
Position Paper for Multi-Dimensional Separation of Concerns in
Object-Oriented Systems Workshop --- OOPSLA 99

Motivation for Enabling Separation of Concerns in Software
Product Lines

Michael Grier
Raytheon Systems Company
Aurora, Colorado

Software product line approaches are becoming common for complex
systems through technical enablers such as object-oriented (OO)
technologies and component-based development. An example of this
application is the Control Channel Toolkit (CCT), a component
architecture for satellite command and control (C&C) systems
being developed by Raytheon Systems Company for government and
commercial use. This position paper is based on the experience
of developing and using the CCT, and how the underlying object
technologies have constrained its reuse and evolvability.

The CCT is designed to meet the requirements of a broad range of
missions and to adapt to most operations concepts. Among its
architecture requirements is the need to be based on open
standards and independent of proprietary technologies. Though OO
programming techniques have been essential to meeting these goals
and requirements, their use has imposed many constraints on the
reuse of the CCT architecture and assets. These constraints
significantly effect the reuse and sustainability of the CCT as a
product line.

OO technologies allow for significant flexibility in separating
concerns, and much framework design is in fact an example of this
use. The issues of constraints as a result of their use in
product lines arise in several forms. The first arises because
implementing a separation of concern in OO typically means
establishing an OO model for the concern, for example, a
framework for database access. Though implementations of the
framework may vary through dynamic polymorphism, the framework's
model itself is rigid. This means that the product line design
is resistant to change if the modeled separation of concern
changes, an event often encountered when targeting product lines
to new business opportunities.

A second constraint arises in the implementation of variation
points in the product line components. Variation points
represent identified places in the requirements, architecture and
design that need to support modifiability by application
engineers. The goal of a variation point is to allow components
to be easily tailored for specific systems without modifying the
component baseline (that is, the tailoring needs to be
non-invasive). The design of variation points must balance the
complexity (and hence usability) of their resultant APIs against
their flexibility in meeting future requirements. In many cases
the design can be resolved to a simple function callback, others
require complex frameworks. In all cases explicit assumptions
must be made regarding what data and implementation aspects must
be made visible to application engineers. As in the case of

using the model to separate concerns, those assumptions become
captured and fixed in the design model, or require use of more
flexible data structures (for example, property lists and "anys")
that can have significant performance impacts. In short,
variation points are required to be composed using the underlying
OO technology, which requires fixing many aspects of their design
and implementation at the compilation of the component, hence
rendering them less flexible to application engineers.

A third constraint arises when positioning facades to wrap
technologies or products that are likely to change (databases,
displays, middleware). Changes in these technologies can occur
from system to system because of licensing costs, performance
characteristics, or even local standards for individual end
systems. Typically a lowest-common denominator approach is taken
for the API to insulate the client from the implementation. This
follows the wrapper pattern where the client's use of the API is
determined at compile time but the implementation is selected at
run time. In general, use of the API is not central to the
client's role in the system, but the API needs to be local to the
business logic implemented by the client. In this scenario
clients are not able to make use of the explicit API of the
product because the composition of application occurs at the
object level, and a tractable object design is required. (That
is, factoring out local use of the services would unduly burden
or complicate the design.) The solution then is to position an
abstract wrapper for the product. However, not using the
explicit API of the product limits its use, in particular the use
of proprietary features which may provide a key discriminator for
selection the end system by customers. These features may also
have special synergies with other technologies which are also
wrapped, and hence typically difficult to compose effectively
together.

Multi-dimensional separation of concerns offer an attractive
approach to these constraints in product line development because
they offer more alternatives as to how, when and where components
get instantiated in the application engineering environment. Non
object-based compositional models (for example, aspect-oriented
and subject-oriented programming) may permit a product line to
move the time when a feature gets bound to a component
implementation from the component engineering phase to the
application engineering phase, and with sufficient levels of
automation to still enable low recurring costs.

In a broad sense, proper engineering support for managing concern
spaces could enable a product line organization to simultaneously
increase the systematic reuse of software assets (reducing cost)
while offering a wider array of features to customers (increasing
value).

Key areas of interest for our applications of these technologies
include variation point design, enabling the use of multiple
underlying technologies (for example, either message oriented
middleware or remote procedure call middleware), and how the
availability of techniques and tools that support greater
separation of concerns affects the structure of product line

organizations.

