
Recombining Concerns: Experience with Transformation

Geoff A. Cohen�

Department of Computer Science
Duke University
gac@cs.duke.edu

Abstract

A key technology to enable separation of concerns is the fi-
nal step of reintegrating multiple, possibly independently-
developed modules. We argue for a technique of trans-
formation, where the process of modifying a class to ex-
hibit new behevior is controlled by a user-supplied pro-
gram. Additionally, we argue that performing such a pro-
cess as a program is loaded offers benefits in flexibility,
performance, and reusability. We refer to this as load-time
transformation. We describe the advantages of such a tech-
nique, present the implementation of our prototype, JOIE,
and discuss our experience in developing a transformation
that adds the capability of running consistent replicas over
multiple machines.

1 Introduction

At some point in the lifecycle of software developed with a
separation-of-concerns methodology, the different decom-
posed modules must be combined (or recombined) to pro-
duce a whole program.

The semantics and power of separation will be greatly
affected by three choices made in determining how the re-
combination is performed:

� When in the software development lifecycle does the
recombination occur?

� How are recombinations specified?

� How are conflicts between multiple modules re-
solved?

In this paper we discuss load-time transformation, a gen-
eral technique that features a great deal of user control over
the process of recombining modules. This process of modi-
fying classes occurs as the program is laoded into the user’s
environment.

�This work is supported by the National Science Foundation under
grants CCR-96-24857 and CDA-95-12356. Geoff Cohen was supported
in part by an IBM Cooperative Graduate Fellowship. Portions of the work
described in this paper were done at IBM Research Triangle Park.

We have a working and publically available implemen-
tation of load-time transformation for Java, and we discuss
our experience using it, in particular to develop a facility to
enable automatic replication facilities to programs.

2 Load-time Transformation

In this section we present the structure and benefits of
performing the recombination of concerns as software is
loaded into a user’s runtime environment.

2.1 Choosing a Time

Is the recombination of concerns a tool for software devel-
opers, or for software users? Phrased differently, what is
the end product of software developed using a separation
methodology?

As a tool for program development, producing a com-
plete program, separation of concerns offers significant
benefits. Developers may be more productive by exploiting
increased modularization, and be able to produce higher-
quality code in less time. This role of the separation
methodology has the advantage that it does not require soft-
ware users to change their own methodology or even be
aware of a more sophisticated development system.

However, by delaying the recombination of concerns (or
allowing new concerns to be recombined much later), we
can reap a number of benefits:

� Users (or more likely, deployers) can customize soft-
ware to their own environments and needs. This may
even include removing concerns that have been added
by developers but are not desired.

� Modules, if written in an independent fashion, can be
applied to many different programs, increasing code
reuse.

� Code when delivered is slimmer, especially noticeable
if software is downloaded over a network.



The Java Virtual Machine’s architecture, which offers
dynamic and user-extensible loading, is an excellent op-
portunity to accomplish late, user-controllable binding
of concerns into programs. By subclassing the class
java.lang.ClassLoader, we provide a nearly transparent sys-
tem that operates on standard Java classfiles, but can dy-
namically modify the program as it is loaded, adding code
fragments throughout the class to deal with additional con-
cerns.

2.2 Transformers

A key ingredient in this architecture is that the process
itself of modifying the code (or transformation) is user-
programmable. Merely combining different classes (as one
does in mixins) is sufficient for many important applica-
tions, but fails when multiple concerns must be integrated,
or when the implementation of concern is highly dependent
on the existing implementation it is affecting.

Our design of load-time transformation relies on user-
provided transformers, Java classes that take a Java class as
input and produce an appropriately modified class as out-
put. Transformers can introduce new methods and fields,
add code fragments to existing methods, edit the existing
code, or modify how the class interacts with other classes.

