-convex

	The EM algorithm
	Basic idea
	EM for DGMs with hidden variables
	EM for GMMs
	EM for mixture of experts
	EM for the Student distribution *
	EM for probit regression *
	Theoretical basis for EM *
	EM variants *

	Model selection for latent variable models
	Model selection for probabilistic models
	Model selection for non-probabilistic methods

	Fitting models with missing data
	EM for the MLE of an MVN with missing data

	Exercises

	Factor analysis and PCA
	Factor analysis
	FA is a low rank parameterization of an MVN
	Inference of the latent factors
	Unidentifiability
	Mixtures of factor analysers
	EM for factor analysis models

	Principal components analysis (PCA)
	Classical PCA: statement of the theorem
	Proof *
	Singular value decomposition (SVD)
	Probabilistic PCA
	EM algorithm for PCA

	Choosing the number of latent dimensions
	Model selection for FA/ PPCA
	Model selection for PCA

	Fitting FA models with missing data
	PCA for paired and multi-view data
	Supervised PCA (latent factor regression)
	Partial least squares
	Canonical correlation analysis

	Independent Component Analysis (ICA)
	Maximum likelihood estimation
	The FastICA algorithm
	Using EM
	Other estimation principles *

	Exercises

	Sparse linear models
	Introduction
	Bayesian variable selection
	The spike and slab model
	From the Bernoulli-Gaussian model to 0 regularization
	Algorithms

	1 regularization: basics
	Why does 1 regularization yield sparse solutions?
	Optimality conditions for lasso
	Comparison of least squares, lasso, ridge and subset selection
	Regularization path
	Model selection
	Bayesian inference for linear models with Laplace priors

	1 regularization: algorithms
	Coordinate descent
	LARS and other homotopy methods
	Proximal and gradient projection methods
	EM for lasso

	1 regularization: extensions
	Group Lasso
	Fused lasso
	Elastic net (ridge and lasso combined)

	Non-convex regularizers
	Bridge regression
	Hierarchical adaptive lasso
	Other hierarchical priors

	Automatic relevance determination (ARD)/ sparse Bayesian learning (SBL)
	ARD for linear regression
	Whence sparsity?
	Connection to MAP estimation
	Algorithms for ARD *
	ARD for logistic regression

	Sparse coding *
	Learning a sparse coding dictionary
	Results of dictionary learning from image patches
	Compressed sensing
	Image inpainting and denoising

	Exercises

	Kernels
	Introduction
	Kernel functions
	RBF kernels
	Kernels for comparing documents
	Mercer (positive definite) kernels
	Linear kernels
	Matern kernels
	String kernels
	Pyramid match kernels
	Kernels derived from probabilistic generative models

	Using kernels inside GLMs
	Kernel machines
	Sparse kernel machines

	The kernel trick
	Kernelized nearest neighbor classification
	Kernelized K-medoids clustering
	Kernelized ridge regression
	Kernel PCA

	Support vector machines (SVMs)
	SVMs for regression
	SVMs for classification
	Choosing C
	Summary of key points
	A probabilistic interpretation of SVMs

	Comparison of discriminative kernel methods
	Kernels for building generative models
	Smoothing kernels
	Kernel density estimation (KDE)
	From KDE to KNN
	Kernel regression
	Locally weighted regression

	Exercises

	Gaussian processes
	Introduction
	GPs for regression
	Predictions using noise-free observations
	Predictions using noisy observations
	Effect of the kernel parameters
	Estimating the kernel parameters
	Computational and numerical issues *
	Worked example: modeling CO2 concentration as a function of time *
	Semi-parametric GPs *

	GPs meet GLMs
	Binary classification
	Multi-class classification
	GPs for Poisson regression

	Connection with other methods
	Linear models compared to GPs
	Linear smoothers compared to GPs
	SVMs compared to GPs
	L1VM and RVMs compared to GPs
	Neural networks compared to GPs
	Smoothing splines compared to GPs *
	RKHS methods compared to GPs *

	GP latent variable model
	Approximation methods for large datasets *
	Subset of datapoints
	Subset of regressors
	Methods based on inducing inputs
	Other approaches

	Exercises

	Adaptive basis function models
	Introduction
	Classification and regression trees (CART)
	Basics
	Growing a tree
	Pruning a tree
	Pros and cons of trees
	Random forests
	CART compared to hierarchical mixture of experts *

	Generalized additive models
	Backfitting
	Computational efficiency
	Multivariate adaptive regression splines (MARS)

	Boosting
	Forward stagewise additive modeling
	L2boosting
	AdaBoost
	LogitBoost
	Boosting as functional gradient descent
	Sparse boosting
	Multivariate adaptive regression trees (MART)
	Why does boosting work so well?
	A Bayesian view

	Feedforward neural networks (multilayer perceptrons)
	Convolutional neural networks
	Other kinds of neural networks
	A brief history of the field
	The backpropagation algorithm
	Identifiability
	Regularization
	Bayesian inference *

	Experimental comparison
	Low-dimensional features
	High-dimensional features

	Interpreting black-box models
	Exercises

	Markov and hidden Markov Models
	Introduction
	Markov models
	Transition matrix
	Application: Language modeling
	Stationary distribution of a Markov chain *
	Application: Google's PageRank algorithm for web page ranking

