
Composing non-orthogonal meta-programs

Bart Vanhaute Eddy Truyen Wouter Joosen

Pierre Verbaeten

Distrinet

Computer Science Department

Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Leuven BELGIUM

fbartvh,eddy,wouter,pvg@cs.kuleuven.ac.be

September 20, 1999

Abstract

A key feature of meta-level architectures is the strict separation be-

tween the application and the non-functional requirements. In a base-

level, the application behaviour is modelled. Other requirements are

handled in a meta-program. This makes both application and meta-

program reusable. We introduce a mechanism based on high-level de-

clarative policies to overcome the di�culty of tailoring a meta-program

to application demands, without sacri�cing its genericity. These policies

can also be used in the composition of multiple meta-programs in a

meta-tower. Often, the requirements are not completely orthogonal, and

dependencies between the meta-programs in the tower are generated.

Through policy speci�cations, these dependencies can be described separ-

ately from the implementation. This results in reusable and composable

meta-programs in a more general case.

1 Introduction

Meta-level architectures have become an important research topic to master the

complexity of developing robust distributed applications. Through the use of a

meta-object protocol (MOP hereafter), an object-oriented program can manipu-

late the state of its own execution [6] and implement non-functional requirements

such as fault-tolerance and distributed execution [2, 4, 10]. The major bene�t of

this approach is the separation of concerns between the application behaviour

and the non-functional requirements. In addition, the FRIENDS system [4]

demonstrated how multiple orthogonal requirements, in this case distribution,

security, and reliability, can be applied at the same time by carefully stacking

the meta-programs on top of each other.

However, one particularly relevant problem is the complexity of the meta-

programs that reect upon the base-level behavior. This complexity results from

both the inherent complexity of reective systems and the non-trivial protocols

and algorithms that are used to meet the non-functional requirements. As a

1

result, it is very hard for application programmers, who are typically not experts

in these domains, to specialize such meta-programs to their needs.

In our work on Correlate[3], a concurrent object-oriented language and

runtime with a meta-level architecture, we have developed a new approach

which tries to bridge the gap between application programmers and meta-level

programmers. Meta-level programmers use a specialized language to de�ne a

template that expresses how the meta-program can be con�gured. Application

programmers instantiate these templates to de�ne application speci�c policies.

Here, we can combine high-level declarative policies with reusable and ex-

ible meta-programs. An important property of our approach is that it is not

speci�c to a particular non-functional property, making it applicable to any

meta-program.

It is the position of this paper that this mechanism can be used not only to

bind an application and its meta-level program, but also to describe the relation

between meta-levels that are combined into a meta-tower con�guration.

The rest of this paper is structured as follows. In the following two sections,

the general problem and our approach to solving it is explained. In the next

section the application of this approach in the case of a meta-tower is evaluated.

2 Problem Description

Run-time reection is a powerful technique that can be used to control an ap-

plication's behaviour. Existing research has shown how this technique is used

successfully to implement non-functional requirements such as reliability, se-

curity and physical distribution [10]. In this approach, the code that realizes

the non-functional requirements is expressed as a meta-program. This meta-

program consists of a collection of meta-level objects that use the MOP to con-

trol the application. This MOP is a set of meta-objects that de�ne an abstract,

application independent view on the base-level objects. An excellent separation

of concerns is achieved as the base-level code is completely free of any non-

functional concerns and the meta-program does not contain direct references to

the base application.

An important issue with this approach is the speci�cation of the binding

between base and meta-level program. Non-functional requirements are largely

independent of application behaviour, but not completely. For example, to

achieve optimal performance, application speci�c requirements have to be taken

into account. This means that one can not simply select the correct meta-

program that implements the requirements, as this would treat every object

in the application the same. Indeed, some application objects must be treated

di�erently at the meta-level. In a dynamic environment, it might even be the

case that this depends on the current state of the application objects. In such

cases, a much more expressive speci�cation of the binding is required. We

believe that most of the current work on run-time reection does not address

this problem in a satisfactory way.

In some work [2, 5], the application's source code is annotated with some

special constructs. Through these annotations, an application programmer can

indicate the binding between the base-level and meta-level classes. In our opin-

ion, these approaches are not satisfactory because the separation of concerns is

violated. Indeed, the application's source code is tangled with references to the

2

meta-program. Each time the binding between application and meta-program

changes, the application's source code needs to be changed. In addition, the

expressive power of these mechanisms is limited because the annotations only

allow a static binding de�ned at compile-time.

A more modular solution is provided by Dalang [11]. In this system, a

separate con�guration �le is used to specify the binding. This �le also speci�es

which methods and constructors are to be reected upon. This yields a much

better separation of concerns. A change in the con�guration does not require

a recompilation of the application classes. However, the expressive power and

exibility is very limited in Dalang. It is not possible to decide on con�guration

parameters at run-time1 or to provide detailed application speci�c information.

