
ANALYZING MULTI-DIMENSIONAL PROGRAMMING

IN AOP AND COMPOSITION FILTERS

Lodewijk M.J. Bergmans (lbergmans@acm.org)
Mehmet Aksit (aksit@cs.utwente.nl)

http://trese.cs.utwente.nl
TRESE GROUP – CENTRE FOR TELEMATICS AND INFORMATION TECHNOLOGY (CTIT)
UNIVERSITY OF TWENTE, P.O. BOX 217, 7500 AE, ENSCHEDE, THE NETHERLANDS

Abstract--In this paper, we investigate the meaning and impact of multi-dimensional construction of soft-
ware, as exemplified by Aspect-Oriented Programming and Composition Filters. A simple application is
introduced to illustrate the discussion topics. We conclude with a number of requirements for multi-
dimensional programming.

Lately, the software engineering field is increasingly becom-
ing aware of the need for better modeling techniques to be
able to design systems as compositions of independent con-
cerns. Various models such as Adaptive Programming
[Mezini 98], Aspect-Oriented Programming [Kiczales 97],
Subject-Oriented Programming [Harrison 93] and Composi-
tion Filters [Aksit 88, 92, 94] have triggered and/or addressed
this need. In particular Aspect-Oriented Programming (AOP)
is gaining much interest recently.

Previously, we have argued for extending AOP towards –
more generic– mechanisms for multi-dimensional decompo-
sition [Bergmans 96a]. The motivation behind this idea was
that the concept of cross-cuttings or systemic aspects is not
only restricted to the specific technical/operational aspects,
such as synchronization, real-time constraints or caching, as
emphasized by the AOP community. Such systemic aspects
can also be found in the application domains that a system
deals with. This is illustrated for example in [D’Hondt 99].
The Visitor design pattern [Gamma 95] is an example of a
technique to add an aspect to a group of classes, while
keeping its specification modular and in a separate place.

However, in order to deal with domain-specific aspects, AOP
languages that only support a limited set of predefined dedi-
cated aspects are insufficient. Instead, a general aspect lan-
guage, supporting user-defined aspects, is needed. As a
result, if we introduce the ability to define new aspects, the
software engineer will introduce new dimensions for decom-
posing the system under consideration. Assume that we in-
troduce aspects that deal with insurance or tax calculations in
an administrative or logistic system. Let us also assume that
domain experts or analysts find a way to separate insurance
and tax calculations completely from the rest of the system
specification. Then for each piece of functionality, the soft-
ware engineer has to make an additional decomposition deci-
sion: define the functionality either on the base level (in this
paper, we will assume the base level to be object-oriented) or
in one of the appropriate aspects. In other words, this situa-
tion calls for a model that supports an arbitrary number of
decomposition dimensions.

In this paper, we investigate the meaning and impact of
multi-dimensional construction of software with a few mod-
eling approaches, notably aspect-oriented programming and
composition filters.

1. MODELING SOFTWARE

From a software-engineering point of view, a key require-
ment of software development is to be able to construct a
system by combining modules that have minimal dependen-
cies between each other. When discussing components and
modules, we will focus upon the source-code level, since
many of the challenges in software development are related
to the construction, adaptation and reuse of specifications
(i.e. source code). In addition, there is a natural desire to have
a direct mapping between source-code components and run-
time components, as to avoid a large conceptual gap between
specification and run-time entities.

In order to optimize the design, construction and maintenance
process of software, we need to apply the divide-and-conquer
principle by decomposing our software into smaller parts,
that can be decomposed again, recursively. This decomposi-
tion process must continue until a level is reached where each
unit (a) can be understood and constructed effectively, and
(b) deals only with a single concern1.

The decomposition process is a problem-solving technique,
but it provides at the same time a basis for system construc-
tion and maintenance by providing the building blocks for
putting together a system.

1 Actually, the notion of ’a single concern’ is undefined, because

we can always decompose until we reach the finest possible
specification level. The importance of the notion of a single con-
cern is to find the right abstractions in our problem and solution
domains such that they can be decomposed into more fine-
grained parts without violating the existing structure and inter-
faces (in other words: such that further decomposition is struc-
ture-preserving).

