
The Limits to Factoring

David Ungar
Sun Microsystems Laboratories

Yes, we DO need different modularizations at different times.
However, we may never
see support for this capability in development environments in widespread use
because it brings up several tough challenges:

1. Factoring is not enough.
2. We need ambigous modularization.
3. Classes are counter-productive.

1. Factoring is not enough

Following the tradition first set forth so clearly by David Parnas,
we assume that the most important things to modularize are those design
decisions that may be subject to change in the future.
However, as any one imperative statement in a program may be influenced by
multiple design decisions, it is impossible to factor the program so that
each piece contains code that is impacted by a single design decision.
For example, the statement: ``contents[i++] = x'' in the body of a Stack.push
routine embodies at least three design decisions: that the stack is represented
by a vector, that the index grows with the number of items pushed, and that
(taken together with the pop code) the Stack is LIFO rather than FIFO.

Although one could try to create a system with multiple factorings,
the result would be
that a single piece of code would have to reside in more than one bucket, and
the result would be a confusion of causality leakage. When making a change,
one could easily end up making other inadvertent changes.

Perhaps it would be better to adopt a factoring + labelling scheme, in which
code would be factored into unique buckets, but could also be
labelled in such a way
as to impose a hypertext-like structure atop it. For an analogy from
file systems, consider
the MacOS file system, which keeps each file in exactly one folder,
but provides labels as a
way to orthogonally group files. With this approach, one could easily
find all the code
that was related to a particular design decision, and one would be
forced to be aware of the
structure of the system as well.

The idea that factoring will not solve this problem may be difficult
for practitioners.

2. We need ambiguous modularization.

The most powerful forms of communication present the recipient with
ambiguity for him or her to sort out.
Humor, theatre, visual art, music all offer both cognitive and affective
impact in many dimensions. The listener gets to jump from aspect to aspect



WITHOUT making any gestures at all--merely by attending to different aspects.
This fluidity allows the focus of attention to be steered by
precognitive as well as cognitive
processes. As programmers, we do this all the time with our programs, too.
Variable names, line-formatting, program structure, flow-of-control
layout decisions
are made carefully and intuitively to communicate as much as possible
in many dimensions
WITHOUT requiring the reader to perform a gesture.
Yet all the mechanisms for multiple factorings, or grouping via
labels would seem
to lack this fluidity. How can get as much fluidity for large-scale
program structure
as the Golden Gate bridge has for its architectural structure?

3. Classes are counter-productive

Classes force code to be factored according to the instance variables
referenced and
the static types of the receivers. They encourage programmers to think about a
single factoring and a single hierarchy, prima facie antagonists to the kind of
multidimensional structures we are attempting to foster in this workshop.
I think that prototypes are a step in the right direction, but they have
their own problems, too.
What's a language-designer to do?

Each of these challenges is tough enough by itself,
taken together we will have our work cut out for us.