	Hidden Markov models
	Applications of HMMs

	Inference in HMMs
	Types of inference problems for temporal models
	The forwards algorithm
	The forwards-backwards algorithm
	The Viterbi algorithm
	Forwards filtering, backwards sampling

	Learning for HMMs
	Training with fully observed data
	EM for HMMs (the Baum-Welch algorithm)
	Bayesian methods for ``fitting'' HMMs *
	Discriminative training
	Model selection

	Generalizations of HMMs
	Variable duration (semi-Markov) HMMs
	Hierarchical HMMs
	Input-output HMMs
	Auto-regressive and buried HMMs
	Pseudo-2D (embedded) HMMs
	Factorial HMM
	Coupled HMM and the influence model
	Dynamic Bayesian networks (DBNs)

	Exercises

	State space models
	Introduction
	Applications of SSMs
	SSMs for tracking
	Robotic SLAM
	Online parameter learning using recursive least squares
	SSM for time series forecasting

	Inference in LG-SSM
	The Kalman filtering algorithm
	The Kalman smoothing algorithm

	Learning for LG-SSM
	Identifiability and numerical stability
	Training with fully observed data
	EM for LG-SSM
	Subspace methods
	Bayesian methods for ``fitting'' LG-SSMs

	Approximate online inference for non-linear, non-Gaussian SSMs
	Extended Kalman filter (EKF)
	Unscented Kalman filter (UKF)
	Assumed density filtering (ADF)

	Hybrid discrete/ continuous SSMs
	Inference
	Application: Data association and multi target tracking
	Application: fault diagnosis
	Application: econometric forecasting

	Exercises

	Conditional random fields
	Introduction
	Chain-structured CRFs, MEMMs and the label-bias problem
	Representing the potentials

	Applications of CRFs
	CRFs for natural language processing
	CRFs for computational biology
	CRFs for computer vision

	Inference
	Learning
	Training fully observed CRFs
	Training partially observed CRFs
	Pseudo likelihood
	Stochastic Maximum Likelihood
	Feature induction for maxent models
	Iterative proportional fitting (IPF) for fitting MRFs *

	Structural SVMs and max margin Markov networks *
	Exercises

	Exact inference algorithms for graphical models
	Introduction
	Belief propagation for trees
	Serial protocol
	Parallel protocol
	Loopy belief propagation
	BP on a factor graph
	Gaussian BP *
	Other BP variants *

	The variable elimination algorithm
	The generalized distributive law *
	Computational complexity of VE
	A weakness of VE

	The junction tree algorithm *
	Graph decomposition
	Junction trees
	Chordal (triangulated) graphs
	Constructing a junction tree
	Message passing on a junction tree
	Computational complexity of JTA
	JTA for Gaussian graphical models
	JTA for solving sparse linear systems *
	JTA for temporal graphical models *
	Other JTA generalizations *

	Computational intractability of exact inference in the worst case
	Approximate inference

	Exercises

	Mean field inference algorithms
	Introduction
	Variational inference
	Forward or reverse KL? *

	The mean field method
	Derivation of the mean field update equations
	Example: Mean field for the Ising model

	Structured mean field
	Example: factorial HMM

	Variational Bayes
	Example: VB for a univariate Gaussian
	Example: VB for linear regression

	Variational Bayes EM
	Example: VBEM for mixtures of Gaussians *

	Variational message passing and VIBES
	Exercises

	Other variational inference algorithms
	Introduction
	Local variational bounds
	Variational logistic regression
	Bohning's quadratic bound
	Variational logistic regression using the quadratic bound
	Bounds for binary logistic regression
	Other bounds and approximations to the log-sum-exp function *
	PCA for categorical data using variational EM
	Variational inference based on upper bounds

	Variational inference for discrete graphical models : a view from the marginal polytope *
	UGMs represented in exponential family form
	The marginal polytope
	Exact inference as a variational optimization problem
	Mean field as a variational optimization problem

	Loopy belief propagation
	LBP for error correcting codes
	LBP as a variational optimization problem *
	Convergence
	Other speedup tricks for BP
	Accuracy of LBP
	Loopy BP vs mean field
	Generalized belief propagation *

	Convex belief propagation *
	Tree-reweighted belief propagation
	Other tractable families
	Other kinds of convex approximation

	MAP state estimation in discrete graphical models
	Linear programming relaxation for MAP estimation
	Max-product belief propagation
	Dealing with ties
	Graphcuts and submodularity
	Experimental comparison on low-level vision problems

	Expectation propagation
	Exercises

	Monte Carlo inference algorithms
	Introduction
	Sampling from standard distributions
	Using the cdf
	Sampling from a Gaussian (Box-Muller method)

	Rejection sampling
	Basic idea
	Example
	Application to Bayesian statistics
	Adaptive rejection sampling
	Rejection sampling in high dimensions

	Importance sampling
	Basic idea
	Handling unnormalized distributions
	Importance sampling for a DGM: Likelihood weighting
	Sampling importance resampling (SIR)

