
Towards a formal model of object-oriented hyperslices

Torsten Nelson, Donald Cowan, Paulo Alencar

Computer Systems Group, University of Waterloo
{ torsten,dcowan,alencar}@csg.uwaterloo.ca

Abstract
This position paper presents work in progress on a formal model for the composition of object-oriented hypersli ces
with method-level join points. With the formal model, we should be able to study existing approaches such as
subject-oriented programming, as well as extend other object-oriented languages, such as the UML, to
accommodate the use of hypersli ces. We show here a sample of the specification language that accompanies the
formal model, and a small example of its use.

1. Introduction
Multi-Dimensional Separation of Concerns (MDSC) is a model of decomposition that seeks to remedy the

deficiencies of traditional methods of decomposing problems [Tarr et al., 1999]. A problem decomposed according to
MDSC is formed by a set of hypersli ces, where a hypersli ce contains all elements that address a specific concern of the
system. MDSC can be applied at any level of abstraction.

MDSC distinguishes itself from other approaches to decomposition by the fact that the parts that make up the
decomposed problem are not disjoint. In other approaches, any entity from the problem domain appears in only one of
the pieces after decomposition – no entity appears in more than one piece. By contrast, an entity may appear in any
number of hypersli ces, and its definition can be different in each hyperslice.

The hypersli ce concept is directly related, and similar to, the concepts of “views” and “viewpoints” in software
engineering. These terms have become quite overloaded with similar but slightly different meanings. The exact
definition depends on different authors and different methods. Daniel Jackson, for example, offers the following
definition: "A view is a partial specification of the whole program, in contrast to a module, which is a specification -
often complete - of only part of the program" [Jackson, 1995]. We favor this definition of "view" with regard to
hypersli ces - a hypersli ce specifies some aspect of the entire program.

1.1. Object-oriented hyperslices
While the concepts behind MDSC are widely applicable, much of the work in the field involves its use together

with the object-oriented paradigm. Many of the shortcomings of object-orientation are addressed by MDSC. Among
these are rigid classification hierarchies, scattering of requirements across classes, and tangling of aspects related to
various requirements in a single class or module.

We are interested in the subset of MDSC that deals with object-oriented systems. We consider a hypersli ce to be
a module that conforms to some accepted model of object-orientation, made up of classes and class relationships such as
containment and inheritance. For an object-oriented system to fit into the category of MDSC, however, there must be
entities from the problem domain that appear in more than one module. That is, there must be classes in different
modules that represent separate aspects of the same class. Since a hyperslice is meant to be a complete encapsulation of
some relevant aspect of the system, the classes in a hypersli ce should not have any links to classes of other hypersli ces.
Each hypersli ce should be a well formed unit that can be understood in isolation.

As an example, one of the hypersli ces in a system may be concerned with displaying information about the
various objects that concern the system. The classes in this hypersli ce should have methods to invoke the output, and
whatever attributes that are relevant to these methods. Other attributes or methods, such as those concerned with
synchronization, or with some form of computation over the data, should not appear in this hyperslice. However, the
hypersli ce should contain all classes that have an output aspect to them.

1.2. Composing hyperslices
Since each hypersli ce is a plain object-oriented module, it can in theory be described using any object-oriented

language, at any level of abstraction. Having defined the hypersli ces, they must now be composed to form a complete
system. This is where the MDSC paradigm differs from other approaches to decomposition. Some approaches, such as
that advocated by module interconnection languages, define interfaces for modules, with provided and required
functionality, and match provided functions with required ones across modules. Others, such as frameworks, use
inheritance as the basic composition mechanism. In MDSC, each hypersli ce is well formed and independent, and does

not require other hypersli ces. There are objects, however, that exist in various hyperslices. In order to form the desired
system, we must establi sh the correspondence between these objects.

Correspondence is the specification of what elements match between hyperslices, and the semantics of each
match. There are many ways in which matching can affect the overall behaviour of the system. Matched classes may
have complementing behaviour, or one's behaviour may override the other, or they may interact in more complex ways.

