
Page 1

Separation of concerns and typing: a first stab

Hafedh Mili, Joumana Dargham, Salah Bendelloul, and Hamid Mcheick
Département d’Informatique

Université du Québec à Montréal
Case Postale 8888, Station Centre-Ville

Montréal, Québec H3C 3P8
Canada

Abstract

We use software of concerns in software engineering for two reasons: 1) to man-
age the complexity of the systems we try to build, and 2) to delay, as far as we can,
the binding of the various pieces/concerns of the system to each other, so that they
may be developed, tested, and maintained separately. We start by positioning vari-
ous approaches along the binding time dimension, going from modeling to run-
time binding. Next, we examine the possibility of performing run-time binding and
its implications on type-safety.

1. Separation of concerns and binding time
Much progress in software packaging technologies has dealt with the separation of concerns and
the delaying of the binding of the concerns to each other. The separation of concerns can be sus-
tained as far as:
• Requirements analysis time: a number of methodologies recognize that the first step in

eliciting the requirements of a system consists of indentifying the different usage scenar-
ios/use cases (e.g. [Martin & Odell, 1992], [Jacobson et al., 1992]). This separation is use-
ful for managing complexity, and to avoid including things that are not needed.

• Modeling (analysis) time: the OORAM methodoloy builds a model of an application in
terms of a combination of role models, which are partial models describing specific col-
laborations between application entities [Reenskaugh,1995]. However, role models are
combined before we move on to design and coding,

• Design time: typically, efforts that aim at keeping concerns separate through design, aim
at separating design-level concerns from functional concerns. The idea here is to not
design classes one by one, but to design class patterns/templates, and then map/instantiate
those patterns/templates to analysis-level specifications of classes. This assumes that the
analysis-level specifications are complete or executable in some language on some virtual
machine and that design aims simply at satisfying non-functional requirements.
Approaches based on this paradigm include [Mili & Li, 1993], the Shlaer& Mellor meth-
odology and its accompagnying tool set [Mellor, 1992], and more generally, the combina-
tion of methodologies/tools that generate code from analysis-level specifications1.
Approaches based on application-specific specification languages may be seen in this

1. The “design concern” may not be as easily evolvable, as it may be hardcoded in the CASE tool.

Page 2

light, as well,
• Coding time: here we have to make a distinction between the code that implements the

concerns and the code that uses them. A number of approaches have been proposed in the
past decade that support the separate coding of concerns. These include subject-oriented
programming (SOP) [Harrison/Ossher, 1993-96], aspect-oriented programming (AOP)
[Kiczales et al., 1996], role components [VanHilst & Nokin, 1996], the GenVoca family of
component generators [Batory et al., 1993-97], and view programming [Mili et al., 1999].
The integration of these concerns is evenly split between coding time and compile-time:
in some ways, SOP and AOP integrate concerns automatically at compilation time (inte-
gration is a pre-process of compilation), but client code need not be aware of the fact that
several concerns have been integrated. With GenVoca [Batory et al, 93-97] and role com-
ponents [VanHilst & Notkin, 96], the integration is programmed in the user code as part of
the object declaration process. With views, integration is part of the object manipulation
process.

• Run-time: with regard to the concerns themselves, this means that the object code that cor-
responds to the various concerns is separate. It may mean in different objects, or in differ-
ent memory spaces, altogether. This does not preclude communication from taking place.
With regard to the code that uses or integrates the concerns, this means some measure of
reflective facilities that enable users to activate different combinations of concerns during
run-time.

With AOP, SOP, role components, and Genvoca approach, by the time we compile, we have
vanilla flavour OO code. The Genvoca and role components approach [VanHilst & Notkin, 96]
are somewhat based on the instantiation of aggregate templates. During run-time, the code that
corresponds to the various concerns runs on the same object, for the case of SOP, AOP (except for
the case of dynamic associations), and for role components. Genvoca, which may be seen as del-
egation/aggregation based, different objects execute different pieces. However, the various con-
cerns are known at compile-time and will not evolve during the execution of the program. With
view programming, the code that corresponds to the various concerns runs in different objects,
and the set of concerns applicable to an object will be determined during time.

In the remainder of this paper, we look at typing issues from two perspectives: 1) from the per-
spective of code behaving in a coherent fashion with or without the addition of concerns, and 2)
from the perspective of objects being able to handle the requests that are addressed to them.