By implementing these changes in Java, transformers
can be intelligent about how these modifications are made.
Rather than blindly adding the same mixin to all classes,
the mixin could be dynamically generated or adapted to
specific circumstances. For example, a transformation that
adds a capability security system to a class can examine
all methods of that class, determine which are leaf meth-
ods and which may call other methods, and optimize the
placement of capability checks.

3 JOIE

JOIE [CCK98] is our prototype for load-time transforma-
tion. It supports the addition of mixins, method prefixes
and suffixes, instrumentation, the creation of proxy classes,
the redirection of method calls to new call sites, and general
bytecode editing.

It is freely available for research and academic pur-
poses. It has been used in a number of projects, includ-
ing security-style passingfrom Princeton’s Safe Internet
Programming Team [WF98]; Naccio, a code-safety sys-
tem from MIT[ET99]; the Correlate parallel and distributed
programming project from K.U. Leuven[RJM+98]; the
Kava metaprogramming system from the University of
Newcastle-upon-Tyne; Ivory, a distributed replica system
from Duke[BCC+99], and others.

What these programs have in common is that they spec-
ify a facet of a program, such as the security architecture, a
method reification system, a distributed naming system or
whatever, as a transformation from a set of code that does

not include this concern into a program that includes the
new and modified code.

3.1 Experience

We used JOIE in our implementation of Ivory[BCC+99], a
system that adapts dynamic web services to run on multiple
replicas, while keeping shared data consistent. Here, we
briefly describe the transformers used in Ivory to render
programs replicable.

There is a suite of (currently) four transformers that
are run on applications, enabling those applications to be
cacheable in an Ivory proxy server. The transformers fall
into two main categories: data transformers, which edit el-
ements of the application’s data, and application transform-
ers, which edit the logic of the application itself.

1. DirtyTransform. This transformer performs two main
functions: first, it mixes in the (slightly misleadingly
named) class ConsistentImpl into the target. This in-
cludes the addition of a private transient boolean field,
Ivory-dirty, and a public method Ivory-clear(), which
sets that field to false. This allows Ivory to monitor
whether objects have been modified since it last sent a
copy of that object to a replica.

Secondly, the transformer examines the code of the
methods of the target class, and places a splice of code
after each putfield instruction (the instruction used to
set the value of a class’s field). The splice checks to
see if Ivory-dirty is true. If it is not (i.e. the object
is clean), Ivory-dirty is set to true, and the object is
placed in the global dirty list.

2. ArrayTransform. This is a special case of DirtyTrans-
form for arrays. Since we cannot transform arrays to
have a dirty bit, we insert code in classes that contain
arrays as fields. That code performs a complicated
stack rotation that places the array reference on top of
the stack and sends the array to the global dirty list.

3. AutoWriter. This transformer generates new methods,
readExternal and writeExternal, marking the class
as implementing the interface java.io.Externalizable.
The writeExternal method walks through all of the
non-static and non-transient fields of the object,
putting the value of that field on the stack and call-
ing the appropriate method of ObjectOutput. readEx-
ternal does a similar action but places the values into
the fields. It also calls checkcast, to guarantee that
the object meets the type-safety guarantees of the Java
runtime.

4. CommitTransform. This examines a class, and if
it implements an interface that is a subinterface of
Consistent, it brackets all Consistent calls with be-
ginTransaction and endTransaction calls to the global
state manager. This technique allows the programmer

2



of a class to easily indicate to the Ivory transformers
which methods leave the data structures in a consistent
state. This allows us to avoid the problems of shipping
possibly inconsistent data to replicas.

4 Issues in Composition

4.1 The Problem

An application which employs multiple transformations
may run into difficulty. While the JOIE environment is cer-
tainly capable of accepting multiple registrations and ap-
plying them in turn, the results may not be the ones de-
sired. For example, consider two transformations, one of
which instruments the code of all of the methods of a class
with performance-testing code, the other adds new meth-
ods to access the performance data. These transformations
must be ordered to act correctly! Adding the new methods
first will result in presumably undesired performance data
being collected from the performance infrastructure itself.

