
Separation of Concerns in Early Stage of
Framework Development

Shin NAKAJIMA

NEC C&C Media Research Laboratories

4 1 1 Miyazaki, Miyamae-Ku, Kawasaki, 216-8555 JAPAN

(TEL) +81 44 856 2259, (FAX) +81 44 856-2233

nakajima@ccm.cl.nec.co.jp

1 Introduction

Object-oriented framework is a promising solution technology for improving
reusability of software, where a framework is a reusable design of a program
or a part of a program expressed as a set of classes [5][8]. Having recog-
nized the importance of object-oriented framework, many methodologists pro-
pose design methods focusing on framework development. The methods include
collaboration-based design [3][4][10], role-based design [14] and design patterns
[6][8][13]. However, desiging well-organized frameworks is still an art.

Jackson points out two important issues in general on method and problem
[7]; (1) methods cannot be panaceas (medicines that cure all diseases), and (2)
very few problems can be decomposed into homogeneous structures. Because
real world system is complex, the problem is decomposed into a set of subprob-
lems. The subproblem is heterogeneous in the sense that it needs a di�erent
problem frame (a kind of structural pattern to solve the subproblem). In addi-
tion, methods should be related to a particular class of problem and thus give
a sharply focused help in reaching a solution.

In developing object-oriented frameworks for a real world complex system, a
method focused on separation of concerns is important at an early design stage.
The method bridges the gap between the complex problem and existing object-
oriented methods; the problem is one such that is decomposed into a set of
heterogeneous subproblems (separating out concerns), and the object-oriented
methods can handle only homogeneous world of objects.

This paper discusses a method that deals with separation of concerns at an
early design stage. It is a summary of an experience [12] in developing object-
oriented frameworks for an implementation of the OMG trading server [1]. The
paper also identi�es three further research topics.

1



Requirements
on Server

Aspect Design

OOD
Documents

Java
Programs

JDK/JavaIDL

The Problem

OMG Trader
Document

Figure 1: Design Process

2 Separation of Concerns Phase

Existing design methods for developing object-oriented frameworks are e�ec-
tive in general. The methods, however, have several drawbacks. (1) The design
methods have their basis on the object-orientation, and explicitly assume that
object is sole constituent of the system. (2) The methods provide only general
guidelines of decomposing a whole problem into constituent objects, and men-
tion no concrete hint for the decomposition. (3) The design pattern is a catalog
of useful design idioms, but most of them are at a programming level and are
thus not suitable for use at an early stage of the development.

Real world software such as the OMG trader server is a complex system.
The target problem has various aspects1 that are not amenable to homogeneous

object-oriented modeling. Analyzing the target problem and decomposing it
into a set of subproblems is the most important task.

Figure 1 summarizes the design process adapted in the present approach.
The �rst step of the process (the aspect design phase) is identifying a set of
distinct aspects in the problem to obtain a semi-formal description. The phase
starts with analyzing both the OMG document and the system requirements.
Using a speci�cation technique best �tted for the characteristics of each aspect
reaches aspect solutions. The solutions form a whole design artifact that is
the input to the next phase. The phase (object-oriented design) makes use
of existing methods such as collaboration-based design or design patterns. In
the course of preparing the design document, some part of the framework is
implemented incrementally in Java.

The following two characteristics of the aspect design seems well-known com-
mon practices; (1) decomposing a large complex problem into a set of man-
ageable subpoblems to solve individually, and (2) seeing a target system from
various viewpoints. For example, a top-down functional design approach deals

1The terminology, aspect, is borrowed from Kiczales et al[9] because viewing a software

system consisting of many aspects is the common idea.

2



Aspect Speci�cation Technique

language denotational semantics
policy functional programming
algorithm stream-style programming
common concept abstract datatype
architecture collaboration-based design
functional object collaboration-based design

Table 1: Aspects and Speci�cation techniques

with decomposition into procedures or processes. Its decomposition is homo-
geneous and hierarchical. OMT provides three models (object, dynamic, and
functional), and promotes a method to describe the system behavior by us-
ing the three di�erent models[15]. The model, however, represents a di�erent
viewpoint of a same entitiy, object.

On the other hand, the important characteristics of the aspect-centered de-
sign method is heterogeneity. Aspect is related to a subproblem that is further
re�ned and elaborated to reach solution description individually. The subprob-
lem needs not to be object-oriented, but is heterogeneous in the sense that each
subproblem is associated with speci�cation technique best �tted for its intrinsic
nature.

Table 1 summarizes the identi�ed aspects together with the accompany-
ing speci�cation techniques. Of the entries in Table 1, the meaning of policies
and the query algorithm are described in terms of the stream-style functional
programming model, and the constraint language is de�ned and elaborated by
means of standard technique for de�ning language semantics. The common
concepts such as ServiceType and PropertyDefinition provide basic vocab-
ularies and are naturally modeled as abstract datatypes. Both the architecture
and functional objects are re�ned and elaborated by using collaboration-based
design methods [3][10]; collaboration diagrams or message sequence charts are
used to analyze their interaction patterns so that the responsibility of each
participant object is well de�ned. However, the control aspects of the resouce
management requires detailed knowledge of the middleware solution used and
the execution mechanism that the implementation language/library (Java and
JavaIDL) provides.

