adapter AR_TO_FR {

}

class AppRoot_FrameworkRoot adapts AppRoot extends FrameworkRoot {
FrameworkChild frameworkChild() { return adaptee.appChild(); }
void primitiveop_1() { adaptee.method_m(); }

void primitiveop_2(FrameworkChild f) { adaptee.method_n((AppChild) f); }

}

class AppChild_FrameworkChild adapts AppChild extends FrameworkChild {
void primitiveop_3() { adaptee.method_o(); }

}

//example main program that applies the adapter to an application object

public class Client {
static public void main(String[] args) {

}

a

((AR_to_FR) new AppRoot()).templatemethod_1();

Fig.4. Dynamic Component Gluing - Succinct Specification

dapter defines a set of dynamic connections between the application and frame-

work components. Each connection represents the dynamic adaptation of an ap-
plication class to a framework role. The adapter class of Fig. 2 can be generated
from this specification.

A key theme of the work described here is separation of concerns to avoid

software tangling. This is also the motivation behind both HyperSpaces [4] and
Aspect-Oriented Programming [5]. Hyper/J [4] and Aspect] [5] are extensions
of Java that allow one to program different concerns separately. Mezini and
Lieberherr proposed Adaptive Plug and Play Components, or AP&PCs, which
define a slice of behavior for a set of classes, and can be parameterized to allow
reuse with different class models. An enhanced form of AP&PCs that decreases
tangling of connectors and aspects is described in [1]. This improved form of
AP&PC uses similar techniques as we describe here, along with tool support.
Example code of the adapter design pattern is available at

www.cse.scu.edu/” Iseiter/classes/gcese/.

References

1

. K. Lieberherr, Lorenz, and M. Mezini, Aspect-Oriented Components, College of

Computer Science, Northeastern University, Technical Report, Boston, MA, 1999.

M. Mezini and K. Lieberherr, Adaptive Plug and Play Components for Evolutionary

Software Development. Proc. OOPSLA, October 1998. ACM Press.

. L. Seiter, M. Mezini, K. Lieberherr, Inner Classes For Component-Based Program-
ming. Proc. First International Symposium on Generative and Component-Based
Software Engineering, GCSE’99. Springer Verlag, LNCS.

. P. Tarr, H. Ossher, W. Harrison, S. Sutton Jr., N Degrees of Separation: Multi-
Dimensional Separation of Concerns, In /CSE’99. May 1999.

. Xerox PARC Aspect] Team, Aspect]J, Xerox PARC Technical Report, January 1999,
http://www.parc.xerox.com/spl/projects/aop/

Fig. 2 shows that no modification of the framework or application is required
and that all gluing code is encapsulated within the adapter class, including code
for traversing the application composite as well as code for mapping types from
one domain to the other due to incompatible signatures. New adaptations can
be dynamically added because adapters are implemented as separate objects.

adapter

public class GeneralAdapter

HashTable factoryRepository;

GeneralAdapter() {
factoryRepository = new HashTable();
llcreate a GeneralWrapperFactory for each inner class

}

public Object wrap(String adapterClass, Object obj) {
/lget the factory for the given adapter class
GeneralWrapperFactory factory = (GeneralWrapperFactory)factoryRepository.get(adapterClass);
return factory.wrap(obyj); //wrap the application object with an adapter (inner class instance)

}
public Object unwrap(Object obj) {

‘return factory.unwrap(obj); //lunwrap the application object from the adapter

public class GeneralWrapperFactory
HashTable table;
GeneralAdapter() { table = new HashTable(); }

public Object wrap(Object key) {
/lif the application object is not in the hashtable, create adapter for it and add to table

}
public Object unwrap(Object obj) {
Ilget the application object from the hashtable, where obj is the adapter object

llcreate method is implemented by an anonymous class, to instantiate the appropriate
/ladapter object (inner class instance)
public abstract Object create();

Fig. 3. Adapter Package - General Utility Classes

There are two main drawbacks of the technique. First, the delegation model
requires additional method invocations for each invocation of a framework method.
However, the source of this problem is the attempt to simulate dynamic modi-
fication of object behavior in a static language like Java. The second drawback
is the complexity of the technique, especially when several frameworks are de-
ployed within an application. Our experience with using the technique shows
that it is best suited for code generators that would implement high-level lan-
guage constructs for framework composition, such as Adaptive Plug and Play
Components, (AP&PCs) (2], adapters [3], as well as Hyper/J hyperspaces [4].