4.2 Relations

We can first examine the attributes of transformers based
on what sorts of members of instructions they operate on,
and what sort they produce. We refer to the set of elements
the transformer operates on as its domainand the set of
elements that it inserts as its range. For example, a trans-
former that inserts a new method into a class has the class
as its domain, and the new method as its range. An instru-
menter that adds new method calls after every write has the
set of all writes as its domain, and its specific method call
as its range.

We can thus begin to establish commutativity relation-
ships between types of transformations based on their do-
mains and ranges. Two transformers, t1 and t2, and asso-
ciative if there is no intersection between t1.domain and
t2.range, and between t2.range and t1.domain (and both
are additive). More simply, they are non-interfering. For
example, a transformer that adds a new method (domain
= class; range = that method) is non-interfering with a
transformer that retypes a field (domain = field; range =
field). However, a transformer that instrumented methods
(domain = methods; range = a method call) will interfere
as its domain consumes the first’s range.

4.3 Strict Ordering

A simple solution that imposes no runtime cost is to require
the transformations to be strictly ordered. When transform-
ers are registered with the JOIE ClassLoader, they can be
given a priority, and JOIE will run them in the priority or-
der.

This solution is sufficient for those cases in which the
order of operations of the transformers can be linearized.

4.4 Invisibility

For transformations that have interfering domains and
ranges, a more extreme solution may be necessary, espe-
cially in cases with circular dependencies. With invisibil-
ity, the results of one transformation (its range) will not be
apparant to the introspection of the second. Thus, any pos-
sible interference is removed.

This is accomplished simply by attaching tables to the
class and its methods, denoting which members or instruc-
tions originated from a given transformer. This allows the
JOIE environment to, in effect, lie to transformers through
the introspection API, failing to report new members or in-
structions.

4.5 Further Measures

We believe that the previous two solutions should be suffi-
cient for most applications. There remain unsolved prob-
lems relating to detectingthat a conflict is occuring, and
ways to handle those less tractible conflicts. The ultimate
solution, although in practice it may be prohibitively com-
plex, is to allow the transformers to browse each other, in
effect discovering what sorts of changes they may have
made. This is a second level of metaprogramming, and
may have a great deal of unforeseen consequences.

5 Conclusion

We discussed the advantages of load-time transforma-
tion as a technique for integrating separately-developed or
cross-cutting modules. We presented our prototype, JOIE,
and discussed our experiences using JOIE to implement
replication as a cross-cutting concern.

Finally, we discussed some challenges that arise in
simultaneously combining multiple transformations, and
some techniques that may avoid conflicts in some situa-
tions.

JOIE is publically available, and we en-
courage researchers to download it and play
with it. More information can be found at
http://www.cs.duke.edu/ari/joie.

References

[BCC+99] Geoff C. Berry, Jeffrey S. Chase, Geoff A. Co-
hen, Landon P. Cox, and Amin Vahdat. To-
ward Automatic State Management for Dy-
namic Web Services. In Proceedings of the
Network StorageSymposium, October 1999.

[CCK98] Geoff A. Cohen, Jeffrey S. Chase, and David L.
Kaminsky. Automatic Program Transforma-
tion with JOIE. In USENIX 1998 Annual Tech-
nical Conference, pages 167–178, June 1998.

3



[ET99] David Evans and Andrew Twyman. Flex-
ible Policy-Directed Code Safety. In 1999
IEEE Symposium on Security and Privacy,
May 1999.

[RJM+98] Bert Robben, Wouter Joosen, Frank Matthijs,
Bart Vanhaute, and Pierre Verbaeten. A
Metaobject Protocol for Correlate. In Proceed-
ings of ECOOP ’98 Workshop on Reflective
Object-Oriented Programming Systems, July
1998.

[WF98] Dan S. Wallach and Edward W. Felten. Un-
derstanding Java Stack Inspection. In 1998
IEEE Symposium on Security and Privacy,
May 1998.

4