The granularity of correspondence is an issue. Using classes as the unit of correspondence (also called join
point) seems to be too coarse. There are many different ways in which we may wish to specify that entire classes are
matched, and the model would require a large variety of different correspondence operators. On the other hand, using
single program statements is too fine-grained. Specifying correspondence would require understanding implementation
detail s, and would be very complex. In our model, we choose the middle road and use methods as the smallest elements
that can be matched. In [OT99], Ossher and Tarr argue in favor of this approach. We define correspondence operators
that allow methods to be matched with various different semantics. The semantics describe what method bodies are
executed in response to a method call.

Another issue with regard to correspondence is object binding. This is the specification of how objects of
classes with corresponding methods are bound to each other at runtime. The description of correspondence is class-
based, meaning that a method from a class is said to correspond to a method in another class. However, the semantics of
correspondence are observed during method invocation on particular runtime objects. If a method invocation results in
the execution of a method in an object of a different class, we must be able to determine exactly what the target object
is. The binding specification describes how to determine correspondence between runtime objects.

2. The hyperslice model
We are interested in studying object-oriented hypersli ces with operation-level correspondence. A language to

allow hypersli ce composition is under development. This is a class-based language that uses methods as the smallest
indivisible unit. It is not meant to be an executable object-oriented language, but a means to formally specify
compositions that can be done in any object-oriented design or implementation language. The language has two parts,
one for class definition and one for composition.

Once completed, the model should allow us to study properties of techniques that use operation-level
correspondence such as subject-oriented programming [Harrison and Ossher, 1993], as well as serve as a semantic basis
for the extension of other object-oriented languages with the required mechanism for multi-dimensional separation of
concerns. Since subject-oriented programming already represents an embodiment of MDSC at the implementation level,
one of our interests is in extending design-level languages such as UML.

2.1. Class language
The class language defines classes as sets of methods. A method has a name and a list of other methods that it

call s. The internal state of a method is irrelevant. Each method call in this li st is decorated with the modal symbols
� (always) and ◊ (possibly). At this stage, the language is untyped, and does not support parameters to methods, or
return values.

Data attributes are not yet modeled. Instead, they may be represented as methods, the data being the internal
state of the method. In fact, any method that does not call any other methods can be thought of as an attribute. This
approach is related to the one used by Abadi and Cardell i in their object calculus [Abadi and Cardelli , 1996].

Syntax:
hyperslice ::= class { class }
class ::= class name { method {, method } }
method ::= name ({ called-method })
called-method ::=

� name | ◊ name
name ::= an identifier containing letters, hyphens, or a period. The period separates class names from method names.

Example:
class Tree { nodes, find(

� nodes, ◊ travel-left, ◊ travel-right),
 travel-left (

� nodes), travel-right (� nodes) }

Note that the names inside the parenthesis are not arguments, but the li st of methods that the method call s.
In the example above, the class named Tree has four methods. The methods find, travel-left, and travel-right

will always call method nodes. The method find may, in addition, call methods travel-left and travel-right. The method
call li st may contain methods from other classes, specified by stating the class and method names separated by a period
(as in Tree.find).

2.2. Composition language
A composition is specified using calling contexts. At the highest level is the program calling context. By

default, in any context, calling a method results in that method being executed. Method correspondence expressions can
be used to change the effects of method call s. An expression is formed by two method names connected by a
correspondence operator. Each expression can also introduce new call ing contexts that have scope limited to the
execution of the method that precedes the context.

Table 1 shows the correspondence operators and their meaning in terms of method calls and executions. The
semicolon is used to denote sequence: a;b means that method a wil l be executed and immediately followed by the
execution of method b.

