
The Watson Subject Compiler & AspectJ

(A Critique of Practical Objects)

Mark Skipper (mcs@bcs.org.uk). Department of Computing

Imperial College of Science Technology and Medicine,

180 Queens Gate, London SW7 2BZ, UK.

1 September 1999

Abstract

Programming tools now exist that support both Subject-

oriented and Aspect-oriented programming. Some sim-

ple experiments with these tools have revealed insights

into the similarities and differences between SOP and

AOP in terms of their assumptions about the software

development process.

1 Introduction

Subject Oriented Programming (SOP) [7] and Aspect

Oriented Programming (AOP) [10] are two approaches

to solving problems in software development relating to

the dif�culty in cleanly dividing a system into modules

to achieve separation of concerns [15].

The problems have to do with the fact that conven-

tional approaches provide structures for organising soft-

ware that are different from the structures developers

�nd most comfortable when organising the concepts

they perceive in the problem domain. The problems

are particularly dif�cult because these structures are re-

quired to serve both as a system of conceptual classi�-

cation to aid understanding (as taxonomy does in biol-

ogy) and as a structural framework to support fabrica-

tion (as scaffolding does in building). An experienced

developer uses intuition to predict what constructs will

arise in a development project but, even with intuition,

refactoring is a regular and vital activity in the develop-

ment process [4]

SOP supports separation of concerns during the de-

velopment of a system by allowing the system to be de-

composed into a number of component systems which

are combined according to a set of rules to give the re-

sultant system [7]. AOP supports separation of concerns

during the development of a system by allowing some

of the aspects of the system to be separated out for sep-

arate development and then combined to give the resul-

tant system [11]. The Watson Subject Compiler (WSC)

[6, 9] and ASPECTJ [1, 2] are prototype tools based on

SOP and AOP. Experience with these tools gives some

idea of the bene�ts that might be achievable by adopt-

ing these approaches even if the tools themselves do not

support all features of their respective techniques.

In SOP a system under development comprises a

number of modules (subjects) and a set of rules that

describes how to put the modules together. The sub-

jects are created equal. Nothing in the SOP approach

itself separates any module from the others or requires

that it be given special attention. In AOP a system un-

der development comprises the base code module and

a number of aspect modules. The aspects contain code

fragments known as cross-cut actions that encode the

aspect's concern with respect to the base module. They

also contain the speci�cation of cross-cuts on the base

module that say where and how these actions should be

applied. This is illustrated in Figure 1. In the �gure

keys represent information about which constructs cor-

respond and wrenches represent information about how

corresponding constructs should be combined. In SOP

the the keys and wrenches are gathered together, out-

side the subjects, to form the composition expression.

In AOP the keys and wrenches are inside the aspects

themselves.

Experiments with these tools reveal insights into

practical development issues. In this position paper I

will brie�y describe some experiments to compare the

SOP and AOP implementations and conclude with a dis-

cussion of methodological issues that arise.

1



Subjects

Composition
expression

Composition &
correspondence

rules

Cross-cut
actions

AspectsBase code

Cross-cut

Figure 1: Aspects and Subjects in development.

2 Comparing SOP and AOP

In order to test the expressiveness of the SOP and AOP

implementations each was used to encode some simple

paradigmatic examples of the other. The results were

obtained by examining the obstacles to such encoding

rather than, for example, by comparing the execution

traces of the resultant programs. This makes those re-

sults inherently subjective: what seems dif�cult to me

might seem trivial and obvious to another developer or,

perhaps more likely, to members of the development

teams of the tools used. Nevertheless I present those

experiment here in the belief that they bring to light

some interesting insights into the philosophies of SOP

and AOP.

The experiments do not deal with the dynamic fea-

tures of ASPECTJ since WSC does not include facilities

for dynamic composition. It seems likely that run-time

mechanisms similar to those used by ASPECTJ to reg-

ister objects with their aspects could be encoded as a

subject and composed into a system. Though such a

comparison would not be a `fair contest' in the sense

that would not be comparing like with like, it might re-

veal interesting features of the approaches and so is not

ruled out as a future experiment.

