Composing non-orthogonal meta-programs

Bart Vanhaute Eddy Truyen Wouter Joosen
Pierre Verbaeten
Distrinet
Computer Science Department
Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Leuven BELGIUM
{bartvh,eddy,wouter,pv}Qcs.kuleuven.ac.be

September 20, 1999

Abstract

A key feature of meta-level architectures is the strict separation be-
tween the application and the non-functional requirements. In a base-
level, the application behaviour is modelled. Other requirements are
handled in a meta-program. This makes both application and meta-
program reusable. We introduce a mechanism based on high-level de-
clarative policies to overcome the difficulty of tailoring a meta-program
to application demands, without sacrificing its genericity. These policies
can also be used in the composition of multiple meta-programs in a
meta-tower. Often, the requirements are not completely orthogonal, and
dependencies between the meta-programs in the tower are generated.
Through policy specifications, these dependencies can be described separ-
ately from the implementation. This results in reusable and composable
meta-programs in a more general case.

1 Introduction

Meta-level architectures have become an important research topic to master the
complexity of developing robust distributed applications. Through the use of a
meta-object protocol (MOP hereafter), an object-oriented program can manipu-
late the state of its own execution [6] and implement non-functional requirements
such as fault-tolerance and distributed execution [2, 4, 10]. The major benefit of
this approach is the separation of concerns between the application behaviour
and the non-functional requirements. In addition, the FRIENDS system [4]
demonstrated how multiple orthogonal requirements, in this case distribution,
security, and reliability, can be applied at the same time by carefully stacking
the meta-programs on top of each other.

However, one particularly relevant problem is the complexity of the meta-
programs that reflect upon the base-level behavior. This complexity results from
both the inherent complexity of reflective systems and the non-trivial protocols
and algorithms that are used to meet the non-functional requirements. As a

result, it is very hard for application programmers, who are typically not experts
in these domains, to specialize such meta-programs to their needs.

In our work on Correlate[3], a concurrent object-oriented language and
runtime with a meta-level architecture, we have developed a new approach
which tries to bridge the gap between application programmers and meta-level
programmers. Meta-level programmers use a specialized language to define a
template that expresses how the meta-program can be configured. Application
programmers instantiate these templates to define application specific policies.
Here, we can combine high-level declarative policies with reusable and flex-
ible meta-programs. An important property of our approach is that it is not
specific to a particular non-functional property, making it applicable to any
meta-program.

It is the position of this paper that this mechanism can be used not only to
bind an application and its meta-level program, but also to describe the relation
between meta-levels that are combined into a meta-tower configuration.

The rest of this paper is structured as follows. In the following two sections,
the general problem and our approach to solving it is explained. In the next
section the application of this approach in the case of a meta-tower is evaluated.

2 Problem Description

Run-time reflection is a powerful technique that can be used to control an ap-
plication’s behaviour. Existing research has shown how this technique is used
successfully to implement non-functional requirements such as reliability, se-
curity and physical distribution [10]. In this approach, the code that realizes
the non-functional requirements is expressed as a meta-program. This meta-
program consists of a collection of meta-level objects that use the MOP to con-
trol the application. This MOP is a set of meta-objects that define an abstract,
application independent view on the base-level objects. An excellent separation
of concerns is achieved as the base-level code is completely free of any non-
functional concerns and the meta-program does not contain direct references to
the base application.

An important issue with this approach is the specification of the binding
between base and meta-level program. Non-functional requirements are largely
independent of application behaviour, but not completely. For example, to
achieve optimal performance, application specific requirements have to be taken
into account. This means that one can not simply select the correct meta-
program that implements the requirements, as this would treat every object
in the application the same. Indeed, some application objects must be treated
differently at the meta-level. In a dynamic environment, it might even be the
case that this depends on the current state of the application objects. In such
cases, a much more expressive specification of the binding is required. We
believe that most of the current work on run-time reflection does not address
this problem in a satisfactory way.

In some work [2, 5], the application’s source code is annotated with some
special constructs. Through these annotations, an application programmer can
indicate the binding between the base-level and meta-level classes. In our opin-
ion, these approaches are not satisfactory because the separation of concerns is
violated. Indeed, the application’s source code is tangled with references to the

meta-program. Each time the binding between application and meta-program
changes, the application’s source code needs to be changed. In addition, the
expressive power of these mechanisms is limited because the annotations only
allow a static binding defined at compile-time.

A more modular solution is provided by Dalang [11]. In this system, a
separate configuration file is used to specify the binding. This file also specifies
which methods and constructors are to be reflected upon. This yields a much
better separation of concerns. A change in the configuration does not require
a recompilation of the application classes. However, the expressive power and
flexibility is very limited in Dalang. It is not possible to decide on configuration
parameters at run-time! or to provide detailed application specific information.

