
Dimension Templates: Multi-dimensional
separation of concerns in UML

Marcus Fontoura
Computer Science Department, Princeton University
35 Olden Street, Princeton, NJ 08544-2087, U.S.A.

 e-mail: mfontoura@acm.org

This paper introduces the concept of Dimension Templates to support the instantiation of the Hyperspaces
model for UML design diagrams. Dimension Templates represent composition rules through UML
parameterized collaborations. An environment that supports these concepts is also described.

Introduction

The Hyperspace model [3] provides a way of achieving multi-dimensional separation of concerns through the
software development lifecycle. On the other hand, the recent standardization efforts of the Unified Modeling
Language (UML) [2] provide a unique chance to harness UML as notational basis for software development
projects. However, UML does not support separation of concerns in dimensions other than the object
dimension. This paper shows how multi-dimensional separation capabilities may be added to UML. The
concept Dimension Templates is introduced to achieve this goal. Dimension Templates represent composition
rules through UML parameterized collaboration diagrams.

The rest of this paper shows how Dimension Templates may be successfully applied to the Software
Engineering Environment (SEE) example proposed in [3], proposes a supporting environment (not yet
implemented), and presents our conclusions and future research directions.

Modeling example

Figure 1 models the SEE example in UML. If there are two dimensions of separation (object and feature),
additive system evolution should be achieved either through the addition of new slices in the object dimension
or through the addition of new slices in the feature dimension. Figures 2 and 3 shows Dimension Templates
that model the addition of new objects and features, respectively. The dashed relationships represent the UML
biding stereotype, which represents the instantiation the parameterized collaborations (modeled by the dashed
circles).

In the object dimension, the new slices are classes modeled by the NewObject role. Figure 2 exemplifies the
addition of a new object slice: Multiply.

In the feature dimension, the new slices are collaborations modeled by the Expression, Number, UOperator,
BOperator, Plus, Minus, UPlus, and UMinus roles. In each of these roles only the method feature(), which
implements the new feature being added, must be implemented. Figure3 illustrates the definition of the
Persistence feature as a new slice.

Every time a new slice is added to a given dimension, the Dimension Template diagrams for the other
dimensions must be updated. Figures 4 and 5 illustrate this interdependency for the object and feature
dimensions. The Dimension Template diagrams (Figures 2 and 3) and their evolution through the addition or
exclusion of new slices (Figures 4 and 5) implicitly represent the Hyperspace composition rules.

Support environment

An environment that supports the instantiation of the Hyperspaces model for UML artifacts should allow the
definition of Dimension Templates and the definition of rules for the Dimension Templates evolution. The
designer should be able to evolve the system by adding and removing slices in a given dimension. To achieve
that, the environment has to maintain a list of dimensions and, for each dimension, a list of slices.

To add a new slice the designer has to select a desired dimension and to instantiate the appropriate Dimension
Template. After the change the environment has to update all (or some) of the other Dimension Templates

using the evolution rules. This last step may be automatically performed or may require human interaction.
Figure 6 illustrates the process of adding a new object slice. Note that the evolution of the feature Dimension
Template cannot be automatically performed in this case.

To remove a slice the designer has to select the proper dimension and remove the slice from the list of slices in
that dimension. After the exclusion the Dimension Templates must be updated using the evolution rules, which
may require human interaction. Figure 7 illustrates the process of removing object slices. In this case the
Dimension Template evolution can be automatically performed: the class that models the object is removed
from the collaboration.

Expression

create
get/set
eval()
display()
check()
process()

Number

create
get/set methods
eval()
display()
check()
process()

BinaryOperator

create
get/set methods
eval()
display()
check()
process()

UnaryOperator

create
get/set methods
eval()
display()
check()
process()

Plus

create
get/set methods
eval()
display()
check()
process()

Minus

create
get/set methods
eval()
display()
check()
process()

UnaryPlus

create
get/set methods
eval()
display()
check()
process()

UnaryMinus

create
get/set methods
eval()
display()
check()
process()

Figure 1. SEE class hierarchy

NewObject

create
get/set
eval()
display()
check()
process()

NewObject

Object Slice

Multiply

Figure 2. Object dimension template

Expression
Number

BOperator
Uoparator

Plus
Minus
UPlus

UMinus

Feature Slice
Expression

process()
feature()

Number

feature()

BOperator

feature()

UOperator

feature()

Plus

feature()

Minus

feature()

UPlus

feature()

UMinus

feature()

Persistency

Figure 3. Feature dimension template

NewObject

...
NewFeature()

NewObject

Object
Template
Diagram

NewFeature

Figure 4. Adding a new feature: modifications in the object dimension template

NewObject NewObject

feature()

...
NewObject

Feature
Template
Diagram

Figure 5. Adding a new object: modifications in the feature dimension template

Add Slice

Add new object

Add new feature

OK Cancel

Object Template Instantiation

New Object =
Multiply

create ()
get()
set()
eval()
display()
check()
process()

Update Feature Template

 */
public void dysplay() {

try
{
}
catch

(IOException ex)
{

//

Plus

feature()

Minus

feature()

Multiply

feature()

1 2

3

Figure 6. Environment support for adding a new object

Remove Slice

Remove object

Remove feature

OK Cancel

1 2 Select the unwanted object

Multiply

Number

OK Cancel

Plus

Minus

UnaryPlus

UnaryMinus

Figure 7. Environment support for removing objects

Conclusions and future work

This paper has shown how Dimension Templates may be defined to add multi-dimensional separation
capabilities to UML. Dimension Templates build on the sound basis of UML standardization and propose no
radically new path. The main goal of this position paper is to disseminate this idea and to discuss its usability
with the community.

We are now developing an environment to support framework development based on the extension of an
UML case tool [1]. We would like to add the support for Dimension Templates in this environment. Another
area of interest is the discovery and experimentation with other dimensions (other than object and feature).

References

1. M. Fontoura, “A Systematic Approach for Framework Development“, Ph.D. Thesis, Computer Science

Department, PUC-Rio, 1999 (http://www.les.inf.puc-rio.br/~mafe).

2. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Reference Manual, Addison-

Wesley, 1998.

3. P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton, Jr., “N Degrees of Separation: Multi-Dimensional

Separation of Concerns”, Proceedings of the International Conference on Software Engineering

(ICSE'99), 1999.

