

Sorting out Concerns∗∗∗∗
Lee Carver and William G. Griswold
{lcarver, wgg}@cs.ucsd.edu

Computer Science and Engineering
UC San Diego

La Jolla, CA 92093

Abstract
Realizing the dream of additive, rather then invasive, software
development requires support for the components and compo-
sition methods used to implement production quality software.
The invasive changes common in most development indicate
the inadequacy of standard practice. Several recent proposals
(Hyperspaces, Aspect Oriented Programming) suggest that the
problems are inherent in hierarchical nature of the standard
mechanisms. These proposals define new mechanisms that
can support a richer set of software construction methods.

These new mechanisms have been used to guide a dissection
of Gnu sort.c (2145 text lines). The goals of this experiment
include the identification and analysis of concerns and compo-
sition mechanisms used in real, production quality software.
Preliminary results indicate that the new proposals do a good
job of describing many forms of program composition. Al-
though 60 concerns have been identified, the interactions be-
tween 27 of them can be described by a single hyperspace.
This hyperspace describes most of the program’s external
behavior. It consists of one dimension with 20 configuration
concerns cross-cutting 3 dimensions defined by 7 feature con-
cerns. However, some compositions are more troubling. In 3
cases, adding a concern inserts code into the middle of already
established behaviors. These compositions appear to violate
the notion that join points can be restricted to individual meth-
ods or operations.

1. Introduction
Any non-trivial software system is the conglomeration of con-
cerns and algorithms. Ideally, each concern and algorithm
would be separately specified and then composed to form the
final system. Such an approach has great intellectual appeal
and numerous pragmatic advantages. The advantages include
support for evolutionary software development, increased
reuse of code and other artifacts, improved robustness, and
shorter time to market.

Unfortunately, too much of development involves invasive
and repetitive modification of a program text. The inability to
isolate the modifications for a change indicates an inability to
maintain a separation of concerns. A key factor in this inabil-
ity is inadequate techniques for organizing concerns and defin-
ing their composition. Ideally, each concern is encapsulated as
a single, self-contained software module. Several mechanisms
for defining modules are in common practice. These include
layering[1], stepwise refinement[2], and information hiding[8].

These mechanisms underlie much of the progress in software
engineering, and they are fundamental to the notion of object-
oriented programming.

An important insight is that standard practice allows only
some concerns to be separated. The conventional mechanisms
rely heavily on hierarchical structures. This does allow ready
separation of many concerns. However, it is inadequate when
there are multiple independent concerns. Features, perform-
ance, and error handling are independent and common con-
cerns in many production quality applications. Standard
practice uses the features to define a module hierarchy. This
forces the performance and error handling concerns to be dis-
persed throughout the feature modules. These dispersed con-
cerns are often referred to as cross-cutting aspects. The use of
a single hierarchy forces independent concerns to be dispersed
across the software modules.

Recently, several new mechanisms have been proposed for
organizing and composing concerns. These new mechanisms
directly support non-hierarchical collections of concerns.
Aspect oriented programming (AOP)[4] and subject oriented
programming (SOP)[5] provide mechanisms to integrate mod-
ules from independent hierarchies. The concern hyperspace
model supports a behavioral definition of concerns and allows
concerns to be organized into multiple dimensions[7].

These mechanisms create a new context for understanding
program structure. We expect that these new mechanisms will
allow us to completely describe sort.c’s structure. This
description will be complete in the sense that every character
in the source is associated with at least one concern. Its mod-
est size (2145 text lines) allows for a detailed analysis. De-
spite its small size, it offers a rich set of capabilities: large file
support, complex sort keys, and excellent performance. We
expect hyperspaces to provide simple representations for con-
cern interactions and AOP/SOP to provide mechanisms for
generating the application from the identified concerns.

Traditional notions of software composition and architecture
fail to describe all of the interconnected behaviors in the pro-
gram. The interactions between usage() text, command line
parsing, configuration options, and sorting features cannot be
described hierarchically. The hyperspace model captures these
connections with four dimensions. The traditional mecha-
nisms also fail to explain the program’s synthesis or evolution.
The transition from an object model to source code is essen-
tially a black art. Hyperspaces and hypermodules offer a way
to experiment with clusters of concerns. AOP and SOP allow
a developer to realize code from these clusters.

