Towards aformal model of object-oriented hyperslices

Torsten Nelson, Donald Cowan, Paulo Alencar

Computer Systems Group, University of Waterloo
{torsten,dcowan,a encar} @csg.uwaterloo.ca

Abstract
This position paper presents work in progress on aformal mode for the @mposition of object-oriented hyperdices
with method-level join points. With the formal model, we should be able to study existing approaches sich as
subject-oriented progjamming, as well as extend aher object-oriented languages, such as the UML, to
accommodate the use of hyperslices. We show here asample of the specification language that acoompanies the
formal model, and asmal example of itsuse.

1. Introduction

Multi-Dimensional Separation of Concerns (MDSC) is a model of decomposition that seeks to remedy the
deficiencies of traditional methods of decomposing problems [Tarr et d., 1999. A problem decomposed according to
MDSC is formed by a set of hyperdlices, where a hyperdice mntains all e ements that addressa spedfic concern of the
system. MDSC can be applied at any level of abstraction.

MDSC distinguishes itself from other approaches to decomposition by the fact that the parts that make up the
decomposed problem are not digoint. In other approaches, any entity from the problem domain appeas in only one of
the pieces after decomposition — no entity appeas in more than one piece By contrast, an entity may appear in any
number of hyperdices, andits definition can be different in each hyperdice

The hyperdice oncept is diredly related, and similar to, the @mncepts of “views’ and “viewpoints’ in software
engineering. These terms have become quite overloaded with similar but dightly different meanings. The eact
definition depends on dfferent authors and different methods. Daniel Jackson, for example, offers the following
definition: "A view is a partia spedfication of the whole program, in contrast to a module, which is a spedfication -
often complete - of only part of the program" [Jackson, 1995. We favor this definition of "view" with regard to
hyperdlices - ahyperdli ce spedfies some asped of the entire program.

1.1. Object-oriented hyperdices

While the mncepts behind MDSC are widely applicable, much of the work in the field involves its use together
with the objed-oriented paradigm. Many of the shortcomings of object-orientation are addressed by MDSC. Among
these ae rigid clasdfication hierarchies, scattering of requirements across classes, and tangling o aspeds related to
various requirementsin asingle dassor module.

We are interested in the subset of MDSC that deds with ohjed-oriented systems. We mnsider a hyperdiceto be
amodule that conformsto some accepted modd of objed-orientation, made up of classes and classrelationships such as
containment and inheritance For an oljed-oriented system to fit into the category of MDSC, however, there must be
entities from the problem domain that appea in more than one module. That is, there must be dasss in different
modules that represent separate aspeds of the same dass Since ahyperdiceis meant to be a complete encapsulation of
some relevant asped of the system, the dasss in a hyperdice should not have any linksto classes of other hyperdlices.
Each hyperdiceshould be awell formed unit that can be understood in isolation.

As an example, one of the hyperdices in a systsem may be mncerned with displaying information about the
various ohjeds that concern the system. The dasses in this hyperdice should have methods to invoke the output, and
whatever attributes that are relevant to these methods. Other attributes or methods, such as those @ncerned with
synchronization, or with some form of computation over the data, should not appea in this hypersice However, the
hyperdlice should contain al classs that have an output asped to them.

1.2. Composing hyper dices

Since exch hyperdiceis aplain ohjed-oriented module, it can in theory be described using any objed-oriented
language, a any level of abstraction. Having defined the hyperdlices, they must now be composed to form a mmplete
system. This is where the MDSC paradigm differs from other approaches to decomposition. Some approaches, such as
that advocated by module interconnedion languages, define interfaces for modules, with provided and required
functionality, and match provided functions with required anes across modules. Others, such as frameworks, use
inheritance as the basic composition mecdhanism. In MDSC, each hyperdiceis well formed and independent, and cbes

not require other hyperdices. There ae objeds, however, that exist in various hyperdices. In order to form the desired
system, we must establi sh the correspondence between these objeds.

Correspondence is the spedfication of what elements match between hyperdices, and the semantics of each
match. There ae many ways in which matching can affed the overall behaviour of the system. Matched classes may
have complementing behaviour, or one's behaviour may override the other, or they may interact in more complex ways.