2. Behavioural conformance
The very idea of separation of concerns is that the concerns being separated are not tightly related
and the presence or absence of a certain concern has no or little effect on the other concerns. In
other words, adding a concern should involve conservative extension of the same program, i.e.
notwithstanding the new behaviour that was added, what used to work will continue to work in an
identical or a qualitatively equivalent fashion. We divide this in two factors:

2.1 changing the interface
In what way does adding new concerns change the interface? the answer depends on the
approach.

Page 3

AOP and SOP: with both these approaches, the composition of subjects/weaving of aspects
changes the interface (type) of classes. With SOP, the various subjects play a symmetrical role,
and it is left to composition rules, in case of conflict (or coincidence) to prioritize subjects. With
AOP, aspects are clearly add-ons, and local coincidence (e.g. introducing a method that exists
already) is treated as a conflict (if not by the aspect weaver, at least by the compiler).

Role components adroitly generates versions of a class with additional responsibilities by simu-
lating on-the-fly class creation through template instantiations. The new class, augmented with
the new roles, will have a different name and will be a subclass of the original class. A similar
approach is used in Genvoca where the final components are instantiations of predefined chains
of template structures. With Genvoca, the various roles are embedded in an aggregation hierar-
chy. With view programming, the addition of concerns is aggregation-based, but doesn’t change
the (name of the) type of the receiver.

2.2 Behavioural composition
Changing the response of an object to an existing message is one of the basic premises/goals of
SOP: the object belonging to the composed subjects will respond according to the combination of
the available subjects. Through the composition rules, a developer can use any combination of the
available behaviours, but the important thing is that the developer does have those behaviour
available. With AOP, two mechanisms are used to change the response of objects to pre-defined
messages: 1) advisories, and 2) dynamic associations (observers/constraints). However, it seems
that the “introduce” operation can have undesirable behavioural side-effects:
• the introduction of a method that is defined in a superclass will override it even if it has

different semantics (***doublecheck this****), and
• the introduction of new variables will override inherited ones1.
Role components are “inheritance-aware”, and aware of each other’s existence, and hence, com-
position of behaviours is encoded in the roles themselves, through qualified references to inher-
ited (other roles’) behaviours2. The reliance on inheritance for composition forces a sequence of
instantiation of the various role components [VanHilst & Notkin, 1996], possibly leading to split-
ting role components in case of cycles (***doublecheck***). With GenVoca, the various compo-
nents may be seen as layered services, and in some ways, generating a component will select a
specific implementation for the same set of services. Thus, there is no real composition in the
sense of having different components offer competing or complementary versions of the same
behaviour. View programming’s view on composition is similar to SOP and role components in
the sense that the different subjects/roles/views provide their own versions of behaviours, and in
the sense that the behaviour embodied in the various views may or may not rely on implementa-
tions available in other views/roles/subjects; unlike role components, delegation is not inherit-
ance-based, and the views play a symmetrical role.

1. Java allows the redefinition of instance variables, which has the same semantics as method redefinition,
except that the references to instance variables are statically bound.
2. A role component will look like
template<class WifeType,class SuperType> class Husband: public Supertype {....}
and a method within Husband might call upon the version of the same method inherited from the template
parameter SuperType.

Page 4

3. Run-time composition of concerns and type safety

3.1 Issues
In the real world, objects change roles during their lifetime. From the time a person appears on
the IRS records as a deductible expense, that person will keep changing roles until well beyond its
death, regularly acquiring and relinquishing attributes and behaviour. Generally speaking, we
need a mechanism for allowing objects to change behaviour during their lifetime, specifically
when that change takes place within the same program run. Further, in the context of a distributed
application, different sites/users may see different aspects of the same objects (different function-
alities, different access rights/privileges, different quality of service parameters, etc.).

Allowing an object to change its behaviour in non-predictable ways during run-time is problem-
atic. First, we have to make that behaviour somehow available on-demand. As we saw in section
I, all of AOP, SOP, Genvoca and role components, integrate the various concerns/views during
coding time by instantiating the appropriate classes, but the set of roles/subjects available to an
object remain constant throughout the lifetime of the object. Additional constructs may be used to
make those behaviours available on demand, as we show below.

Allowing objects to change their behaviour during run-time also inevitably compromises the type
safety of programs in the sense of:
• precluding, or limiting the effect of static type checking, and
• opening the way for catastrophic behaviour in case the behaviour requested at any given

point in time is not supported at that point
We call this dynamic classification. We should distinguish here between dynamic typing, which
refers to the fact that a variable that is declared (compile-time) of a given type, will hold during
run-time, an object of a different type, and dynamic classification, whereby the same object (same
identity, same address) changes type/behaviour during run-time.