Fig. 4 defines the framework deployment using a dedicated scoping construct
called adapter for succinctly specifying dynamic composite adaptation[3]. The

classes to simulate each dynamic class adaptation: AppRoot_FrameworkRoot and
AppChild_FrameworkChild. Each inner class serves as both an application object
wrapper and a framework role implementor. It is important to reuse the same
adapter (inner class instance) once an application object is wrapped, as the
framework may add local state. Each inner class implements a framework role
interface by explicitly delegating to the wrapped application object.

public class AR_to_FR extends GeneralAdapter

public void templatemethod_1(AppRoot o) {
((AppRoot_FrameworkRoot) wrap("AppRoot_FrameworkRoot",0)).templatemethod_1();
}

public class AppRoot_FrameworkRoot extends FrameworkRoot

/limplement FrameworkRoot structure mapping method
protected FrameworkChild frameworkChild() {
return (AppChild_FrameworkChild) wrap("AppChild_FrameworkChild",((AppRoot) unwrap(this)).appChild());

/limplement FrameworkRoot primitive operations

protected void primitiveop_1() { ((AppRoot) unwrap(this)).method_m(); }

protected void primitiveop_2(FrameworkChild f) {

}((AppRoot) unwrap(this)).method_n((AppChild) unwrap((AppChild_FrameworkChild) f));

public class AppChild_FrameworkChild extends FrameworkChild

/limplement FrameworkChild primitive
protected void primitiveop_3() { ((AppChild) unwrap(this)).method_o(); }

Fig. 2. Dynamic Composite Adapter - Java Implementation

The pattern relies on the utility classes shown in Fig. 3. GeneralAdapter
serves as the superclass of all toplevel adapter classes, its constructor uses Java’s
reflection API to generate one GeneralWrapperFactory object per inner class.
The GeneralWrapperFactory class maintains a collection of adapter objects that
wrap application objects in order to dynamically extend them. The wrap method
of the GeneralWrapperFactory class maintains a hashtable for the mapping be-
tween an application object and the adapter that wraps it, while the unwrap
method retrieves the application object wrapped by a given adapter. The wrap
and unwrap methods of the GeneralAdapter class simply delegate to the appro-
priate GeneralWrapperFactory object.

Clients can then invoke templatemethod_1{) on an AR_to_FR object, passing
the root of the application composite as a parameter. The root is immediately
wrapped with the corresponding AppRoot_FrameworkRoot adapter. Each appli-
cation object that comes into the scope of an inner class method, either through
direct instantiation or as the result of calling an application method, is wrapped
by the dynamic adaptation of its class. For example, in the frameworkChild()
method the application object returned from the appChild() method is wrapped
by a AppChild_FrameworkChild adapter. Subsequent framework method invoca-
tions are sent to the adapter. Conversely, an application object is unwrapped
from its adapter before an application method can be invoked upon it, as in the

frameworkChild() method body which invokes the appChild() method.

Framework |

public abstract class FrameworkRoot public abstract class FrameworkChild
/labstract structure mapping method i primiti
protected abstract FrameworkChild frameworkChild() protected abstract void primitiveop_3()

/labstract primitive operations
protected abstract void primitiveop_1()
protected abstract void primitiveop_2(FrameworkChild)