ANALYZING MULTI-DIMENSIONAL PROGRAMMING IN AOP AND COMPOSITION FILTERS

PAGE 2

As a basis for discussing software construction in general,
and more specifically composition and decomposition of
software, we introduce a number of definitions:

• The software product that is the result of the development
process consists of a (usually large) collection of code
fragments; we adopt the notion of code fragments as the
most fine-grained independent specifications that can be
merged into a running system. Each code fragment has its
own identity and –most important– deals with a single
concern only.

• A use case is the (description of) behavior for a typical
usage of a system or product in a way that is non-specific
for data values. A use case can be implemented by a
number of code fragments. The execution (instantiation)
of a use case consists of the ordered1 execution of a set of
code fragments.

• The final code of a software product consists of a set of
code fragments that is organized in such a way that the
complete set of use cases defined for that product can be
executed, while satisfying the (operational) quality re-
quirements of the use case/product.

According to the above definitions, it is possible to develop
software systems by collecting all the code fragments that are
needed to implement all the use cases that are required for a
particular software product. In general there will be overlap
between use cases, which allows for sharing the same code
fragment between multiple use cases.

We can visually represent a software product as follows:

use cases

code fragments
... ...

product

Figure 1. Modeling software as a collection of fragments.

From the run-time perspective, this model of software prod-
ucts is satisfactory. However, assuming a very large collec-
tion of code fragments, it becomes impossible to manage the
complexity of such a system. As a result, we must establish
additional structure upon the code fragments. This is
achieved by decomposing the system into smaller parts,
which can be decomposed again, repeatedly, until the level of
code fragments is reached: a divide and conquer strategy in
order to manage system complexity.

• A decomposition is a particular (usually hierarchical) or-
dering upon design entities, such as code fragments. If
there are several orderings upon the same group of enti-
ties, we refer to each ordering as a decomposition dimen-
sion.

1 Not necessarily sequential, and possibly interleaved!

The goal of this paper is to investigate approaches that go
beyond the traditional decomposition dimensions of the ob-
ject-oriented model.

2. EXAMPLE APPLICATION

To understand and compare the various approaches, we will
use one common example. The example is based on the fol-
lowing conceptual model, and should be thought of as a part
of an application that manages real-time (audio or video)
streams:

Source

Buffer

Sink

put(..)
empty()

...

get()
size()

...

Figure 2. Conceptual model for our example application

The idea is that the Source represents an input device (any-
thing from audio or video equipment to a communication
channel to another application, as long as they repeatedly
provide data that together form e.g. an audio or video
stream). The Sink in this case is anything from an application
to an output device that needs the data as a series of packets
at regular intervals. The Buffer is used to deal with the timing
differences between the input an output of this little system.

This application has to deal with the following concerns:
• Synchronization: the Buffer has only a limited size, which

means that the Source should no longer add extra entries
when the buffer is full (i.e. until the Sink has removed
one or more entries).

• Logging: for testing purposes, all relevant information is
to be logged, e.g. when a packet is handled by each part
of the system, how it is synchronized, and how much
memory is consumed by the various parts of the applica-
tion. Logging is blocked when Buffer reaches its top ca-
pacity (e.g. at 95%), since this is a sign of system
overload.

• Memory Management: for optimizing the usage of the
limited memory available, each of the three parts in the
system may dynamically claim extra memory. However,
the following rules apply:
1. The maximum amount of memory claimed by these

three parts together is limited (say, to Mmax). This
amount may vary dynamically as well.

2. The maximum amount of memory available for each
part should be limited according to the following
scheme: MSource:MBuffer:MSink:Mmax = 4 : 8 : 1 : 13.

The effect of these rules is that the possibility to claim
more memory in each part depends on the variable Mmax

and the memory usage of the other parts at that time.

We show how these concerns and the concepts are related in
a single table:

ANALYZING MULTI-DIMENSIONAL PROGRAMMING IN AOP AND COMPOSITION FILTERS

PAGE 3

associated:
(maps to)

S
o

u
rc

e

B
u

ff
er

S
in

k

S
yn

c.

L
o

g
g

in
g

M
em

.M
an

.