In terms of type checking, the best we can do, in statically typed languages, is to check that the
behaviour requested of an object is potentially available to it—although we cannot ascertain that
at that very moment in the computation, that behaviour is actually available; this is similar in
principle to the “leap of faith” that C++ or Java programmers make when they downcast a vari-
able declared of type T to some type T’ which they believe is a type or a supertype of the object
held by that variable at that point in the computation. With untyped/dynamically typed languages,
there is nothing to do at compilation time.

In terms of invoking the proper combination of behaviours, depending on which roles/concerns
are embodied in a given object, we have to implement some run-time dispatching method which
will direct a message request to the method (or combination of methods) that is available to it at
that time. This can be implemented in one of several ways, including:
• With typed languages, a combined interface that embodies all the potentially activated/

attached concerns dispatches to specific private methods, depending on which concerns/
roles are currently activated/available. This may be the approach used with C++-based or

Page 5

Java-based implementations,
• With dynamically typed, reflexive languages, we can modify the default method dispatch-

ing mechanism to direct a method call to the appropriate method combination. This
method is appropriate for Smalltalk and CLOS (**I think**).

In the remainder of this section, we show how this is may be supported in view programming,
SOP, and AOP.

3.2 Method dispatching with view programming
Figure 1 illustrates view programming’s object model. An object is made up of a core object (core
attributes and functionalities) and a time-varying set of views (roles, etc.). At any given point in
time, the object supports the combined interface of all the views that are currently attached to it.
Upon receiving a message, the object “somehow” figures out which methods are available to it at
the time—based on the views currently attached— and then invokes the proper combination. In
our C++ implementation, views are regular C++ classes which point to instances of the core class,
and delegate to them some of their behaviour. Application objects are declared with the type of
the core object, but different views may be attached and/or activated1through calls to an inherited
method “attach(<view instance or view class name>)”. In turn, developers are allowed to invoke
the combined interface on the core object, even though the core class supports only a subset of the
combined interface thanx to two mechanisms:
1. for each object, we create a special view that implements the combined interface—call it

composition view—based on the set of views (view classes) available to the core class (list
of #includes). The composition view implements the dispatching mechanism explained in
section 3.1,

2. we built pre-processors that replace all behaviours invocations on the core object by dele-
gated calls to the composition view2.

Referring to Figure 1, if in the course of the program execution a call is made to method ‘j(int)’ at
a point where view 2 is not attached, the implementation of ‘j(int)’ in the composition view will

1. an attached view that is not activated does not participate in behaviours, but preserves its state until it is
activated again.

a: int;
b: float;
f(x: int): int;
g(y:float): int;

Core object

c: int;
f(x: int): int;
k(x:int): float;

View 1

b: float;
k(x: int): float
g(y:float): int;

View 3

d: float;

j(x: int): int;
g(y:float): int;

View 2

i(z: char): bool;

f()

g(), a

g(), b

a: int;

Figure 1. A model of objects with views.

h(z: string): int;

f(int)

Application object

g(float)
h(string)

k(int)

j(int)

i(char)

Legend: - dotted arrows indicate delegation links.
- the resulting application object supports all the interfaces

Page 6

handle this any way we want, including simply by generating an exception saying in effect
“behaviour not supported at this time”.

We haven’t studied the cases of Smalltalk and Java seriously, but one thing is certain: in Small-
talk, we would not need any code transformations, for two reasons: 1) the compiler does not
check whether a method is supported by a given class, and 2) we can modify the language’s basic
method dispatching mechanism to implement the desired dispatching method.

3.3 Supporting run-time composition in SOP
At first hand, we can support run-time composition in SOP by doing the following: 1) supporting
the activation and de-activation of subjects, and 2) generating different versions of the same
methods corresponding to various combinations of active subjects, and 3) supporting the dis-
patching mechanism described earlier. With n subjects, the current configuration may be repre-
sented by a number between 1 and 2n, and dispatch tables for each method could be 2n long, with
repeat entries. Notwithstanding the overhead in code size and dispatch time, we believe that keep-
ing track of where things come from can be very tricky: it may not be possible or practical to
deduce, from a single n-subject composition, what an m-subject composition might look like, for
a subset of size m of those n subjects, because of all the degenerate (many to many) composition
rules, for both classes, and for inheritance relationships. The problem here is that inheritance
within subjects and composition across subjects interact. We don’t have that problem with views
which are generated “flat”1. If subject composition takes place on flattened subject hierarchies,
doing this might be easier.