In the following section we will briefly present our approach that provides
high-level support for the integration of meta-program and application. A more
elaborate description of this approach, together with its usage and an imple-
mentation for Correlate can be found in [9].

3 Application Policies

In our approach, application specific characteristics can be defined in policies.
A policy specifies how the mechanisms that are provided by the meta-program
should be applied for a specific application. Policies are strictly separated both
from the application and the meta-program. This strict separation enables the
reuse of meta-programs for multiple applications.

The policies are declared by an application programmer at a high level of
abstraction. At run-time, policies are interpreted by the meta-program. This
allows the meta-program to take into account the application specific prefer-
ences concerning the implementation of the non-functional requirements. This
also means that the semantics of the policies is ultimately defined by the meta-
program. The interpretation of the policies is done in terms of a general tem-
plate, defined by the meta-programmer. This keeps the meta-programs inde-
pendent of specific applications.

This idea is explained in further detail in the following two sections. In
section 3.1, the definition of policies is discussed in detail. Section 3.2 explains
the interpretation.

3.1 Defining Policies

We make a difference between templates and policies. A template defines a
declarative language that indicates the various possible customisations an ap-
plication might require. A policy is an instantiation of such a template. Instan-
tiating a template consists of making a selection between a number of possible
customisations and completing certain missing information. The scope of the
resulting policy is a single application class.

A template is expressed as a set of properties. In the simplest case, a property
is an enumeration of a set of atomic values. In more complex cases, a property
is declared as a function of the internal state of the object and the current
state of the environment, expressed as a set additional parameters that contain

IThis is in the assumption that the configuration files are created before the application
starts.

distributor {
constructorproperty
creation = BALANCED|LOCAL |CUSTOM;
constructorproperty
Host allocate(Host[] h) {
return h[0];
}
objectproperty
migration = NONE | BALANCED;
objectproperty
double getLoad() {
return 1.0;

}

distributor WorkUnit {
WorkUnit (Point pos, Dimension size) {
creation = CUSTOM;
Host allocate(Host[] h) {
return host[pos.x % h.length];
}
}
migration = BALANCED;
double getLoad() {
return mySize.x * mySize.y;
}
}

Figure 1: A sample template and a policy specification for distribution.

essential information for that specific property. It is the responsibility of the
meta-program to provide these parameters. Orthogonal to this, the declaration
scope of a property can be an entire application class or a single method or
constructor.

A policy is the instantiation of a template. It is always related to a single
application class. A policy can instantiate any number of properties of its tem-
plate. Properties that are not instantiated have the default value as declared in
the template. Instantiating an enumeration consists of selecting a single value
from the set. To instantiate a function, an alternative implementation must
be given. This implementation can make use of the instance variables of the
application class (as free variables).

An example of a template definition for the distribution requirement, and a
instantiation for a application object that performs some mathematical compu-
tation upon a square area can be seen in figure 1.

3.2 Interpreting Policies

Each template is transformed into an abstract class. This class serves as in-
terface for the meta-program to query the policy an application wants. Each
property is represented as a public operation on this class. Their parameters de-
pend on the declaration scope of property and also contain the set of additional
parameters as defined in the template. Finally, a static operation is defined that
can be used to retrieve the policy object for a certain application class.

Policies for application classes are transformed into specialisations of the ab-
stract template classes. These specialisations implement of course the property
operations of the template class, as defined in the policy.

4 Composition of meta-programs

Many applicatons will have multiple non-functional needs. In this case meta-
programs will have to be composed. There are currently several approaches to
this composition. In a first approach, composition is explicitly supported by
the MOP [8, 1]. Here, every aspect of the overall meta-program functionality is
handled in a specific meta-object. For instance, to implement object migration

meta-meta Distribution Object

layer |:| | _ [Template
<<reffies>> v\

) B __ | Policy
meta layer Security Object < |
|
I:I L= _Template <<de|?gates>>

------------------------------------ I I
<<reifies>> Z% \:/

L _ 4 Policy .
base layer - __ | Policy

Application Object -

Figure 2: An example mapping for security and distribution.

one only needs to change the distributed environment model. However, this
kind of composition breaks if the non-functional requirement cuts across several
aspects of the MOP.

The second, and most obvious approach to meta-program composition is
through explicit composition, using object-oriented techniques and design pat-
terns. The result is usually a very complex meta-program, which is hard to
maintain and evolve. This therefore violates the principle of separation of con-
cerns.

A third alternative uses multiple meta-levels to create a meta-tower. The
reasoning behind this is that a MOP gives the programmer much more control
over the base application, such that composition with a meta-tower should be
easier. This seems very promising, but has severe consequences on the level of
control a meta-program at a higher level will have over the application. Indeed,
as each meta-level only sees the level directly beneath it, the higher meta-levels
can make no decisions about the state of the base application. We believe that
the policy specifications as discussed earlier can help overcome this problem in
many practical cases.