Source - Y
Buffer -

Sink Y -
Synchr. i Y i - Y

Logging Y Y Y Y - Y
Mem.Man. Y Y Y Y -

Legend: the direction of mapping onto is from row to column.
“Y” is applied to, “i” indirectly applied to, "-" irrelevant

We can summarize that logging and memory management
are cross-cutting concerns, whereas synchronization can be
concentrated mostly at the buffer. It is also important to note
the dependency between concerns: logging requires synchro-
nization, and depends on the memory management concern.

It is natural to map the concepts in the above problem de-
scription to classes in various object-based approaches, and
we will assume so unless denoted otherwise.

3. DECOMPOSITION IN THE OO MODEL

In the design of an object-oriented system, we can distinguish
the following decomposition activities (not necessarily per-
formed in the order presented here):

1. The problem domain is decomposed into independ-
ent concepts represented by classes.

2. The behavior of classes is decomposed into a set of
methods.
a) Each method consists of one or more code frag-

ments.
b) The state of –instances from– classes is repre-

sented by a set of instance variables.
3. In order to deal with the large amount of classes,

the class-space is decomposed again ([Booch 94]
discusses this 'canonical model of complex sys-
tems'):
a) With is-a or inheritance relations.
b) With part-of relations, that designate aggregation

at the instance level.

This leads to a three-level decomposition structure as illus-
trated by the following figure:

Problem domain

Classes

Methods

Code Fragments

part-of

is-a

Figure 3. Decomposition from problem to code fragments

The most interesting decomposition level is the first, which
decomposes from problem domain concepts to classes: this

decomposition step is refined through is-a and part-of de-
compositions.

When designing the example application in an OO manner
one would like to retain all concerns fully separated (as first-
class entities), for instance for the purpose of maintainability
or reuse. The following class diagram explicitly shows all
specific concerns as independent entities, without optimizing
the design for code reuse:

Source Buffer Sink

SrcLog

SrcMM BufMM SinkMM

SinkLogSyncLog

BufSync

GlobalLog

BufLog

Logging

LogSync

BufMMLogSrcMMLog

SinkMMLog

Mem.
Man.

Synchr.

Synchr.

Figure 4. This class diagram shows the object-oriented rela-
tions between the concerns that are involved1.

The point of this diagram is to illustrate that even with so few
concerns involved, a combinatorial explosion will occur if a
designer wants to keep these concerns fully separated: As
shown in Figure 4, for the Source, Buffer and Sink concepts it
is necessary to define a corresponding Log concept, resulting
in the declaration of multiple Log classes, such as SrcLog,
BufLog, etc. In combination with logging of the status of
synchronization of the Buffer class also a class SyncLog is
defined. Class LogSync contains the synchronization of the
global log class. Further remarks about this diagram:
• Note that separating these concerns in independent

classes –or even separate methods– may not be possible
to implement at all (e.g. synchronization).

• If there is a lot of overlap between all logging code or all
memory management code, it could be separated into a
single class. Reusing this code can be done through in-
heritance or part-of relations.

• Further optimization of the design will consist of replac-
ing some of the classes with methods or even code frag-
ments within other methods; but such steps compromise
the modularity of the design!

We can conclude that the object-oriented model cannot cope
very well with the modular specification of independent con-
cerns.

4. DECOMPOSITION WITH ASPECTS

Aspect Oriented Programming (AOP) in the general sense is
based on –separately– specifying aspects to enhance a design

1 Note that this diagram does not intend to show the best possible

design for this application; a specifically optimized design
would probably involve use of inheritance and design patterns
such as Decorator and Observer.

ANALYZING MULTI-DIMENSIONAL PROGRAMMING IN AOP AND COMPOSITION FILTERS

PAGE 4

or software system (existing or under development). Aspects
are defined as the features that crosscut other components in
a systemic way. This means that other components (these are
typically objects, although not necessarily) are –possibly–
affected throughout the entire system. In AOP, this impact is
restricted to the so-called ‘base level’; this is best compared
to the functional part of the system. Typical examples of as-
pects include memory management, synchronization, tracing
and logging, and so on.

The main idea behind AOP is to be able to specify dedicated
semantics, which can be seen as enhancements to the basic
functionality of a program, in a separate module. A dedicated
aspect language that is optimally suited to expressing the
specific aspect can be adopted for this purpose. The aspect
specifications are to be merged (‘woven’) with the base level
program through a so-called AspectWeaver™.