We expect that this experiment will validate the theories of
software hyperspaces and to provide practical experience with
AOP and SOP. Early results indicate that hyperspaces, AOP,

∗ This research was supported in part by NSF grant CCR-9508745 and took

place in part while the second author was on sabbatical with the AOP group at
Xerox PARC.

 Sorting out Concerns

 2

and SOP do good job of supporting the methods used to im-
plement production quality software.

The following sections provide details on this experiment.
Section 2 introduces the concepts used throughout this docu-
ment. Section 3 describes how concerns are identified and
isolated from the rest of the program source. Section 4 pre-
sents some preliminary results based on the concerns that have
been identified. The final section presents some conclusions
and suggests areas for future work.

2. Concepts
In order to enumerate and classify the concerns in sort.c a
concise definition of concerns is required. The general notion
of a concern is any coherent issue in the problem domain. This
definition covers very complex situations, but provides little
guidance for the enumeration of the practical concerns within a
program.

The complementary notion of minimal subsets and minimal
increments provides the required guidance for enumerating
concerns. It is especially appropriate for concern hyperspaces,
since minimal subsets define a mapping from program text to
concerns. Each subset or increment defines a single concern.
The code that implements each increment is the code that ad-
dresses that concern.

Concerns
An essential technique in software engineering is the separa-
tion of concerns[3]. In normal practice, this is mostly a phi-
losophical approach to the task. Clear guidance on the use and
practice of this technique can provide a more constructive
element in software development. A practical definition of a
concern is needed.

The basic notion of a concern is that it is any coherent issue
in the problem domain. This definition allows the notion of
concern to deal with arbitrarily complex concepts. Unfortu-
nately, it gives no guidance on which concerns are reasonable
and which concerns should be separated. The utility of a con-
cern is a practical matter. “Handle Errors” is obviously useful
for many programming tasks. “All occurrences of the letter s”
might be useful in a translation task.

In the hyperspace model, concerns are associated with soft-
ware artifacts and are expected to answer the query: Does
software entity X address concern Y? It is often convenient to
generalize this to the case where the queried software entity is
not a realized artifact. It might be an abstract construct or a
derived element. However, practical considerations require
that some representation be provided for an entity that is
manipulated by a hyperspace implementation.

Several common terms can be defined as specializations of
the term concern. A requirement (“sort lines of text”) is a
concern that is defined externally to the software. A capability
(“compare two keys”) is a concern that is (expected to be)
bound to executable code. An aspect is primarily a concern
that affects a dispersed set of modules. These terms are useful
when a restricted set of concerns is under discussion. Con-
cerns can also be used to model a whole raft of other software
terms like mode, feature, module, component, and function.
These terms denote concerns only in the sense that they define
a concise predicate over the software entities.

The concerns that we have identified come from a single arti-
fact: the code. This limits the class of concerns that can be
identified. The identified concerns are largely functional ca-
pabilities such as sorting, key extraction, and file transfers.
Concerns related to global issues are difficult to attach to spe-
cific program text. This includes the “-ilities” such as main-
tainability, supportability, and traceability. We assume that
these concerns exist in other artifacts (requirements, designs),
even when these artifacts are not physically realized.

Minimal Increments
The basic notion of a concern is too general to identify the
concerns that are useful for software development. We have
found that the complementary notion of minimal subsets[9] is
an effective way to identify concerns that are practical to soft-
ware development.

The minimal subsets method is normally used to construct
software. The first step is to define a minimal subset of the
desired capabilities that might conceivably perform a useful
service. Next, one defines a set of minimal increments to the
system. The goal in defining the core subset and the incre-
ments is to avoid components that perform more then one
function. By including or excluding different sets of incre-
ments, a developer can readily create a whole family of appli-
cations[10].