The general idea is as follows. Each level defines the policies for all of the
levels above it. The definition of these policies can be based on the corres-
ponding definitions for the level beneath it, but accomodated to its own needs.
Let us give an example (see figure 2). Suppose a security meta-program is to
be composed with a distribution meta-program. The distribution policy of a
security meta-level object then depends on the distribution policy of the base-
level object it is controling. Consider for instance the allocation property of
figure 1. A particular security policy could be to only allow creation of some
particular objects on trusted hosts. The implementation of an allocaton prop-
erty in a policy for security meta-level object would first query the policy of its
base object, and only if the latter selects a trusted host, it would forward this.
Otherwise a different but trusted host is selected.

This delegation from a policy at one level to a policy from a lower level

has two dimensions of complexity. First, when the implemented non-functional
requirements are not completely orthogonal a strict delegation will not be suffi-
cient. The selection when and how to delegate are dictated by the semantics of
the meta-program at the considered level. This is clearly a complex task. Here,
the declarative nature of the specifications is helpful. The composition of beha-
vioural descriptions would be much harder, as can be illustrated by AspectJ[7].
Here composition of aspects means deciding when and in what order the before,
after, and other advices are executed. This will require careful study of the
behaviour of these advices.

First, it is already clear that the mapping of policies of one level to the correct
policies on the lower level is a complex task. It depends on the orthogonality of
the meta-programs, and the non-functional requirements they implement.

Second, there is the question of what policy specification to delegate to.
The answer to this is dependent on the relation between the entities (objects,
methods, ...) at the one level and their reified versions at the next. This relation
is specified in the MOP. An object in the base-level is reified into an abstract
representation. This representation is then controlled by one (or more) objects
at the meta-level. Therefore, a property in the context for the meta-level object
would query the corresponding property in the policy for the base-level object
this object controls. The same reasoning can be applied to method invocation
and object construction. A method invocation is reified as a message. At some
point, this will cause an invocation in the meta-level, to send the message to the
meta-level object of receiver. So, a property definition for the base-level method
would be used in a definition for the method used for receiving messages from
meta-level objects.

5 Conclusion

This paper explains how our approach to enable application-specific policies for
non-functional requirements to be expressed at a high level of abstraction can
also be used to compose several meta-programs in a meta-tower arrangement.
Through delegation of policy specifications of one meta-level to a lower (meta-)
level, this composition becomes feasible in the case the non-functional require-
ments and implementations are not entirely orthogonal. The complexity of this
delegation arises from the questions of how and to what to delegate.

Through further experimentation, we hope to have a better view on its
applicability in complex, real-world applications.

References

[1] Lodewijk Bergmans. Composing Concurrent Objects - Applying Compos-
ition Filters for Development and Reuse of Concurrent Object-Oriented
Programs. PhD Thesis, Universiteit Twente, 1994.

[2] Shigeru Chiba and Takashi Masuda. Designing an Extensible Distributed
Language with a Meta-Level Architecture. In Proceedings of ECOOP ’93,
pages 483-502, Kaiserslautern, Springer-Verlag, July 1993.

3]

[4]

The Correlate home page. http://www.cs.kuleuven.ac.be/ xenoops/
CORRELATE/.

Jean-Charles Fabre and Tanguy Prennou. A Metaobject Architecture for
Fault-Tolerant Distributed Systems: The FRIENDS Approach. In IEEE
Transactions on Computers, 47(1), January 1998.

Brendan Gowing, Vinny Cahill. Meta-Object Protocols for C++: The
Iguana Approach. In Proceedings of Reflection’96, San Francisco, 1996.

G. Kiczales, J. des Rivieres and D. Bobrow. The Art of the Meta-Object
Protocol, MIT Press, 1991.

Cristina Lopes and Gregor Kiczales. Recent Developments in AspectJ. In
ECOOP’98 Workshop Reader, Springer-Verlag, 1998.

Hideaki Okamura and Yataku Ishikawa. Object Location Control using
Metalevel Programming. In Proceedings of ECOOP ’94, 299-319, Bologna,
July 1994.

Bert Robben, Bart Vanhaute, Wouter Joosen and Pierre Verbaeten. Non-
Functional Policies. In Proceedings of the Second International Conference
on Metalevel Architectures and Reflection. Saint-Malo, France, Springer-
Verlag, July 1999.

Robert J. Stroud and Zhixue Wue. Using Metaobject Protocols to Satisfy
Non-Functional Requirements. In Chris Zimmermann, editor, Advances in
Object-Oriented Metalevel Architectures and Reflection, CRC Press, 1996.

Tan Welch and Robert Stroud. Dalang - A Reflective Java Extension,
OOPSLA’98 Workshop on Reflective Programming in C++ and Java, Van-
couver, Canada, October 1998. To be published as part of the OOPSLA’98
Workshop Reader.