Figure 5 illustrates how the example application would be
modeled in an AOP-way. A clear distinction is made between
the (base level) classes Source, Buffer and Sink, and the as-
pects Synchronization, Logging and Memory Management.
The resulting diagram shows that in this example, with the
limited number of classes involved, indeed most aspects
crosscut all components. Only for the synchronization aspect,
this is less obvious: all synchronization is centered on the
Buffer class, but this may involve those classes that are inter-
acting with the Buffer class as well (indicated by open bullets
in the diagram).

aspects

classes

Synchr

Logging

Mem.Man.

Source Buffer Sink

Figure 5. Mapping between classes and aspects

The figure clearly illustrates that the mapping between
classes and aspects is of n:m nature; each class may have
multiple aspects, and each aspect may apply to multiple
classes.

Currently, the AspectJ language [Lopes 98, AspectJ 99] is the
trend-setting approach to AOP. AspectJ brings the principle
of AOP to Java. It adopts the following design decisions:
• AspectJ adopts no dedicated aspect languages, but uses

plain Java code (method and variable declarations) for
specifying aspect semantics. Dedicated syntax is intro-
duced for specifying join points (i.e. those points in the
base level code where the aspect code must be inserted)
and weaving semantics.

• Rather than intricate code weaving of aspect specifica-
tions with base level code at the statement level, in As-
pectJ the aspect code is woven as method pre- and
postfixes and new declarations of methods and variables
within classes.

In other words, the key contribution of AspectJ is to add a
new kind of composition-semantics to Java; based on the
concept of aspect composition, AspectJ enables the merging
of method bodies in a sequential manner.

The AOP approach applied to the object-oriented model can
be visualized by the following decomposition dimensions:

Is-a

Part-of

Aspects

Mem. Man.

Logging

Synchronization

Join points across the
dimensions (objects)

Figure 6. ’Standard’ AOP applied to the OO model.

The figure shows that the aspects form one additional dimen-
sion: in this dimension each aspect can be mapped onto a set
of join points that can be located anywhere within the base
level program1. This also illustrates that aspects can not apply
to the specifications of other aspects; they are confined to be
enhancements of the base level program. This has at least the
following consequences:
• Composability of aspects with each other is undefined;

they are completely independent, and cannot interface
with each other. However, this does not mean that they
cannot interfere with each other. Depending on the se-
mantics of the aspect specification language, independ-
ently specified aspects may or may not interfere. In the
case of AspectJ, where the aspect language has the full
expression power of Java, this means that the introduc-
tion or modification of aspect specifications may –or may
not– cause a program to break or behave in unforeseeable
ways.

• The fact that aspect specifications cannot apply to other
aspects, may be a substantial limitation. This is visible for
instance in our example application: one of the require-
ments is that logging may show the status of other as-
pects as well, and logging is blocked (i.e. has a
synchronization constraint itself) when the buffer is full2.

We can conclude that AOP can solve a range of problems in
(object-oriented) programming by introducing an additional
decomposition dimension. However, if multiple concerns are
addressed within this single dimension, they cannot be ap-
plied to each other. Unless aspects are restricted to well-
defined and orthogonal operational characteristics of the base
level program, this is insufficient.

5. DECOMPOSITION WITH FILTERS

Composition Filters (see e.g. [Aksit 88, 92, 94] & [Bergmans
96b]) offer a form of aspect programming coming from a dif-
ferent perspective; the notion of independent, self-sufficient
objects. To address this, composition filters allow for speci-
fying and composing aspect specifications such as object be-
havior, synchronization constraints, multiple views and

1 This figure does not show any decomposition dimensions within

classes (since the visualization of more than 3 dimensions is
problematic).

2 It is not entirely clear whether this is fundamental to AOP or not,
this seems to be open for discussion.

ANALYZING MULTI-DIMENSIONAL PROGRAMMING IN AOP AND COMPOSITION FILTERS

PAGE 5

object interaction abstractions. Each filter specifies one as-
pect, and is associated with a class. Important characteristics
of this approach are:
• One single, consistent, specification technique that is

shared by all types of aspect specification (i.e. ’filters’).
• An open-ended set of aspect types (filter types).
• All aspect specifications are composable with each other.
• Straightforward aspect specification reuse between

classes.
Due to lack of space, we refer to e.g. [Bergmans 94] or
[Koopmans 95] for detailed explanations of composition fil-
ters.