	Particle filtering
	Sequential importance sampling
	The degeneracy problem
	The resampling step
	The proposal distribution
	Application: Robot localization
	Application: Visual object tracking
	Application: time series forecasting

	Rao-Blackwellised particle filtering (RBPF)
	RBPF for switching LG-SSMs
	Application: Tracking a maneuvering target
	Application: Signal processing
	Application: Fast SLAM

	Approximating the marginal likelihood
	The candidate method
	Annealed importance sampling

	Exercises

	MCMC inference algorithms
	Introduction
	Gibbs sampling
	Basic idea
	Example: Gibbs sampling for the Ising model
	Example: Gibbs sampling from a GMM
	Example: Gibbs sampling for inferring the parameters of a GMM
	Collapsed Gibbs sampling *
	Gibbs sampling for hierarchical models
	BUGS and JAGS
	The Imputation Posterior (IP) algorithm
	Blocking Gibbs sampling

	Metropolis Hastings algorithm
	Basic idea
	Proposal distributions
	Initialization and mode hopping
	Gibbs sampling is a special case of MH
	Metropolis within Gibbs
	Collapsed MH *
	Reversible jump (trans-dimensional) MCMC *
	Why MH works *

	Simulated annealing
	Auxiliary variable MCMC *
	Auxiliary variable sampling for logistic regression
	Slice sampling
	Hybrid/ Hamiltonian MCMC *

	Speed and accuracy of MCMC
	The burn-in phase
	Mixing rates of Markov chains *
	Practical convergence diagnostics
	Accuracy of MCMC
	How many chains?

	Exercises

	Clustering
	Introduction
	Measuring (dis)similarity
	Evaluating the output of clustering methods *

	Dirichlet process mixture models
	From finite to infinite mixture models
	The Dirichlet process
	Applying Dirichlet processes to mixture modeling
	Fitting a DP mixture model

	Affinity propagation
	Spectral clustering
	Graph Laplacian
	Normalized graph Laplacian
	Example

	Hierarchical clustering
	Agglomerative clustering
	Divisive clustering
	Choosing the number of clusters
	Bayesian hierarchical clustering

	Clustering datapoints and features
	Biclustering
	Multi-view clustering

	Exercises

	Distributed latent variable models for discrete data
	Introduction
	LVMs for modeling vectors and bags of counts and tokens
	Mixture models
	Exponential family PCA
	LDA and mPCA
	GaP model and non-negative matrix factorization

	Latent Dirichlet allocation (LDA)
	Basics
	Unsupervised discovery of topics
	Quantitatively evaluating LDA as a language model
	Fitting using (collapsed) Gibbs sampling
	Example
	Fitting using batch variational inference
	Fitting using online variational inference
	Determining the number of topics

	Extensions of LDA
	Correlated topic model
	Dynamic topic model
	LDA-HMM
	Supervised LDA *

	LVMs for graph-structured data
	Stochastic block model
	Mixed membership stochastic block model
	Relational topic model

	LVMs for relational data
	Infinite relational model
	Probabilistic matrix factorization for collaborative filtering

	Restricted Boltzmann machines (RBMs)
	Varieties of RBMs
	Learning RBMs
	Applications of RBMs

	Exercises

	Graphical model structure learning
	Introduction
	Quick and dirty ways to learn graph structure
	Relevance networks
	Dependency networks

	Learning tree structures
	Directed or undirected tree?
	Chow-Liu algorithm for finding the ML tree structure
	Finding the MAP forest
	Mixtures of trees

	Learning DAG structures
	Exact structural inference
	Scaling up to larger graphs

	Learning DAG structure with latent variables
	Approximating the marginal likelihood when we have missing data
	Structural EM
	Discovering hidden variables
	Case study: Google's Rephil
	Structural equation models *

	Learning causal DAGs
	Causal interpretation of DAGs
	Using causal DAGs to resolve Simpson's paradox
	Learning causal DAG structures

	Learning undirected Gaussian graphical models
	MLE for a GRF
	Graphical lasso
	Bayesian inference for GRF structure

	Learning undirected discrete graphical models
	Graphical lasso for MRFs/ CRFs
	Thin junction trees

	Exercises

	Deep learning
	Introduction
	Deep generative models
	Deep sigmoid networks
	Deep Boltzmann machines
	Deep belief networks

	Training deep networks
	Greedy layer-wise learning of DBNs
	Fitting deep neural nets
	Fitting deep auto-encoders
	Stacked denoising auto-encoders

	Applications of deep networks
	Handwritten digit classification using DBNs
	Data visualization using deep auto-encoders
	Information retrieval using deep autoencoders (semantic hashing)
	Learning audio features using 1d convolutional DBNs
	Learning image features using 2d convolutional DBNs

	RBMs with inputs
	Conditional RBMs
	Gated RBMs

	Other kinds of deep models
	Hierarchical sparse coding
	Sum-product networks

	Bridging the signal-to-symbol divide
	Learning structural forms
	Learning structural forms from relational data
	Learning structural forms from feature data
	Learning structural forms from similarity data
	Discussion

	Exercises

	I Index
	Index to code
	Index to keywords