2.1 Materials and methods

A series of tiny example programs were written using

WSC and ASPECTJ in order to determine whether it is

possible to encode congruent structures of composition

using the two tools. One set of programs focused on us-

ing WSC to achieve the equivalent of before- and after-

actions in ASPECTJ. The other set focused on using AS-

PECTJ to support a subject-oriented style of modularity

where all component modules are equivalent, i.e. with-

out the base-aspect split.

The SOP tool used was VisualAge for C++ version

4.0 with extensions to support SOP. The AOP tool

used was AspectJ version 0.3beta. Since the SOP tool

is based on C++ and the AOP tool on Java the exam-

ple programs were encoded using very basic OO fea-

tures to avoid artifacts arising from differences between

these languages. The constructs used were Classes with

non-static integer member variables (attributes), virtual

non-static member functions (methods) with integer pa-

rameter and return values (or void where appropri-

ate). Output was achieved usingcout (C++) andSys-

tem.out (Java). No exception handling was included.

Wherever possible the same names were used for

classes, methods, etc. When encoding AOP structures

as subjects the input subjects were named aspect and

base. The output subject was named comp.

In ASPECTJ, a static cross-cut action can be

prepended or appended to a base method foo in class C

by specifying a advice action with one of the before

or after modi�ers and with the foo method of class

C as the target.

In SOP the cross-cut action becomes just another

method (fooB) in a different subject. The compo-

2



sition expression must specify that fooB should be

executed before foo when those methods are com-

posed. This is achieved by including an appropriate

ConstrainOrdering clause which imposes order-

ing constraints on the component method bodies of a

composed method.

When a composite method is formed by composing a

number of component methods it may be required that

their return results are collected and passed to a func-

tion whose job it is to reduce the collection to a single

value. This is done by specifying a reduction function

in the composition expression. A reduction function

is a user-de�ned function that accepts an array whose

elements are of template type and returns a value of

the same type. A reduction function rule associates a

composite method with a named reduction function. At

run-time this function is used to generate a single re-

turn value from the values returned by the component

methods bodies.

More details of these experiments can be found on

the web1.

2.2 Findings

ASPECTJ allows cross-cut actions to be prepended or

appended to base methods. The code of prepended ac-

tions can access and modify the actual parameters of

the base method's invocation in such a way that those

modi�cations are visible to the base method code when

it is executed. The code of appended actions can access

and modify the actual parameters in such a way as to

change the result value returned by the base invocation.

In WSC a method playing the role of a cross-cut action

can be prepended or appended to methods playing the

role of base. The code of a prepended method can ac-

cess and modify the actual parameters of its invocation

but changes are not visible to method bodies that run

after it. The code of an appended method can access

the actual parameters and specify a return result but it

cannot access the result of any of the method bodies

that have executed before it. It is possible to use the re-

duction function facility to insert code which has all the

return values available and thus to arrange for the result

of one of the appended method bodies override that re-

turned by the `base' method. Such reduction functions,

however, may not have direct access to the parameter

values.

1http://www.doc.ic.ac.uk/�mcs98/research/

aopsop/

An AOP system normally comprises base code mod-

ule and a number of aspects. But it is possible, with cer-

tain limitations, to move even that base code out into an

aspect too. The base code is made up of classes contain-

ing attributes andmethods which could just as well have

been de�ned with introduce actions from one or

more aspects. This leaves just the empty base classes to

form the base. A construct in a subject may correspond

to other constructs in zero or more of the other sub-

jects involved in the composition. Corresponding con-

structs must be combined which means there must be

way to specify their composition. SOP allows a number

of compositionmechanisms to be used including for ex-

ample (for methods): override (one body is selected for

use and the others discarded), non-deterministic com-

position (all bodies are to be executed in some order)

and sequential composition (all bodies are to be ex-

ecuted in a speci�c order). In ASPECTJ 2 two such

mechanisms are available to control the interaction be-

tween aspects: If two aspects introduce methods with

the same name to the same base class one of them,

selected nondeterministically, will override the other3.