In this approach, crosscutting aspects are dealt with by im-
porting the relevant class and/or filter specifications wherever
necessary, e.g. through inheritance (as specified in a Dispatch
filter). Figure 7 shows how aspects can be mapped to objects
in the composition-filters approach:

Source

Buffer

Sink

lggr:Meta

mm:Error

sync:Wait

lggr:Meta

mm:Error

lggr:Meta

mm:Error

Global
Mem.
Man.

Global
Logger

sysLoad:Wait

Figure 7. A CF-based approach to the example application.

The figure shows that each class is adorned with one or more
filters. In this example three commonly used filter types are
used: a Wait filter defines synchronization constraints upon
messages, an Error filter triggers exceptions, and a Meta fil-
ter performs message reflection and lets each message be
manipulated by a user-defined abstract communication type
[Aksit 93] (in this case GlobalLogger). Filter reuse between
classes is possible but is not shown here. Class GlobalLogger
is of particular interest since it (partially) implements the
logging aspect, but to do so requires another aspect; synchro-
nization, which is defined by the sysLoad filter of the Wait
type. All filter processing may involve information about the
messages and the state of the objects.

filters

classes
mm:Error

lggr:Meta

sync:Wait

Source Buffer Sink Gl.Mem.
Man.

Gl.
Logger

sysLoad:Wait

concepts concerns

Figure 8. Mapping between classes and filters

Figure 8 above shows the mapping between filters and
classes in this application. In the composition filters ap-

proach, concerns can be represented either by classes or by
filters. If a concern is represented by a class, such as the
GlobalLogger class, it is possible to define ’a concern of a
concern’, as is the case here with the synchronization by the
sysLoad filter.

The disadvantage of expressing concerns in classes (apart
from losing many of the benefits that usage of filters has) is
that the full expressiveness that is available for defining this
concern reduces the guarantees for composability of different
concerns. This problem is partially addressed by enforcing
certain type constraints (i.e. abstract communication types),
and partially because each object explicitly specifies all its
concerns, making it easier to verify potential composability
problems.

One important design decision for the composition-filters
model was –following the basic object-oriented philosophy–
to make each class self-contained; only explicitly imported
features extend the behavior of the class. This has many ad-
vantages from a software engineering perspective, but for
systemic aspects, this requires either explicitly importing
them in all classes in a system, or incorporating them through
inheritance of a common ancestor.

Apart from the lack of a mechanism for defining systemic
properties, the composition filters approach can address all
requirements of the example application. It must be observed,
however, that it is not fully multi-dimensional in the sense
that concerns can only be defined upon classes, but not upon
filter specifications.

6. CONCLUSION

From the previous discussion and example, we can conclude
that multi-dimensional construction of systems is indeed
needed, and not trivial to achieve. For our example applica-
tion this can be graphically illustrated as follows:

Is-a

Part-of

Synchronization

Base level
(classes)

Logging

Memory
Management

Figure 9. A base level (class) space plus additional
decomposition dimensions for three concerns

One of the main themes of this paper is that the entities in
one dimension may cross-cut with the entities in other di-
mensions (e.g. synchronization is needed during logging). It
is open to discussion whether we still can –and should– talk
about a single base level in such a system, but unless this
proves to be problematic, we feel this is at least needed for
practical reasons.

In section 4 we observed that AOP introduces one extra de-
composition dimension for defining aspects upon the base

ANALYZING MULTI-DIMENSIONAL PROGRAMMING IN AOP AND COMPOSITION FILTERS

PAGE 6

level. We discussed under which circumstances this restric-
tion becomes apparent, and observed the lack of composabil-
ity for generic aspects. In the previous section we evaluated
the Composition Filters approach with respect to the example
application and the ability to perform multi-dimensional de-
composition.

We can make the following observations about the require-
ments for multi-dimensional decomposition:
• We need a generic language to express aspects so that

application specific aspects can be defined as well (this is
exemplified by AspectJ).

• A general aspect composition mechanism is required that
supports the composition of aspects from multiple dimen-
sions. This probably requires a certain composition ex-
pression (such as join point specifications in AspectJ and
filter expressions).