Hyperspaces and minimal subsets work well together. Each
subset and increment defines a concern. The software entities
that address such concerns are simple to determine. The code
that implements the minimal increment is the code that ad-
dresses that concern. In reverse, hyperspaces provide an effec-
tive way to manage a large number of small increments.

The dissection of sort.c reverses the construction process.
Capabilities that are not part of the minimal subset are rele-
gated to an increment. The minimal sorting program simply
reads a small file, sorts the lines, and writes the result. This
minimal program contains a number of minimal subroutines.
The minimal sort routine appears to be a 51-line merge sort.
Other minimal routines include managing the operating system
transfers, reading the file, and writing the result.

3. Dissection
The first goal of this experiment is a catalog of useful concerns
that completely describes sort.c. Every character in the
source text should be assigned to at least one concern. Our
progress on this takes advantage of an understanding of the
basic features and the apparent subsets in the program. Any
capability outside the minimal subset must be a separate con-
cern. The mapping of concerns to source text has been a
largely manual process.

The Corpse
A brief summary of sort.c’s capabilities and structure is a
useful guide for the remaining discussion. The syntax for the
traditional UNIX sort is:
sort –mcubdfinrtx [+pos [-pos]] … [-o output]

[-T directory] [file]

The -m, -c, and -u options activate the merge only, check
only, and unique records behavior. The +pos and –pos pairs

 Sorting out Concerns

 3

define multiple pairs of keys. The -dfinbr options change the
key comparison behavior. These changes include blank com-
pression, character translation, and reverse ordering. By de-
fault, sort reads from standard input, writes to standard output,
and uses %tmp% as the location for intermediate files. The
[file], -o, and -T options allow the user to specify alterna-
tives. The other options tweak the standard behaviors in spe-
cialized ways.

The Gnu sort.c extends these options is a number of ways.
It adds the POSIX -k option for specifying a key. It supports
additional comparison criteria, including numeric and month
name ordering.

The implementation is quite efficient and robust. In order to
minimize system resource usage, large files are broken into
sections (approximately 32K lines) that are sorted and then
merged. The internal processing of sort.c follows this pat-
tern:
read parameters;
for each input file {

break the file into sections;
sort each section into a temporary;
}

for each cluster of 16 temporaries
merge the temporaries;

Temporary files are carefully managed so that the final result
is directed to the output file, not to another intermediate.
There are numerous internal checks for special conditions,
such as an input file specified as the output file. Overall, it is
an extremely robust program.

Concern Identification
The notion of minimal subsets is the primary criteria for identi-
fying a concern. Any capability beyond the minimal subset
must be a separate concern. This standard can also be applied
to isolated to concerns and occasionally results in fine-grained
structure within a single concern.

The minimal version of sort.c that retains sorting capabili-
ties is:
read a “small” file from stdin;
sort the input;
write results to stdout;

This program does not use any command line options, any
temporary files, or allow any specification of keys. It does
provide a useful subset of the full program, sorting files that
are smaller then one section. This could be combined with
independent programs to section a file, manage a group of
files, and merge a group of files to achieve the original capa-
bilities.

The minimal program can be further reduced in a number of
ways. One can isolate the sort algorithm. This yields a 51-line
module based on sortlines(), an implementation of merge
sort. Other concerns to isolate include the file input support,
the file output support, and various aspects of operating system
coordination.

No base concern is readily apparent in the minimal subset.
All of the routines present in the minimal subset could be used
separately in other programs. Several of them could sport
multiple implementations. For example, the file input module
reads the entire file into virtual memory. Some systems can

implement this directly with memory mapped IO. Not even
the minimal program:
int status; void main() { exit(status); }

defines a stable base concern. It would be re-implemented for
a non-UNIX environment or a shared library application.

Concern Isolation
Concern isolation creates a mapping from each concern to the
program text that implements the capability. In the initial
dissection, this was a largely manual process. It required de-
tailed inspection of the program text and manual recording of
the responsible source code. All mappings refer to the original
Gnu-provided source code.