In the following section we will briey present our approach that provides

high-level support for the integration of meta-program and application. A more

elaborate description of this approach, together with its usage and an imple-

mentation for Correlate can be found in [9].

3 Application Policies

In our approach, application speci�c characteristics can be de�ned in policies.

A policy speci�es how the mechanisms that are provided by the meta-program

should be applied for a speci�c application. Policies are strictly separated both

from the application and the meta-program. This strict separation enables the

reuse of meta-programs for multiple applications.

The policies are declared by an application programmer at a high level of

abstraction. At run-time, policies are interpreted by the meta-program. This

allows the meta-program to take into account the application speci�c prefer-

ences concerning the implementation of the non-functional requirements. This

also means that the semantics of the policies is ultimately de�ned by the meta-

program. The interpretation of the policies is done in terms of a general tem-

plate, de�ned by the meta-programmer. This keeps the meta-programs inde-

pendent of speci�c applications.

This idea is explained in further detail in the following two sections. In

section 3.1, the de�nition of policies is discussed in detail. Section 3.2 explains

the interpretation.

3.1 De�ning Policies

We make a di�erence between templates and policies. A template de�nes a

declarative language that indicates the various possible customisations an ap-

plication might require. A policy is an instantiation of such a template. Instan-

tiating a template consists of making a selection between a number of possible

customisations and completing certain missing information. The scope of the

resulting policy is a single application class.

A template is expressed as a set of properties. In the simplest case, a property

is an enumeration of a set of atomic values. In more complex cases, a property

is declared as a function of the internal state of the object and the current

state of the environment, expressed as a set additional parameters that contain

1This is in the assumption that the con�guration �les are created before the application

starts.

3

distributor {

constructorproperty

creation = BALANCED|LOCAL|CUSTOM;

constructorproperty

Host allocate(Host[] h) {

return h[0];

}

objectproperty

migration = NONE | BALANCED;

objectproperty

double getLoad() {

return 1.0;

}

}

distributor WorkUnit {

WorkUnit(Point pos, Dimension size) {

creation = CUSTOM;

Host allocate(Host[] h) {

return host[pos.x % h.length];

}

}

migration = BALANCED;

double getLoad() {

return mySize.x * mySize.y;

}

}

Figure 1: A sample template and a policy speci�cation for distribution.

essential information for that speci�c property. It is the responsibility of the

meta-program to provide these parameters. Orthogonal to this, the declaration

scope of a property can be an entire application class or a single method or

constructor.

A policy is the instantiation of a template. It is always related to a single

application class. A policy can instantiate any number of properties of its tem-

plate. Properties that are not instantiated have the default value as declared in

the template. Instantiating an enumeration consists of selecting a single value

from the set. To instantiate a function, an alternative implementation must

be given. This implementation can make use of the instance variables of the

application class (as free variables).

An example of a template de�nition for the distribution requirement, and a

instantiation for a application object that performs some mathematical compu-

tation upon a square area can be seen in �gure 1.

3.2 Interpreting Policies

Each template is transformed into an abstract class. This class serves as in-

terface for the meta-program to query the policy an application wants. Each

property is represented as a public operation on this class. Their parameters de-

pend on the declaration scope of property and also contain the set of additional

parameters as de�ned in the template. Finally, a static operation is de�ned that

can be used to retrieve the policy object for a certain application class.

Policies for application classes are transformed into specialisations of the ab-

stract template classes. These specialisations implement of course the property

operations of the template class, as de�ned in the policy.

4 Composition of meta-programs

Many applicatons will have multiple non-functional needs. In this case meta-

programs will have to be composed. There are currently several approaches to

this composition. In a �rst approach, composition is explicitly supported by

the MOP [8, 1]. Here, every aspect of the overall meta-program functionality is

handled in a speci�c meta-object. For instance, to implement object migration

4

base layer

meta layer

layer
meta-meta

Template

Template <<delegates>>

<<reifies>>
Policy

Policy
Policy

Distribution Object

Security Object

Application Object

<<reifies>>

Figure 2: An example mapping for security and distribution.

one only needs to change the distributed environment model. However, this

kind of composition breaks if the non-functional requirement cuts across several

aspects of the MOP.

The second, and most obvious approach to meta-program composition is

through explicit composition, using object-oriented techniques and design pat-

terns. The result is usually a very complex meta-program, which is hard to

maintain and evolve. This therefore violates the principle of separation of con-

cerns.

A third alternative uses multiple meta-levels to create a meta-tower. The

reasoning behind this is that a MOP gives the programmer much more control

over the base application, such that composition with a meta-tower should be

easier. This seems very promising, but has severe consequences on the level of

control a meta-program at a higher level will have over the application. Indeed,

as each meta-level only sees the level directly beneath it, the higher meta-levels

can make no decisions about the state of the base application. We believe that

the policy speci�cations as discussed earlier can help overcome this problem in

many practical cases.