/Iconcrete template method (collaboration skeleton)
public templatemethod_1() {
primitiveop_1();
primitiveop_2(frameworkChild());
frameworkChild().primitiveop_3();

extends
F . | extends
| protected FrameworkChild frameworkChild() /

// | { return appChild(); } |

1
/ : protected void primitiveop_1() { method_m();} / /lprotected void primitiveop_3() //:
/

|
| /1 1 {method_o(); }
/ | protected void primitiveop_2(FrameworkChild f) | / |
/ { method_n((AppChild) f); } / | / }_ __________ //_ _.I
/oy /
/] Application | / / ;! !y
/ /’ / /l b
/ public class AppRoot / 4 /
4 / public class AppChild /
/public AppChild appChild(){ return appChild; } /appChild // /
public void method_m() {... ; f /
// public void method_n(AppChild) {...} 4 public void method_o({...}

Fig. 1. Gluing of Application Class Model to Framework Roles

an application model in the Application package. Assume we wish to deploy the
framework, with AppRoot playing the FrameworkRoot role and AppChild play-
ing the FrameworkChild role. The dashed enclosures in Fig. 1 represent dynamic
class adaptations, each depicting how an application class needs to be adapted
to fulfill a framework role. Our goal is to utilize the framework without “physi-
cally” extending the application classes. Rather, we make the application objects
appear to acquire the types encoded by the dynamic class adaptations of Fig. 1.
That is, given the root of an application object 0: AppRoot., we need to:

1. Wrap the object o with the code in the AppRoot dynamic class adaptation.

2. Each application object that comes into the scope of the dynamic adaptation
code must be wrapped with the dynamic adaptation of its class.

3. A wrapped application object should be unwrapped before it can leave the
scope of the dynamic adaptation code.

This is exactly what the dynamic composite adapter design pattern does.
The structure of the pattern is shown in Fig. 2. The toplevel adapter class
AR_to_FR implements the framework deployment, defining two inner adapter

Dynamic Component Gluing

Linda Seiter’, Mira Mezini?, and Karl Lieberherr?

! College of Engineering, Santa Clara University, Santa Clara, CA, USA.
lseiter@scu.edu, www.cse.scu.edu/” Iseiter
2 College of Engineering and Computer Science, University of Siegen, Germany.
mira@informatik.uni-siegen.de, www.ccs.neu.edu/home/mira
? College of Computer Science, Northeastern University, Boston, MA, USA.
lieber@ccs.neu.edu, www.ccs.neu.edu/home/lieber

Abstract. We present the dynamic composite adapter design pattern
to achieve modular, dynamic, non-invasive component adaptation. The
pattern allows a clean separation between an abstract framework com-
ponent and a concrete application component, while supporting the dy-
namic “gluing” of the two. This allows the different system concerns to
be carved into separate components, which may then be dynamically
composed. We also present a scoping construct for succinctly defining
the dynamic gluing of Java components.

A collaboration can be implemented as a white-box framework, 1.e. a set of
abstract classes. a set of abstract primitive operations, and a set of concrete tem-
plate methods that define the collaboration skeleton. The abstract framework
model is easily customized by an application through static subclassing. How-
ever, this solution is invasive in that it requires modification of the application
classes. It is also not modular, as the framework deployment is scattered among
the application classes, its code tangled among the existing application code. It
is also static, the framework deployment is fixed prior to runtime. It is often de-
sirable for an application to dynamically customize a framework, especially with
Java’s runtime architecture. A running application may wish to apply a newly
loaded collaboration scheme to a set of previously loaded classes. As component-
oriented programming emphasizes the gluing of pre-existing binary components,
we assume that the application model and the collaborative designs that model
business processes represent concerns that are independently developed by dif-
ferent component vendors, and then “glued together” at the customer site. We
propose the dynamic composite adapter design pattern as a model for dynamic,
non-invasive component adaptation [3].

Consider the Framework package in Fig. 1, i.e. the FrameworkRoot and
FrameworkChild classes. The composite structure between parent and child is
modeled through the structure mapping method frameworkChild() rather than
through an aggregation relation to allow the abstract framework structure to
be subsequently implemented in terms of a concrete application structure. The
template methods define the collaboration skeleton, invoking abstract primitive
operations that will be customized by individual applications. Fig. 1 also defines