Visual inspection is often adequate to isolate small minimal
increments. Larger concerns often require multiple passes to
discover all of the code that implements a given capability.
grep-based tools can help find all uses of critical terminology,
and the C compiler can help find unexpected interactions be-
tween components. Better tools, especially with larger pro-
grams, would aid this process. For example, data flow and
control flow analysis tools could help ensure that all program
segments are identified.

For most concerns, even functional ones, the responsible
source code is several disjoint code segments. Often there are
separate segments for declarations, initializations, and the
implementation. A range of line numbers identifies most seg-
ments. Occasionally a code segment involves only part of a
line. This normally occurs when independent variables are
declared on the same line.

Use of the unmodified source code has been an overly strict
standard. It does prevent the unintended modification of the
program behavior, but it unnecessarily complicates the isola-
tion of concerns. Declarations should be rewritten one to a
line. Certain comma expressions should be transformed to
statements. Some repeated statement sequences could be con-
solidated into functions. These transformations should have no
effect on program behavior or performance.

4. Preliminary Results
At present, we have identified 60 concerns in sort.c. These
are largely functional concerns. Several uncounted concerns
that cross-cut the main functional hierarchy will be added as
the dissection proceeds.

Some of the most interesting results are the different forms
of composition required by the program. The vast majority of
composition steps simply add new behavior. However, the
added behavior invariably affects multiple independent con-
cerns. Simple hierarchical composition does a poor job of
describing these interactions. Compositions based on AOP or
hyperspace models is much more successful at describing
these interactions.

A few troubling compositions redefine existing behaviors,
rather then adding capabilities. These intrusive compositions
have interactions that go beyond simple operation-level wrap-
ping. Sometimes the join point is a sequence of locations,
rather then a single point in the code. Other cases profoundly
change the requirements of a component or introduce addi-
tional inputs to an operation.

 Sorting out Concerns

 4

Concerns
The currently identified concerns are, for the most part, ele-
ments of the functional hierarchy. The focus on minimal sub-
sets is the major cause of this functional decomposition. We
highlight a few of the identified concerns in Table 1.

 The majority of the 60 concerns are unique to the sorting
process. Only 18 of these concerns seem likely to occur non-
sorting programs. However, sorting is a common subcompo-
nent of many applications. The sorting concerns should be
organized into clusters of related capabilities that can be used
by future applications.

Additional cross-cutting concerns that we expect to isolate
include error handling and performance concerns. It may also
be possible to isolate some concerns that address global soft-
ware issues. Some sections of the program are readily seen to
implement the portability and maintainability concerns.

Additive Compositions
Much of the behavior in sort.c could be constructed as the
result of a series of composition steps. The majority of these
composition steps are strictly additive. Although the program
is constructed using only hierarchical mechanisms, these
mechanisms are largely inadequate to describe the interactions
introduced by each incremental concern. The richer models
provided by AOP, SOP, and hyperspaces are required to de-
scribe the interactions among concerns in production code.

The simplest compositions are those that occur when one
feature extends only one other feature. This situation can be
adequately described by traditional hierarchical mechanisms.
In sort.c, this applies only to certain high-level views of the
program architecture. Abstracting away the real world con-
cerns of error handling, performance, and user interface can
provide models that are describable with strictly hierarchical
mechanisms. The fine-grained concerns are implemented with
hierarchical mechanisms, but they all interact with features
from different hierarchies. Even simple features like setting
the temporary directory extend the user interface component
and the usage message component.

The next step up in complexity occurs when one feature ex-
tends multiple features. This form of composition uses opera-
tion-level join points[6]. These compositions can be described
using AOP or SOP mechanisms. The error handling, overwrite

protection, and parts of the multiple sort order concerns can be
described by this form of composition.

The next level of compositional complexity is cross-product
interactions between multiple features. Hyperspaces provide a
powerful mechanism for describing this form of composition.
This mechanism is appropriate for many of the capabilities in
sort.c. One 4 dimensional hyperspace provides a simple
model for 27 of the 60 identified concerns. The 20 concerns
associated with configuration options, such as case folding,
define one dimension. The user input dimension is defined by
two concerns: command line parsing for global options and
command line parsing for individual fields. The dimension
containing the usage message concern has only the one con-
cern. Other points in this dimension are unimplemented. The
feature dimension ties together four additional concerns that
address sorting modes, input handling, file names, and field
support. The numerous configuration concerns that cross-cut
each of the other dimensions makes hyperspaces a better de-
scription of these interactions.