3 Discussions

The present approach to separation of concerns is based on an idea of identi�ng
a set of distinct aspects in the target problem. The aspect solutions form a clear
input speci�cation to the framework design phase where existing methods such

3



as collaboration-base design and design patterns are employed (Figure 1).
The aspect solution description is concise and thus expected to ease future

maintenance.2 For example, sixteen functions for the algorithm abstractly de-
scribes design of about 30 Java classes, and about thirty lines of the denotational
style language description becomes more than 4K lines of Java codes including
classes for abstract syntax tree and visitor skeletons.

The aspect solution shows clear relationships between the design descriptions
at di�erent levels. First, the stream-style description does not have a large gap
with the OMG document, and, thus, both descriptions are quite traceable. It
is easy to perform conformance checking during the design phase. Second,
collaboration, which is the most important view of frameworks, is basically a
set of global interaction patterns and requires a concise notation for grasping the
global 
ow of control. Algorithm description using the functional programming
style is a good candidate for such a representation.

Three research areas can be identi�ed relating to the proposed method;
(1) aspect discovery, (2) checking integrity of all the aspect solutions (aspect
weaving!!), and (3) mapping pattern.

A hard part of the proposed method is lack of systematic methodology to dis-
cover appropriate aspects in a given problem. Since each aspect is accompanied
with a speci�c speci�cation technique, knowing a lot of speci�cation techniques
is helpful in identifying aspect in the problem. Accumulating various speci�ca-
tion techniques and experience with their application to system development is
one of the future directions.

The idea of aspect-centered design is essentially decomposing a whole prob-
lem into a set of manageable subproblems to solve individually. Each aspect
has its own notation such as functional-style descriptions or message sequence
charts, and is amenable to validate separately. On the other hand, the design
of the overall system requires to integrate all the solution descriptions. And
this is di�cult when each aspect solution uses a di�erent notation. Therefore,
currently the integration is done only through manual reviews during the design
phase of object-oriented framework.

Concerning the issue on the notation, two approach would be possible; (a)
establishing relationship between di�erent notations, and (b) providing a ho-
mogeneous notation. An example of the �rst approach is recent activities on
assigning rigorous semantics to various UML diagrams [2]. UML, however, is
based on the object-orientation and also not adequate for compact algorithm
descriptions. For the second approach, formal notation such as algebraic speci-
�cation language would be a candidate. It is because the language is powerful
enough to cover aspect solution descriptions, from functional programming de-
scriptions and abstract datatypes to message sequence charts[10][11]. Further
research is necessary for the notation.

2The size is not constant because we maintain and update the program code periodically.

The information here is only meant to illustrate the system size.

4



The proposed development process involves designing object-oriented frame-
works by using the aspect solutions as the input speci�cation. The design ac-
tivity is essentially elaboration of the solution, where identifying participant
objects and assigning them responsibility are important. Currently the activity
(mapping a fragment of the aspect solutions to object solution) is carried out
in a heuristic manner and does not have any systematic basis. Accumulating
mapping patterns to have a catalogue would be helpful in the process.

References

[1] OMG : CORBAservices, Trading Object Service Speci�cation (1997).

[2] The precise UML group (http://www.cs.york.ac.uk/puml/)

[3] Beck, K. and Cunningham, W. : A Laboratory for Teaching Object-Oriented

Thinking, Proc. OOPSLA'89, pp.1-6 (1989).

[4] Carroll, J.M. (ed.) : Scenario-Based Design, John Wiley & Sons 1995.

[5] Deutsch, L.P. : Design Reuse and Frameworks in the Smalltalk-80 Programming

System, in Software Reusability vol.2 (Biggersta� and Perlis, ed.), pp.55-71, ACM

Press 1989.

[6] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. : Design Patterns: Elements

of Reusable Object-Oriented Software, Addison-Wesley 1994.

[7] Jackson, M. : Software Requirements & Speci�cations, Addison-Wesley 1995.

[8] Johnson, R. : Documenting Frameworks using Patterns, Proc. OOPSLA'92, pp.63-

76 (1992).

[9] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-

M., and Irwin, J. : Aspect-Oriented Programming, Proc. ECOOP'97, pp.220-242

(1997).

[10] Nakajima, S. and Futatsugi, K. : An Object-Oriented Modeling Method for Al-

gebraic Speci�cations in CafeOBJ, Proc. ICSE'97, pp.34-44 (1997).

[11] Nakajima, S. : Using Algebraic Speci�cation Techniques in Development of

Object-Oriented Frameworks, to appear in Proc. World Congress on Formal Meth-

ods'99 (1999).

[12] Nakajima, S. : Aspect-Centered Design of Object-Oriented Frameworks, to ap-

pear in Trans. IPS Japan.

[13] Pree, W. : Meta Patterns A Means for Capturing the Essentials of Reusable

Object-Oriented Design, Proc. ECOOP'94, pp.150-162 (1994).

[14] Riehle, D. and Gross, T. : Role Model Based Framework Design and Integration,

Proc. OOPSLA'98, pp.117-133 (1998).

[15] Rumbaugh, J., Blaha, M., Premeriani, W., Eddy, F., and Lorensen, W. : Object-

Oriented Modeling and Design, Prentice-Hall 1991.

5