3.4 Supporting run-time aspect weaving in AOP
At first glance, dynamic associations may be triggered and inhibited at will, supporting some
form of run-time weaving, provided that the objects involved in a dynamic associations need not
store state specific to those associations. Those aspects that are woven into code using the “intro-
duce” directive probably require similar mechanisms to run-time subject composition discussed
above. Advisories appear to be fairly easy to compose in different combinations: the different
advisories for the same method will keep their relative ordering, whichever subset is executed.

3.5 Supporting run-time role composition with role components
Role components rely directly on inheritance to compose roles, and dependencies between roles
dictate the inheritance hierarchy of the various roles. At first glance, it does not appear to be an
easy thing to do to get the behaviour that corresponds to a select subset of roles. Perhaps the only
sub-compositions we can get are sub-chains of the role inheritance hierarchy that consist of pre-
fixes of the entire chain (starting with the root class/role). We suspect that there might be more
relaxed conditions (such as “definition completeness” of the subset of role components).

2. Because the code of view classes is generated by us (from templates parameterized by the core class we
call viewpoints), we are able to handle the most common cases of the so-called “broken-delegation prob-
lem”. In fact, broken delegation has become a security feature that we may turn on or off through a pre-pro-
cessor switch [Mili & Dargham, 1998].
1. Viewpoints are organized in specialization/extension hierarchies, but the view classes generated from
them make no reference to hierarchy.

Page 7

3.6 Run-time composition of realms in Genvoca
This discussion does not appear to be relevant to Genvoca since the various realms/components
correspond to layered services: for the components in any given realm, we need all the layers on
top of which it was built. Perhaps the only thing we can do is to be able to peel off those layers in
a dynamic fashion, by: 1) passing the objects around to functions that expect different types of
parameters, and 2) using smart-pointer like constructors that will peel/wrap those objects while
passing them around.

4. Summary
We use software of concerns to manage the complexity of the systems we try to build, and to
delay, as far as we can, the binding of the various pieces/concerns of the system to each other, so
that they may be developed, tested, and maintained separately. In this paper, we studied a number
of approaches to separation of concerns from the perspective of binding time for the various con-
cerns. Further, we identified an additional reason why separation of concerns is important:
dynamic classification of objects. We discussed some of the issues raised by implementing
dynamic classification, and explored to which it may be supported in the various approaches to
separation of concerns.

References
• [Batory & Geraci, 1997] Don Batory and Bart Geraci, “Composition validation and subjectivity in

GenVoca generators,” IEEE Transactions on Software Engineering, vol. 23, no. 2, February 1997,
pp. 67-82.

• [Harrison 93] William Harrison and Harold Ossher, ‘‘Subject-oriented programming: a
critique of pure objects,’’ in Proceedings of OOPSLA’93, Washington D.C., Sept 26-Oct
1, 1993, pp. 411-428.

• [Kiczales & Lopez, 99] Gregory Kiczales and Cristina Lopez, ‘‘Modularization revisited:
aspects in the design and evolution of software systems,’’ in Tutorial notes, TOOLS USA
99.

• [Martin & Odell, 1992] James Martin and James Odell, in Object-Oriented Analysis and
Design, Prentice-Hall, 1992.

• [Mili & Li, 1993] Hafedh Mili and Haitao Li, ‘‘Data abstraction in Softclass,’’ in Proceed-
ings of TOOLS USA 93, Santa Barbara, CA, Aug. 2-5th Prentice-Hall, pp. 133-149.

• [Mili et al., 1999] Hafedh Mili et al., ‘‘View programming: towards a framework for the
decentralized development and execution of OO programs,’’ in Proceedings of TOOLS
USA’99, Santa Barbara, CA, August 2-5, 1999, IEEE CS Press, pp. ??-??.

• [Ossher 96] Harold Ossher, Mathew Kaplan, William Harrison, Alex Katz, and Vincent
Kruskal, ‘‘Specifying subject-oriented composition,’’ in Theory and Practice of Object
Systems (TAPOS), 2(3), 1996. Special issue on “Subjectivity in Object-Oriented Sys-
tems.”

• [Reenskaugh, 1995] Trygve Reenskaugh, in Working with Objects, Prentice-Hall, 1995
• [VanHilst & Notkin, 1996] M. Van Hilst and D. Notkin, “Using Role Components to Implement

Collaboration-Based Designs,” in OOPSLA’96, San-Jose, CA, 6-10 Oct., 1996, pp. 359-369.