Invasive Compositions
The addition of some concerns cannot be described with the
standard composition mechanisms. In these extensions, code
changes are not limited to operation level weaving. These
extensions change the internal behavior of existing code in a
more complex fashion. One case collects and transforms se-
quences of operations. Another case adds new requirements
that force the use of a specific sort algorithm. These concerns
tend to inject code into the middle of existing capabilities.

This form of composition indicates that unexpectedly com-
plex interactions exist between multiple concerns. Some oc-
currences introduce new global requirements. Other cases
occur when the natural composition order is reversed with
respect to the concern interdependencies. This reversed order
case might indicate that the developer has used an inappropri-
ate composition order. Changing the order of composition can
convert some invasive compositions to additive compositions.
Further research is needed to distinguish these cases.

A case of invasive composition occurs with the program
name concern. The program name concern deals with an ex-
ternal name used to run a program that differs from the internal
name given by the developer. In UNIX, argv[0] is the name
used to run a program. Well-behaved UNIX programs use this
value when they display messages for the user.

As a simplified example, adding the program name concern
transforms error messages from
fprintf(stderr, “sort: failed to open %s\n”,

szFilename);

to
fprintf(stderr, “%s: failed to open %s\n”,

argv[0], szFilename);

This is an extremely intrusive change to the code. Two co-
ordinated changes are required: one to the format string and
one to the parameter list. Both of these changes can have
complex interactions with the pre-existing context. In
sort.c, this context includes two occurrences of the program
name intermixed with other independent format substitutions.

Name Description
Sort algorithm The implementation of the sort algo-

rithm.
File input Read an entire file into virtual mem-

ory.
File output Write a block of bytes.
OS coordination Receive and release the execution

thread.
Multiple sort or-
ders

Support fields and different sort
orderings.

Command line
parsing

Decode argv[] elements.

Usage message Output a simple help message.
Program name Support external program names.

Table 1

 Sorting out Concerns

 5

This case is further complicated by the question of composi-
tion order. The conventional ordering adds the program name
concern to a system that already supports error messages. This
emphasizes the significance of the error messages, but leads to
invasive behavior changes. Reversing the composition order
results in an additive extension; error messages simply use the
program name concern. However, this case should not be
dismissed as an instance of poorly ordered composition. The
reverse order fails to capture both conventional practice and
conventional understanding of the interactions between the
concerns. The criteria for determining the appropriate compo-
sition order are an open issue.

A more complex case of intrusive composition occurs within
the basic sort function. The minimal sort program compares
every byte on every record to determine sort order. The mini-
mal sortlines() routine could implement any sort algo-
rithm. When keys and fields are added, parts of a record might
be ignored and the need for a stable sort is introduced. The
addition of keys and files forces the sort routine to use the
merge sort algorithm.

A third case occurs because of a performance interaction be-
tween sortlines() and its driver sort() routine. To
minimize memory allocation costs, a single work array is allo-
cated in sort() and reused within sortlines(). This opti-
mization requires extra parameters in sortlines() and
eliminates some memory allocation code that would otherwise
have been present. The insertion of parameters is an unex-
pected change to an existing capability. However, this may be
an artifact of the function-based programming style used in
sort.c.

Coping with Multiple Join Points
The addition of the program name concern seems to require
unconstrained changes at the expression level. Such transfor-
mations complicate, rather then simplify, program construc-
tion. This complexity can be reduced if printf() is treated
as an optimization. The error message above can be rewritten
as a sequence of fputs() statements:
fputs(“sort”, stderr);
fputs(“: failed to open ”, stderr);
fputs(szFilename, stderr);
fputs(“\n”, stderr);

Adding the program name concern substitutes the statement
fputs(argv[0], stderr); for the first statement. Text
output is especially susceptible to this kind of transformation.
printf() statements can be decomposed into a sequence of
fputs() statements. These can be further decomposed into a
sequence of fputc() statements.

