MobiSense: Lifespace Tracking and Activity Monitoring on Mobile Phones

Ian Dewancker¹, Jaimie F. Borisoff², Boyang Tom Jin¹ & Ian M. Mitchell¹

¹Department of Computer Science University of British Columbia ²British Columbia Institute of Technology

Motivation

Lifespace

- Measure of the frequency, geographic extent and independence of an individual's travels
- Useful metric relating to cardiovascular health, community engagement and nutrition

Data is good

- Feedback based on true behavior provides incentive, measurement and reward for change
- Examples: Quantified self movement, m-Health initiative

Smartphones

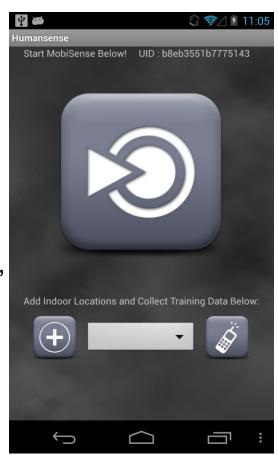
- Packed with sensors
- Worn throughout the day
- Open programming interface
- Geeky fun to play with

The CanWheel Project

- Founded under six year emerging team grant from CIHR
 - 15+ researchers from 6+ universities across Canada
- Guiding Questions:
 - How are power wheelchairs used now?
 - How can power wheelchairs be used better?
 - How can power wheelchairs be better?
- Five core projects:
 - Evaluating needs & experiences
 - Measurement of mobility outcomes
 - Wheelchair innovation
 - Data logging
 - Wheelchair skills program for powered mobility

www.canwheel.ca

MobiSense: Goals & Approach


- Three desirable and feasible measurements:
 - Outdoor mobility tracking
 - Indoor mobility tracking
 - Mobility activity classification
- Two challenges:
 - Providers and consumers of data are not engineers
 - Underlying technology and algorithms are rapidly changing
- Three approaches:
 - Simple user interfaces for data collection and visualization
 - Partition code into production, analysis and visualization components with simple data exchange formats
 - Minimize code on the mobile platform
 - Open source the code

Related Work

- UbiFIT [Consolvo et al, ICUC 2008]
 - Track pedometer activity, displayed on phone
- Ohmage [Hicks et al, 2011]
 - Example Open mHealth application
 - Has been used to track activity levels and other studies
- FUNF: Open Sensing Framework [Pentland et al, 2013]
 - Extensible framework for getting sensor data to a web site
- HumanSense [Frank, 2013]
 - Open source data collection platform + classification
- Lifespace measurement [Schenk et al, *J. Am. Geriatric Society*, 2011]
 - Track indoor location using bluetooth beacons in rooms
- Commercial products
 - Exercise products: FitBit, Jawbone, Nike FuelBand
 - Phone providers: Google Now and Maps

Indoor Localization: Training

- Data collection
 - User creates a room name and walks around the room
 - App samples WiFi SSIDs and signal strengths for a few minutes
 - Data uploaded to cloud server in compressed text file
- Construct a room classifier
 - Which room is most likely?
 - Random forest of decision trees [Breiman, *Machine Learning* 2001; Balaguer et al, IROS 2012]
- Construct a novelty classifier
 - Has this room been seen before?
 - Nearest centroid threshold with Euclidean distance

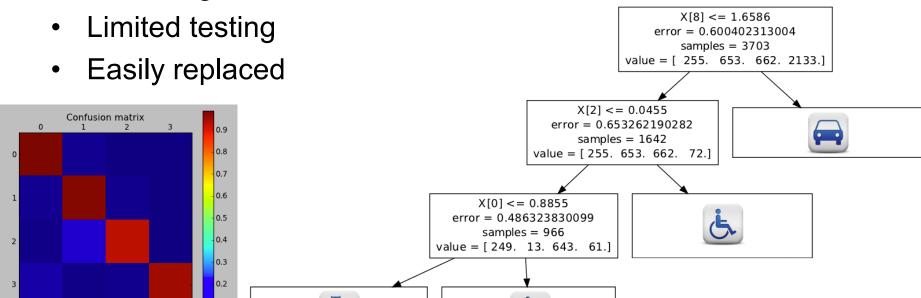
Indoor Localization: Operation & Testing

Data collection

- Phone collects WiFi SSID and signal strengths at 10s interval
- Data uploaded to cloud server

Testing

- Six buildings, 4–6 rooms each, 7–189
 WiFi access points, 1140–3138 readings for training purposes
- Secondary app built to collect images during testing and label ground truth
- Six more test sets created by randomly removing 20% of access points from original test sets
- Random forest achieves 91% accuracy average (range 76%–98%) over twelve test sets



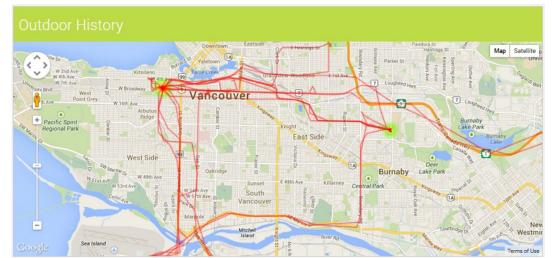
Activity Classification

- Based on [Frank et al 2012; Hicks et al, 2011]
- Accelerometer readings (total magnitude) at 20 Hz
- Features pulled from 3 second moving window
- Nine features considered: Mean and variance of accelerometry (2), frequency and amplitude of top three Fourier coefficiens (6), GPS speed estimate (1)
- Build single decision tree

0.1

Other Implementation Details

- Outdoor localization
 - GPS latitude and longitude measured once per minute
- Lots of data uploaded
 - Raw data is 15 MB compressed (50 MB uncompressed) in 18 hours
 - Summarized data is 100 KB per day
- Significant power requirement
 - Runs for 22 hours without recharge (but no other phone use)
- Phone held in backpack or pants pocket (except during room training)



Visualization

- Daily or multi-day summaries available
- Five visualizations
 - Summary pie charts of indoor location and activity
 - Time series of indoor location and activity
 - Google map heat chart of outdoor location and traces
- Visit http://mobisense.ca and use Android id 71b82dc2885abaca

Conclusions

- MobiSense system
 - Provides indoor and outdoor localization plus four category activity classification
 - Android phone app to collect wifi signal strength, GPS and accelerometry
 - Cloud server to construct and evaluate decision trees
 - Could server to visualize results
 - Based on Open mHealth separation of concerns
 - Easily modified
- Squashed by commercial products?
 - But they provide little or no access to raw data
- Open source the code
 - Contact me if you are interested

Acknowledgements

Thanks

- Jordan Frank for his open source HumanSense app
- CanWheel team for valuable feedback

Funding

- CanWheel, the CIHR Emerging Team in Wheeled Mobility for Older Adults grant #AMG-100925
- NSERC Discovery and USRA grants
- CFI Canada Research Chair in Rehabilitation Engineering Design

MobiSense: Lifespace Tracking and Activity Monitoring on Mobile Phones

For more information contact

Ian Mitchell

Department of Computer Science University of British Columbia

mitchell@cs.ubc.ca

http://www.cs.ubc.ca/~mitchell

http://www.canwheel.ca