• Since some dimensions may need to influence each other,
it is necessary to provide general abstractions as a means
to share information among multiple aspects. For exam-
ple, the composition filters model supports the notion of
conditions (abstractions of the internal state of an object)
and an object manager (which deals with issues such as
message queues and scheduling).

Our future work comprises the investigation of other model-
ing approaches such as Hyperspaces [Tarr 99] and Adaptive
Programming [Mezini 98], in particular with respect to their
composability properties. We will also look into extending
the composition filters model to be able to express systemic
aspects and possibly other support for the construction of
multi-dimensional systems. Finally, the integration with our
current research on balancing among the many dimensions of
design criteria is an important item on our research agenda.

 REFERENCES

[Aksit 88] M. Aksit & A. Tripathi. Data Abstraction
Mechanisms in Sina/ST, Proc. of the OOPSLA ’88
Conference, ACM SIGPLAN Notices, Vol. 23, No. 11,
November 1988, pp. 265-275

[Aksit 92] M. Aksit, L. Bergmans and S. Vural. An Object-
Oriented Language-Database Integration Model: The
Composition-Filters Approach, Proc. of ECOOP ’92,
LNCS 615, Springer-Verlag, 1992, pp. 372-395

[Aksit 93] M. Aksit, K. Wakita, J. Bosch, L. Bergmans & A.
Yonezawa. Abstracting Object-Interactions Using
Composition-Filters, In Object-based Distributed
Processing, R. Guerraoui, O. Nierstrasz and M. Riveill
(eds), LNCS 791, Springer-Verlag, 1993, pp 152-184

 [Aksit 94] M. Aksit, J. Bosch, W. v.d. Sterren and L.
Bergmans. Real-Time Specification Inheritance
Anomalies and Real-Time Filters, Proc. of ECOOP ’94,
LNCS 821, Springer Verlag, July 1994, pp. 386-407

[AspectJ 99] AspectJ Language Specification, XEROX
Corporation, URL: http://www.aspectj.org, 1999

[Bergmans 94] L. Bergmans. Composing Concurrent
Objects, Ph.D. thesis, University of Twente, The
Netherlands, 1994

[Bergmans 96a] L. Bergmans, Aspects of AOP: Scalability
and application to domain modelling, position paper for
the first ’Friends of AOP’ workshop, XEROX PARC,
Palo Alto, 1996

[Bergmans 96b] L. Bergmans & M. Aksit, Composing
Synchronization and Real-Time Constraints, Journal of
Parallel and Distributed Programming, September 1996

[Booch 94] G. Booch, Object-Oriented Analysis & Design-
with Applications, 2nd edition, Benjamin/Cummings
Publishing Company, 1994

[D’Hondt 99] M. D’Hondt & Th. D’Hondt, Is Domain-
Knowledge an Aspect?, position paper for the ECOOP’99
Workshop on Aspect-Oriented Programming, to be
published in Springer-Verlag ECOOP workshop
proceedings, 1999

[Gamma 95] E. Gamma, R. Helm, R. Johnson and J.
Vlissides. Design patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

[Harrison 93] W. Harrison & H. Ossher. Subject-oriented
programming (a critique of pure objects). In proceedings
of OOPSLA ’93, September 1993.

[Kiczales 97] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J.-M. Loingtier, J. Irwin, Aspect-
Oriented Programming. In proceedings of ECOOP ’97,
Springer-Verlag LNCS 1241. June 1997.

[Koopmans 95] P. Koopmans. On the Definition and
Implementation of the Sina/st Language, M.Sc. Thesis,
University of Twente, The Netherlands, July 1995

[Lopes 98] C.V. Lopes & G. Kiczales, Recent Developments
in AspectJ, in Object-Oriented Technology-ECOOP’98
Workshop Reader, position paper for the Workshop on
Aspect-Oriented Programming, pp. 398-401, LNCS
1543, 1998

[Mezini 98] M. Mezini & K. Lieberherr, Adaptive Plug-and-
Play Components for Evolutionary Software
Development. OOPSLA ’98, October 1998.

[Tarr 99] P. Tarr, H. Ossher, W. Harrison & S.M. Sutton, Jr.
N Degrees of Separation: Multi-Dimensional Separation
of Concerns. In proceedings of ICSE 21, May, 1999.