The appropriate transformation appears to be that any (sub-)
sequence of operations can be a join point for an added con-
cern. Although this greatly expands the range of join points, it
is much simpler than unconstrained expression level changes.
The addition of concerns that independently transform over-
lapping sequences is a potential problem that needs further
investigation.

5. Conclusions and Future Directions
This detailed analysis of a production application has been a
very interesting approach to software engineering. Non-
hierarchal descriptions of software systems are essential when
describing the feature interactions in production code. Even
simple functions impact multiple capabilities from separate
areas of concern. The notions of hyperspaces and join points
make it feasible to describe these interactions.

Although many features can be introduced through additive
composition mechanisms, there are a few cases that violate this
rule. The addition of the program name concern and the stable
sort concern cause intrusive changes to existing code. It ap-
pears that sub-sequences of operations must be admissible as
join points.

Much work remains to be done. The identification and isola-
tion of concerns from sort.c needs be completed. Several of
the most strongly tangled concerns are still jumbled together in
one knot. In particular, the code that implements fields, keys,
and their various sub-concerns is currently one large cluster of
code segments.

The creation of a comprehensive hyperspace model is still
pending. The hyperspace model has been effective for describ-
ing the interactions between features, command line parsing,
and usage message text. These interactions form a dense re-
gion in the hyperspace model. The model needs to be ex-
panded to cover the more hierarchical regions of software
composition. We expect this to define sparse areas in the
hyperspace.

The re-implementation portion of the experiment has just be-
gun. We intend to develop the new sort as an evolutionary
product. A program implementing the full set of features will
be constructed by incremental addition of new capabilities.
This should provide an opportunity to experiment with differ-
ent composition sequences. We hope that this process will
help define the language features required to implement pro-
duction quality applications.

This kind of experiment should be repeated on a number of
other programs. Additional experiments on other programs of
similar size would validate the techniques and should expand
the set of known concerns. A separate direction is to expand
the size of the application that is analyzed. Modern commer-
cial software often exceeds a million lines of code. A useful
intermediate step would be an application with 10,000 to
50,000 lines. The extraction process would need to be par-
tially automated to support a body of source at this size.

References
[1] E. W. Dijkstra, The Structure of the “THE”-Multipro-

gramming System, Communications of the ACM, 11(5):
341-346, May 1968.

[2] E. W. Dijkstra, Notes on Structured Programming, In
Structured Programming, Academic Press, pp. 1-82,
1972.

[3] E. W. Dijkstra, A Discipline of Programming, Prentice-
Hall, 1976.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J. Loingtier, J. Irwin, Aspect-Oriented Program-

 Sorting out Concerns

 6

ming, In Proceedings of the European Conference on Ob-
ject-Oriented Programming (ECOOP), June 1997.

[5] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V.
Kruskal, Specifying Subject-Oriented Composition,
TAPOS, 2(3): 179-202, 1996.

[6] H. Ossher, P. Tarr. Operation-Level Composition: A Case
in (Join) Point. In Proceeding of the Aspect-Oriented
Programming Workshop at ECOOP’98,
http://www.parc.xerox.com/spl/projects/aop/ecoop98, pp.
116-119.

[7] H. Ossher, P. Tarr. Multi-Dimensional Separation of
Concerns. IBM Research Report RC 21452, 16 April
1999.

[8] D. L. Parnas, On the Criteria To Be Used in Composing
Systems into Modules, Communications of the ACM,
15(12): 1053-1058, December 1972.

[9] D. L. Parnas, Design and Specification of the Minimal
Subset of an Operating System Family, IEEE Transac-
tions on Software Engineering, SE-2(4): 301-307, March
1976.

[10] D. L. Parnas, Designing Software for Ease of Extension
and Contraction, IEEE Transactions on Software Engi-
neering, SE-5(2): 128-137, March 1979.