The granularity of correspondence is an isaue. Using classes as the unit of correspondence (also called join
point) seans to ke too coarse. There ae many different ways in which we may wish to spedfy that entire dasss are
matched, and the model would require a large variety of different correspondence operators. On the other hand, using
single program statements is too fine-grained. Spedfying correspondence would require understanding implementation
detail s, and would be very complex. In our model, we choose the middle road and use methods as the small est e ements
that can be matched. In [OT99], Ossher and Tarr argue in favor of this approach. We define correspondence operators
that allow methods to ke matched with various different semantics. The semantics describe what method bodies are
exeauted in response to amethod cdl.

Another isaue with regard to correspondence is object binding. This is the spedfication of how objects of
classes with corresponding methods are bound to each other at runtime. The description of correspondence is class
based, meaning that a method from a dassis said to correspond to a method in another class However, the semantics of
correspondence ae observed during method invocation on particular runtime objeds. If a method invocation results in
the exeaution of a method in an object of a different class we must be able to determine exactly what the target objed
is. The binding spedfication describes how to determine wrrespondence between runtime objeds.

2. The hyperslice model

We are interested in studying object-oriented hyperdlices with operation-level correspondence A language to
allow hyperdice @mposition is under development. This is a dassbased language that uses methods as the smallest
indivisible unit. It is not meant to be an exeautable object-oriented language, but a means to formally specify
compositions that can be done in any objed-oriented design or implementation language. The language has two parts,
one for classdefinition and ane for compositi on.

Once ompleted, the model should dlow us to study properties of techniques that use operation-level
correspondence such as subjed-oriented programming [Harrison and Ossher, 1993, as well as serve as a semantic basis
for the extension of other olject-oriented languages with the required mechanism for multi-dimensional separation of
concerns. Since subjed-oriented programming already represents an embodiment of MDSC at the implementation level,
one of our interestsisin extending design-level languages such as UML.

2.1. Classlanguage

The dasslanguage defines classs as sets of methods. A method has aname and a list of other methods that it
cals. The internal state of a method is irredlevant. Each method cdl in this list is decrated with the modal symbols
0 (aways) and ¢ (posshly). At this stage, the language is untyped, and does not support parameters to methods, or
return values.

Data atributes are not yet modeled. Ingtead, they may be represented as methods, the data being the interna
state of the method. In fact, any method that does not cdl any other methods can be thought of as an attribute. This
approach isreated to the one used by Abadi and Cardelli in their oject calculus [Abadi and Carddlli, 1999.

Syntax:
hyperdice ::=class{ class}
class ;= class name{ method {, method } }
method ::= name ({ called-method })
called-method ::= 00 name | ¢ name
name::= anidentifier containing letters, hyphens, or a period. The period separates dass names from method names.

Example:
class Tree { nodes, find(Onodes, ¢travel-left, Otravel-right),
travel-left (Onodes), travel-right (Onodes) }

Note that the names inside the parenthesis are not arguments, but the li st of methods that the method call s.

In the example above, the dassnamed Tree has four methods. The methods find, travel-left, and travel-right
will always call method nodes. The method find may, in addition, cdl methods travel-left and travel-right. The method
cal li g may contain methods from other classes, spedfied by stating the classand method names separated by a period
(asinTree. fi nd).

2.2. Composition language

A composition is gedfied using calling contexts. At the highest level is the program cdling context. By
default, in any context, calling a method results in that method being exeauted. Method correspondence expresgons can
be used to change the dfeds of method cdls. An expresson is formed by two method names conneded by a
correspondence operator. Each expresson can also introduce new calling contexts that have scope limited to the
exeaution of the method that precedes the context.

Table 1 shows the @rrespondence operators and their meaning in terms of method calls and exeautions. The
semicolon is used to denote sequence a;b means that method a will be exeauted and immediately followed by the
exeaution of method b.

Operator | cal | Execution
Unidirectional
a followed-by b a a b
a preceded-by b a b; a
a replaced-by b a b
Bidirectional
amergeb a ab

= a foll owed-by b 00 b foll owed-by a b b; a
aswapb a b

= areplaced-by b O b replaced-by a b a

Table 1: Method correspondence operators

The bidiredional operators merely combine unidiredional ones and exis to add krevity to spedfications.
Many others are posshble besides the two shown above.