The before and after modi�ers allow, with some

limitations, speci�cation of sequential composition. If

two method bodies de�ned in different aspects are to

be combined in a particular order they may be encoded

as cross-cut actions for some base method. The one

that should come �rst must have the before modi�er

and the one that should come last must have the after

modi�er. The target method must, however, exist in the

base and should be empty. This can be handled using

the odd nondeterministic override behaviour described

above. Both aspects can, in a symmetrical way, ensure

that the existence of the empty base method they require

by introducing it. Since both aspects try to introduced

empty methods it does not matter that one overrides the

other. This technique, however, does not scale; if more

than two aspects de�ne code fragments that correspond

to the same base method their ordering cannot be con-

trolled: the only available modi�ers are before and

after and there is no way to specify the order of ac-

tions with the same modi�er4.

2Version 0.3
3This rather otiose behaviour was a feature of early versions of the

tool. Since version 0.4 this situation is treated as an error unless one

cross-cut explicitly dominates the other in which case the dominant

action will override [2, 8].
4Later versions of ASPECTJ include the concept of cross-cut dom-

ination which, amongst other things, gives the developer control over

the order of actions with the same modi�er.

3



2.3 Discussion

SOP and AOP are very similar in terms of their core

technologies: An OO system is divided into modules

that cut across the dimensions of classi�cation inher-

ent in conventional object-oriented programming. The

speci�cation of a system includes details of what code

fragments (classes, variables, method bodies, etc.) cor-

respond and how they should be put together. The

modules can the be linked by an automated tool (com-

positor/weaver). These similarities are not surprising

since the approaches share a motivation to improve soft-

ware modularity. The differences between SOP and

AOP are in the details of their realisation. These arise

from different assumptions, perhaps implicit assump-

tions, about how software developers will work with

such improved facilities for modularity.

The modularity mechanism provided by WSC can be

used to simulate a general AOP style of development

with a few restrictions. Since this experiment used toy

examples it has not been possible to tell if these restric-

tions would be a serious obstacle in practise.

Fundamental to AOP is the existence of the base.

The base forms a framework onto which the aspects

can hang their cross-cutting actions as one might hang

strings of lamps on a tree at Christmas time. Writing

SOP style in AOP requires at least the empty base classes

whose names can be given to specify join points. As

John Lamping points out [12] the main role of the base

is to provide the vocabulary that aspect developers use

to identify the points where their aspects concerns ap-

ply in the system under development. This vocabulary

must exist (though it need not be implemented as code

or even design) before the system's aspects can be con-

ceived and designed. John says that this vocabulary is

formed of the operations (methods, procedures, func-

tions, etc) that correspond to base concepts. Operations

provide a convenient granularity for the base vocabu-

lary but they are not the only choice. A more �ne-grain

base results from using statements or expressions, this

has been discussed elsewhere [14]. A more coarse grain

vocabulary comes of using the classes as was the case

in this experiment. From the point of view of the se-

mantics of the system, the names of these classes are

irrelevant. But in AOP development these names are

important as they form the vocabulary with which the

developer speci�es the interaction between aspects. In

an attempt to eradicate the base we might conceive a

modi�ed weaver that includes a source of new empty

classes with which to weave the aspects it processes.

Each time a cross-cut names a new class as its target,

the appropriate empty class would be generated and the

advice woven into it. But even with such an enhanced

weaver it would not be possible to program in the SOP

style without a common vocabulary established in some

other way. In order that two constructs in different as-

pects be combined they must correspond which means

they must name, as their targets, the same base con-

struct5. In order for this to work with out enhanced

weaver the developers of each aspect need to know the

construct naming vocabulary used in the other aspects

with which it will be woven. It would be burdensome

to examine the text of all other aspects in order to deter-

mine this. In SOP this vocabulary information is made

available in the form of a kind of public interface called

the subject label. Subject labels are generated automat-

ically for each module and include information about

only the names and structure of composable classes and

their members[13].

We may suppose that, in an ideal situation, when do-

ing AOP with ASPECTJ, aspect developers can work

separately needing to know only about the base con-

cepts and the aspect under construction; that all inter-

esting cross-cuts are between an aspect and the base,

rather than between one aspect and another. In a devel-

opment with base and n aspects, there would be n inter-

actions between aspect and base. In practise, however,

there will be inter-aspect interactions; Recent develop-

ments ASPECTJ, such as cross-cut domination, re�ect

this reality.