Operator Call Execution
Unidirectional
a followed-by b a a; b
a preceded-by b a b; a
a replaced-by b a b
Bidirectional
a merge b a a; b
 = a followed-by b ∧ b followed-by a b b; a
a swap b a b
 = a replaced-by b ∧ b replaced-by a b a

Table 1: Method correspondence operators

The bidirectional operators merely combine unidirectional ones and exist to add brevity to specifications.
Many others are possible besides the two shown above.

Composition language syntax:
context ::= { {expression} }
expression ::= name [context] | name [context] operator name [context]
operator ::= followed-by | preceded-by | replaced-by | merge | swap

Composition expression examples:
a { b followed-by c }

Calls to a wil l result in the execution of a. During the execution of a, calls to b wil l result in the execution of b,
followed by the execution of c.

x { p followed-by q } preceded-by y { r swap q }
A call to x will result in the execution of y followed by the execution of x. In the execution of y, calls to r are replaced
with the execution of q, and calls to q are replaced with the execution of r. In the execution of x, calls to p wil l result
in the execution of p followed by the execution of q.

2.3. Object binding
The composition operators are described at the class level. However, its effects are at the object level. A

correspondence operator says what happens when a call is made to a specific object. That call may result in the
execution of methods in a different object. We need a way to determine exactly what object the execution refers to.
Once that is determined, objects are bound to each other throughout their li fetime.

If there is a correspondence expression that matches a method call in a class a to a method execution in a
different class b, there must be a binding expression detailing how objects of class a are to be bound to objects of class
b. A binding expression has the form a operator b, where a is the class that has the method called, b is the class that has
the method executed in response to the call, and operator is a binding operator. There can only be one binding
expression involving any given pair of classes.

Currently, our language supports only three binding operators: binds-to-unique, binds-to-any, and binds-to-all.
The expression a binds-to-unique b means that an object of class a is bound to any object of class b, as long as b has not
yet been bound to any other object of class a. If such an object does not exist, one must be created. Another kind of
binding is binds-to-any. The expression a binds-to-any b means that an object of class a can be bound to any existing
object of class b. Finall y, binds-to-all means that an object of class a will be bound to all existing objects of class b.

The effect of binds-to-unique is to create a one-to-one correspondence between objects. If a binds-to-unique b,
then for each object of class a there will be an object of class b. The effect of binds-to-any is to create a many-to-one
correspondence. If a binds-to-any b, a single object of class b is suff icient; all objects of class a can bind to that object.
Finally, binds-to-all creates a many-to-many correspondence. In this case, when a method is called on an object of class
a, the corresponding method of class b wil l be executed for all objects of class b.

3. Example - Concurrent file system
In this example we will t ake two independent modules, a simple file system and a concurrency control unit,

and consider them as two hypersli ces, or separate aspects, of an integrated system. The system is to give support for
concurrency to the file system.

Hyperslice 1: File system
A simple file system hypersli ce contains two classes: File and Directory. Both allow
read and write operations.

Hyperslice 2: Shared buffer
The shared buffer hypersli ce contains a single class, Mutex, which encapsulates a shared

buffer for use in a concurrent environment by multiple threads. The shared buffer contains three
methods: read, write and cs. Many readers can access the buffer at the same time, but writers
require exclusive access. The cs method implements the critical section, which is where the buffer
is actually manipulated.

Our intention is to combine the two hypersli ces to produce a file system that supports execution in a concurrent
environment, i.e., that allows many simultaneous users to read from a file or directory, but requires exclusive access to
write in either of them.

Class definitions:
class File { read(), write() }
class Directory { read(), write() }
class Mutex { read(� cs), write(� cs), cs() }

The Mutex class is the synchronization aspect for the desired system. Our intent is for users to still be able to
use the File and Directory classes normally. However, before the file system operations can be used, the
synchronization process must happen. This means that the appropriate Mutex method must be executed before the file
system method. We use a correspondence expression to make sure that this happens, and that the appropriate file system
method is executed when the Mutex object enters the critical section. The four required correspondence expressions are
shown below:

Correspondence:
File.read replaced-by Mutex.read { cs replaced-by File.read }
File.write replaced-by Mutex.write { cs replaced-by File.write }
Directory.read replaced-by Mutex.read { cs replaced-by Directory.read }
Directory.write replaced-by Mutex.write { cs replaced-by Directory.write }

The four have similar structures. Let's examine the first line. When the user calls the read method of a File
object, the read method of a Mutex object will be executed instead. The method wil l go through the read access protocol
for the shared buffer. When it becomes possible to read the shared buffer, the cs method will be called. However, the
context specified that File.read be executed instead. The file is then read. When File.read returns, the rest of the
Mutex.read method is executed, releasing any locks that may be necessary. Figure 1 shows the flow of control between
the hypersli ces.

Figure 1: Call graph after correspondence

Directory

read
write

File

read
write

Mutex

read
write
cs

File.read called
Mutex.read executed

Mutex.cs called

File.read executed

File.read terminates

Mutex.read terminates

System File Mutex

Binding:
File binds-to-unique Mutex
Directory binds-to-unique Mutex

The effect of the binding expressions is to ensure that each File or Directory object will have its own Mutex object. This
will allow each file to have its own concurrency access; while a file is being read, a different file can be written to. Had
we used binds-to-any, instead, we would have all fil es sharing a single Mutex object, which would have the effect of
only allowing the file system to write to a single file at a time. This ill ustrates how the behavior of the system can be
modified by changing the binding expressions.

4. Work in progress
Many issues stil l need to be tackled before the model can be used as a basis for the extension of object-oriented

approaches. The language is still untyped, and methods support neither arguments nor return values. Dealing with these
will require substantial work on the semantics of the correspondence operators, since the parameters or return types of a
called method may differ from those of the executed method. The language also needs support for inheritance and more
complex types of object binding.

Another important issue under development is the use of transformations. The model describes the effect of
correspondence operators over a set of classes. However, since conventional object-oriented languages offer no
equivalent to these operators, the model would be more useful i f the systems described in accordance to it could be
converted into systems in the conventional object-oriented model. This can be accomplished by a set of semantics-
preserving transformations that would modify the existing classes to apply the functionality dictated by the
correspondence operators.

The formal model underlying the language is under development using the PVS language and theorem prover.

5. Related work
The Ku language [Skipper and Drossopoulou, 1999] is a formal model for hypersli ces that follows much the

same vein as the one presented here. Ku has different goals, however, meaning to study a broader range of composition
technologies, including aspect-oriented programming. It allows class definitions with typed attributes, and method
bodies with assignment. The composition operators in Ku operate at the class level. Our approach deals solely with the
effect of composition on method calls. We feel that our work is complementary in nature to that of Ku, being directed to
a narrower domain.

References

[Abadi and Cardelli, 1996] M. Abadi and L. Cardelli, A Theory of Objects. Springer-Verlag, 1996.

[Harrison and Ossher, 1993] W. Harrison and H. Ossher. Subject-Oriented Programming (A Critique of Pure Objects).
In Proceedings of OOPSLA 1993, pp. 411-428. ACM, 1993.

[Jackson, 1995] D. Jackson. Structuring Z specifications with views. ACM Transactions on Software
Engineering and Methodology. Vol. 4, no. 4. October 1995, pp. 365-389.

[Ossher and Tarr, 1998] H. Ossher and P. Tarr, Operation-level composition: a case in (join) point. In Proceedings of
the 1998 ECOOP Workshop on Aspect-Oriented Programming.

[Skipper and Drossopoulou, 1999] M. Skipper and S. Drossopoulou, Formalising Composition-Oriented Programming.
In Proceedings of the 1999 ECOOP Workshop on Aspect-Oriented Programming.

[Tarr et al, 1999] P. Tarr, H. Ossher, W. Harrison, and S. Sutton Jr., N Degrees of Separation: Multi-Dimensional
Separation of Concerns. In Proceedings of the International Conference on Software Engineering. Los Angeles,
May 1999.