Compositi on language syntax:
context ::={ {expression} }
expression ::= name[context] | hame [context] operator name [context]
operator ::= followed-by | preceded-by | replaced-by | merge | swap

Composition expresson examples:
a{ bfollowed-by c}
Calls to a will result in the execution of a. During the execution of a, calls to b will result in the execution d b,
foll owed hy the execution of c.

x { p followed-by q} preceded-by y { r swap q}
A call toxwill result in the execution of y foll owed by the execution of x. In the execution of y, callsto r are replaced
with the execution of g, and callsto q are replaced with the execution d r. In the execution of x, calls to p will result
in the execution of p foll owed by the execution d q.

2.3. Object binding

The mmposition operators are described a the dass levedl. However, its effects are d the ohjed leve. A
correspondence operator says what happens when a @l is made to a spedfic objed. That call may result in the
exeaution of methods in a different object. We neal a way to determine exactly what ohjed the exeadution refers to.
Oncethat is determined, objects are bound to each other throughout their lifetime.

If there is a @rrespondence expresson that matches a method call in a class a to a method exeadtion in a
different classb, there must be a binding expresson detailing how objects of classa are to be bound to dbjects of class
b. A binding expresson hasthe form a operator b, where aisthe dassthat hasthe method cdled, b isthe dassthat has
the method exeauted in response to the call, and operator is a binding operator. There can only be one binding
expresson involving any given pair of classes.

Currently, our language supports only threebinding operators: binds-to-unique, binds-to-any, and binds-to-all.
The epresson a binds-to-unique b meansthat an objed of classais bound to any objed of classh, aslong as b has not
yet been bound to any other object of classa. If such an objed does not exist, one must be aeaed. Ancther kind of
binding is binds-to-any. The expresson a binds-to-any b means that an objed of classa can be bound to any existing
objed of classh. Finaly, binds-to-all means that an olject of classa will be bound to all existing objects of classb.

The dfed of binds-to-unique is to create aone-to-one @rrespondence between objects. If a binds-to-unique b,
then for each objed of classa there will be an ohjed of classb. The dfect of binds-to-any is to create a many-to-one
correspondence If a bindsto-any b, asingle ohjed of classb is sufficient; all objects of classa can bind to that objed.
Finally, binds-to-all creates a many-to-many correspondence In this case, when a method is céled on an olject of class
a, the mrresponding method of classb will be exeauted for all objects of classb.

3. Example - Concurrent file system

In this example we will t ake two independent modules, a simple fil e system and a wncurrency control unit,
and consider them as two hyperdlices, or separate aspeds, of an integrated system. The system isto gve support for
concurrency to the fil e system.

Hyperdlice 1: File system File Directory
A simplefile system hyperdlice mntainstwo classs: File and Directory. Both allow read read
read and write operations. write write
Hyperdice 2. Shared buffer

The shared huffer hyperdlice ontains a single dass Mutex, which encapsulates a shared Mutex
buffer for use in a concurrent environment by multiple threads. The shared huffer contains three ead
methods: read, write ad cs. Many readers cen access the buffer at the same time, but writers write
reguire exclusive access. The cs method implements the critical seaion, which is where the buffer cs

is actually manipulated.

Our intention isto combine the two hyperdicesto produce a fil e system that supports exeaution in a concurrent
environment, i.e., that allows many simultaneous users to read from a file or directory, but requires exclusive accessto
writein either of them.