The base provides a common vocabulary to all as-

pects and thus it is a global objective frame of reference

for the system development. In AOP this base vocab-

ulary is rei�ed as the base code and contained within

one module of the system. In pure AOP any complexity

within the base code must be dealt with using the struc-

turing mechanisms of the prevailing paradigm: aspects

can't help since if a concept were included in an aspect

it would no longer be base. Such purism is not practi-

cal, however, as aspects can, in general, extend the base.

Consider, for example, using an aspect to add a cache to

a web browsing application. After the aspect has been

applied the concept of the cache is part of the common

vocabulary of the system and should certainly be treated

as base by any other aspects that have to do with, for ex-

ample, �le handling or security. This dichotomy comes

to light when we consider development as a serial pro-

5The name of a member includes the identi�er of the member it-

self and that of its class.

4



cess where aspects are applied in some order.

Subject-oriented decomposition is not constrained by

the need to identify a base module: all modules are po-

tentially equal. The set of modules is determined only

by the set of perspectives or concerns that are consid-

ered to be important in the system. The cost of this

is that any module may interact with any other. In a

system with n modules there are n
2
�n

2
potential inter-

module interactions. The SOP view is that there is no

global objective frame of reference and that all code is

conceived, designed and developed subjectively from

a particular perspective and therefore with its own vo-

cabulary. Unlike in AOP the correspondences cannot

be speci�ed within the modules as each module knows

only its own vocabulary and not that of the modules

with which it will be composed. Composition rules

are, therefore, separate from the modules, in a global

name-space where they can translate between the sub-

jective vocabularies of the component modules in order

to specify their join points.

Writing composition rules is, in general, a very dif�-

cult task. The rule writer must have a global view and

understand all perspectives and their associated subjec-

tive vocabularies. Where in AOP correspondence is es-

tablished by referring to the same name in the shared

vocabulary in SOP where two corresponding constructs

might be named differently correspondencemust be de-

cided by some semantic knowledge. In practise, of

course, much of this complexity is avoided. It is fre-

quently the case that a module is created as an exten-

sion or augmentation of one or more existing modules.

In these cases the extending module shares the vocabu-

lary of the extended modules which simpli�es the task

of the rule writer. If care is taken in the construction of

such an extending module a stock rule can be used such

as �name matching� which establishes correspondence

based on common names. In this case the extended

modules play the role of base and the extending mod-

ule of aspect. The complexity can be further reduced

by composing the extending and extended modules as

a sub-unit of the system. The result is a new compo-

nent module which can be composed with others by a

simpler rule than would be needed if all modules were

composed in a single step. If each module in the nmod-

ule SOP system were composed with exactly one other

at a time there would be n� 1 composition steps rather

than 1 but similarly there would be only n � 1 interac-

tions between modules for the rule writer to consider.

In general we must assume the number of interactions

to be somewhere between n� 1 and n
2
�n

2
.

3 Conclusion

SOP and its associated tool give the developer much

freedom to combine the results of differently conceived

and executed software development work. The cost

of this freedom is the danger of complex composition

rules to combine modules rendered incompatible by the

lack of a global common vocabulary to de�ne their

join points. Concern-based decomposition can lead to

modules with subtle dependencies amongst them[3].

These dependencies impose sequencing constraints that

the development process must respect, for example,

some concerns only exist if other concerns are already

present. Recognising and working with these inter-

module relationships in a disciplined way should make

SOP more effective and simplify the task of writing, or

selecting, composition rules. One candidate for such

a discipline is the base-aspect division of AOP which

might be employed in SOP as an example of a pattern

(in the sense of [5]) which prescribes a particular com-

position rule (name matching) when a particular topol-

ogy (some modules encoding base concepts and others

aspects that cross-cut them) is present in the modules.

It would be damaging, however, to require that the base

concepts be con�ned to a single module. The base con-

cepts might be spread over a number of modules or the

pattern could occur many times in a system with differ-

ent modules playing the base and aspect roles in each.