The general idea is as follows. Each level de�nes the policies for all of the

levels above it. The de�nition of these policies can be based on the corres-

ponding de�nitions for the level beneath it, but accomodated to its own needs.

Let us give an example (see �gure 2). Suppose a security meta-program is to

be composed with a distribution meta-program. The distribution policy of a

security meta-level object then depends on the distribution policy of the base-

level object it is controling. Consider for instance the allocation property of

�gure 1. A particular security policy could be to only allow creation of some

particular objects on trusted hosts. The implementation of an allocaton prop-

erty in a policy for security meta-level object would �rst query the policy of its

base object, and only if the latter selects a trusted host, it would forward this.

Otherwise a di�erent but trusted host is selected.

This delegation from a policy at one level to a policy from a lower level

5

has two dimensions of complexity. First, when the implemented non-functional

requirements are not completely orthogonal a strict delegation will not be su�-

cient. The selection when and how to delegate are dictated by the semantics of

the meta-program at the considered level. This is clearly a complex task. Here,

the declarative nature of the speci�cations is helpful. The composition of beha-

vioural descriptions would be much harder, as can be illustrated by AspectJ[7].

Here composition of aspects means deciding when and in what order the before,

after, and other advices are executed. This will require careful study of the

behaviour of these advices.

First, it is already clear that the mapping of policies of one level to the correct

policies on the lower level is a complex task. It depends on the orthogonality of

the meta-programs, and the non-functional requirements they implement.

Second, there is the question of what policy speci�cation to delegate to.

The answer to this is dependent on the relation between the entities (objects,

methods, . . .) at the one level and their rei�ed versions at the next. This relation

is speci�ed in the MOP. An object in the base-level is rei�ed into an abstract

representation. This representation is then controlled by one (or more) objects

at the meta-level. Therefore, a property in the context for the meta-level object

would query the corresponding property in the policy for the base-level object

this object controls. The same reasoning can be applied to method invocation

and object construction. A method invocation is rei�ed as a message. At some

point, this will cause an invocation in the meta-level, to send the message to the

meta-level object of receiver. So, a property de�nition for the base-level method

would be used in a de�nition for the method used for receiving messages from

meta-level objects.

5 Conclusion

This paper explains how our approach to enable application-speci�c policies for

non-functional requirements to be expressed at a high level of abstraction can

also be used to compose several meta-programs in a meta-tower arrangement.

Through delegation of policy speci�cations of one meta-level to a lower (meta-)

level, this composition becomes feasible in the case the non-functional require-

ments and implementations are not entirely orthogonal. The complexity of this

delegation arises from the questions of how and to what to delegate.

Through further experimentation, we hope to have a better view on its

applicability in complex, real-world applications.

References

[1] Lodewijk Bergmans. Composing Concurrent Objects - Applying Compos-

ition Filters for Development and Reuse of Concurrent Object-Oriented

Programs. PhD Thesis, Universiteit Twente, 1994.

[2] Shigeru Chiba and Takashi Masuda. Designing an Extensible Distributed

Language with a Meta-Level Architecture. In Proceedings of ECOOP '93,

pages 483-502, Kaiserslautern, Springer-Verlag, July 1993.

6

[3] The Correlate home page. http://www.cs.kuleuven.ac.be/~xenoops/

CORRELATE/.

[4] Jean-Charles Fabre and Tanguy Prennou. A Metaobject Architecture for

Fault-Tolerant Distributed Systems: The FRIENDS Approach. In IEEE

Transactions on Computers, 47(1), January 1998.

[5] Brendan Gowing, Vinny Cahill. Meta-Object Protocols for C++: The

Iguana Approach. In Proceedings of Reection'96, San Francisco, 1996.

[6] G. Kiczales, J. des Rivieres and D. Bobrow. The Art of the Meta-Object

Protocol, MIT Press, 1991.

[7] Cristina Lopes and Gregor Kiczales. Recent Developments in AspectJ. In

ECOOP'98 Workshop Reader, Springer-Verlag, 1998.

[8] Hideaki Okamura and Yataku Ishikawa. Object Location Control using

Metalevel Programming. In Proceedings of ECOOP '94, 299-319, Bologna,

July 1994.

[9] Bert Robben, Bart Vanhaute, Wouter Joosen and Pierre Verbaeten. Non-

Functional Policies. In Proceedings of the Second International Conference

on Metalevel Architectures and Reection. Saint-Malo, France, Springer-

Verlag, July 1999.

[10] Robert J. Stroud and Zhixue Wue. Using Metaobject Protocols to Satisfy

Non-Functional Requirements. In Chris Zimmermann, editor, Advances in

Object-Oriented Metalevel Architectures and Reection, CRC Press, 1996.

[11] Ian Welch and Robert Stroud. Dalang - A Reective Java Extension,

OOPSLA'98 Workshop on Reective Programming in C++ and Java, Van-

couver, Canada, October 1998. To be published as part of the OOPSLA'98

Workshop Reader.

7

