The Linmits to Factoring

Davi d Ungar
Sun M crosystenms Laboratories

Yes, we DO need different nodul arizations at different tinmes.

However, we may never

see support for this capability in devel opnent environments in w despread use
because it brings up several tough chall enges:

1. Factoring is not enough
2. W need anbi gous nodul ari zati on
3. Classes are counter-productive.

1. Factoring is not enough

Following the tradition first set forth so clearly by David Parnas,

we assume that the npst inportant things to nodul arize are those design

deci sions that may be subject to change in the future.

However, as any one inperative statement in a program nmay be influenced by

nmul tiple design decisions, it is inpossible to factor the program so that

each piece contains code that is inpacted by a single design decision

For exanple, the statement: "~ “contents[i++] = x'' in the body of a Stack. push
routi ne enbodi es at | east three design decisions: that the stack is represented
by a vector, that the index grows with the nunber of itens pushed, and that
(taken together with the pop code) the Stack is LIFO rather than FIFO

Al t hough one could try to create a systemw th nultiple factorings,

the result woul d be

that a single piece of code would have to reside in nmore than one bucket, and
the result would be a confusion of causality |eakage. Wen neki ng a change,
one could easily end up maki ng ot her inadvertent changes.

Perhaps it would be better to adopt a factoring + |abelling schene, in which
code woul d be factored into unique buckets, but could al so be

| abel l ed in such a way

as to inpose a hypertext-like structure atop it. For an anal ogy from
file systems, consider

the MacGS file system which keeps each file in exactly one fol der
but provides | abels as a

way to orthogonally group files. Wth this approach, one could easily
find all the code

that was related to a particul ar design decision, and one woul d be
forced to be aware of the

structure of the systemas well.

The idea that factoring will not solve this problem may be difficult
for practitioners.

2. W need anbi guous nodul ari zati on.

The nost powerful forms of comrunication present the recipient with
anbiguity for himor her to sort out.

Hurmor, theatre, visual art, nmusic all offer both cognitive and affective

i mpact in nmany dinmensions. The |istener gets to junp from aspect to aspect



W THOUT naki ng any gestures at all--nerely by attending to different aspects.
This fluidity allows the focus of attention to be steered by

precognitive as well as cognitive

processes. As programmers, we do this all the time with our prograns, too.
Vari abl e nanes, line-formatting, programstructure, flow of-control

| ayout deci sions

are nade carefully and intuitively to comuni cate as nuch as possible

i n many di nensi ons

W THOUT requiring the reader to performa gesture.

Yet all the mechanisns for nultiple factorings, or grouping via

| abel s woul d seem

to lack this fluidity. How can get as nmuch fluidity for |arge-scale
program structure

as the Golden Gate bridge has for its architectural structure?

3. Classes are counter-productive

Cl asses force code to be factored according to the instance variabl es
referenced and

the static types of the receivers. They encourage progranmers to think about a
single factoring and a single hierarchy, prim facie antagonists to the kind of
mul tidi nensional structures we are attenpting to foster in this workshop

| think that prototypes are a step in the right direction, but they have

their own problens, too.

What's a | anguage- desi gner to do?

Each of these challenges is tough enough by itself,
taken together we will have our work cut out for us.