Dependency between modules is fundamental in

AOP: all aspect modules depend on the base module.

The base-aspect split is a discipline with the potential

to simplify development of systems with concern-based

modularity. It rei�es the global common vocabulary

into the code of the base module. ASPECTJ makes it

easy to link all modules in one step. This is perfect for

the kind of pure AOP where each aspect module knows

only about itself and the base. In practise, however,

aspects may be used to encode a series of incremental

changes where the early ones rede�ne the base vocab-

ulary for the later ones. In this case (later) aspects will

cross-cut concepts that are encoded in other (earlier) as-

pects and therefore it must be possible to specify join

points and cross-cuts between concepts de�ned only

in aspects. Recent developments in ASPECTJ, such as

cross-cut domination, go some way to address this re-

quirement. But, while the new mechanisms that handle

inter-aspect relationships are different from those that

5



handle the aspect-base relationship, the problems they

address are not orthogonal. Aspect-oriented develop-

ers would do well to be aware that base concepts and

the associated vocabulary that they de�ne are central to

AOP, but that they should expect to �nd these concepts

and terms in the aspects as well as in the base.

The experiments performed in this study use only toy

programs and cannot not give insight into the issues that

might arise when SOP and AOP tools are deployed in

real development projects. In the end it is that kind of

experience that will reveal the strengths andweaknesses

of the approaches and of the tools that support them.

References

[1] The AspectJ primer: A practical guide for

programmers. http://www.parc.xerox.

com/aop/aspectj/primer, May 1999.

Draft.

[2] AspectJ lannguage speci�cation. http://

aspectj.org, 1999. Modi�ed 10August 1999.

[3] L. Carver. Personal communication, Aug. 1999.

[4] M. Fowler. Refactoring: Improving the Design of

Existing Code. Addison-Wesley Object Technol-

ogy Series. Addison Wesley, 1999.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vis-

sides. Design Patterns: Elements of Reusable

Object-Oriented Software. Professional Comput-

ing. Addison-Wesley, 1994.

[6] W. Harrison, M. Kaplan, A. Katz, V. Kruskal,

E. Lan, and H. Ossher. Prototype support for

subject-oriented programming. Position Paper for

OOPSLA '94 Subjectivity Workshop, 1994.

[7] W. Harrison and H. Ossher. Subject-oriented pro-

gramming (a critique of pure objects). In Proceed-

ings of OOPSLA '93, pages 411�428.ACM, 1993.

[8] E. Hilsdale. Cross-cut action domination. Private

Communication, Aug. 1999.

[9] M. Kaplan, H. Ossher, W. Harrison, and

V. Kruskal. Subject-oriented design and the Wat-

son Subject compiler. Position Paper for OOP-

SLA '96 Subjectivity Workshop, 1996.

[10] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier,

C. Videria Lopes, C. Maeda, and A. Mendhekar.

Aspect-Oriented Programming - a position paper

from the Xerox PARC Aspect-Oriented Program-

ming project. http://www.parc.xerox.

com/spl/projects/aop/, 1997.

[11] G. Kiczales, J. Lamping, and A. Mendhekar.

Aspect-oriented programming. In European

Conference on Object-Oriented Programming

ECOOP. Springer-Verlag, June 1997. LNCS

1241.

[12] J. Lamping. The role of the base in aspect ori-

ented programming. http://wwwtrese.cs.

utwente.nl/aop-ecoop99/, 1999. Posi-

tion paper for the ECOOP'99 workshop on Aspect

oriented programming.

[13] H. Ossher, M. Kaplan, W. Harrison, A. Katz, and

V. Kruskal. Subject-oriented composition rules. In

Proceedings of OOPSLA '95. ACM, 1995.

[14] H. Ossher and P. Tarr. Operation-level com-

position: A case in (join) point. Position pa-

per for ECOOP'98Aspect-Oriented Programming

Workshop, 1998. http://wwwtrese.cs.

utwente.nl/aop-ecoop98/.

[15] D. L. Parnas. On the criteria to be used in de-

composing systems intomodules. Commun. ACM,

15(12):1053�1058, Dec. 1987.

6