Classdefinitions
class File { read(), wite() }
class Directory { read(), wite() }
class Mutex { read(O cs), wite(Ocs), cs() }

The Mutex classis the synchronization asped for the desired system. Our intent is for users to till be able to
use the File and Diredory clases normaly. However, before the file system operations can be used, the
synchronization process must happen. This means that the appropriate Mutex method must be exeauted before the file
system method. We use a orrespondence expresson to make sure that this happens, and that the appropriate fil e system
method is exeauted when the Mutex oljed enters the criticd sedion. The four required correspondence expressons are
shown below:

Correspondence
File.read repl aced-by Miutex.read { cs replaced-by File.read }
File.wite replaced-by Mutex.wite { cs replaced-by File.wite }
Directory.read replaced-by Mitex.read { cs replaced-by Directory.read }
Directory.wite replaced-by Muitex.wite { cs replaced-by Directory.wite }

The four have similar structures. Let's examine the first line. When the user calls the read method of a File
objed, the read method of a Mutex objed will be exeauted instead. The method wil | go through the read accessprotocol
for the shared buffer. When it becomes posshle to read the shared huffer, the cs method will be clled. However, the
context spedfied that Fileread be exeauted ingead. The file is then read. When Fileread returns, the rest of the
Mutex.read method is exeauted, releasing any locks that may be necessary. Figure 1 shows the flow of control between
the hyperdlices.

System File Mutex
Fileread cdled

Mutex.read executed

>
Mutex.cs caled (

Fil e.read executed
<

Fileread terminates

>

Mutex.read terminates

Figure 1: Call graph after correspondence

Binding:
Fi | e binds-to-uni que Mitex
Directory binds-to-uni que Mitex

The dfed of the binding expresgonsisto ensure that each File or Directory objed will have its own Mutex oljed. This
will alow each fileto have its own concurrency access while afile isbeing read, a different file can be written to. Had
we used binds-to-any, ingead, we would have al fil es sharing a single Mutex objed, which would have the dfed of
only allowing the fil e system to writeto asingle file at atime. Thisill ustrates how the behavior of the system can be
modified by changing the binding expresgons.

4. Work in progress

Many isaues gill need to be tackled before the model can be used as a basis for the extension of object-oriented
approaches. The language is still untyped, and methods support neither arguments nor return values. Dealing with these
will require substantial work on the semantics of the @rrespondence operators, since the parameters or return types of a
call ed method may differ from those of the exeauted method. The language aso neals support for inheritance and more
complex types of object binding.

Another important isue under development is the use of transformations. The model describes the dfed of
correspondence operators over a set of classes. However, since @nventional oljed-oriented languages offer no
equivalent to these operators, the model would be more useful if the systems described in accordance to it could be
converted into systems in the conventional objed-oriented model. This can be accomplished by a set of semantics-
preserving transformations that would modify the e&iging clases to apply the functiondity dictated by the
correspondence operators.

The formal model underlying the language is under devel opment using the PV S language and theorem prover.

5. Related work

The Ku language [Skipper and Drossopoulou, 1999 is a formal model for hyperdices that follows much the
same vein as the one presented here. Ku has diff erent goals, however, meaning to study a broader range of composition
technologies, including asped-oriented programming. It allows class definitions with typed attributes, and method
bodies with assgnment. The cmposition operators in Ku operate at the dasslevel. Our approach deds lely with the
effed of composition on method calls. We fed that our work is complementary in nature to that of Ku, being dreded to
anarrower domain.

References
[Abadi and Cardelli, 1996 M. Abadi and L. Carddlli, A Theory of Objects. Springer-Verlag, 1996.

[Harrison and Ossher, 1993] W. Harrison and H. Ossher. Subject-Oriented Programming (A Critique of Pure Objeds).
In Proceedings of OOPSLA 1993, pp. 411-428. ACM, 1993.

[Jackson, 1995 D. Jackson. Structuring Z specifications with views. ACM Transactions on Software
Engineering and Methodology. Val. 4, no. 4. October 1995 pp. 365-389.

[Osdher and Tarr, 1998] H. Ossher and P. Tarr, Operation-level composition: a case in (join) point. In Proceedings of
the 1998 ECOOP Workshop on Aspect-Oriented Programming.

[Skipper and Drossopoulou, 1999 M. Skipper and S. Drossopoulou, Formalising Compositi on-Oriented Programming.
In Proceedings of the 1999 ECOOP Workshop on Aspect-Oriented Programming.

[Tarr et al, 1999 P. Tarr, H. Ossher, W. Harrison, and S. Sutton J., N Degrees of Separation: Multi-Dimensional
Separation of Concerns. In Proceedings of the International Conference on Software Engineering. Los Angeles,
May 1999

