A Toolbox of Hamilton-Jacobi Solvers for Analysis of Nondeterministic Continuous and Hybrid Systems

Ian Mitchell

Department of Computer Science University of British Columbia

Jeremy Templeton Department of Mechanical Engineering Stanford University

research supported by the Natural Science and Engineering Research Council of Canada

Nondeterministic, Nonlinear Systems

 $\dot{x} = f(x, p)$

- Systems with unknown parameters p(t)
- Bounded value inputs $p(t) \in P$
 - Controls: double integrator time to reach
 - Disturbances: robust reach sets
- Stochastic perturbations $p(t) \sim P$
 - Continuous state Brownian motion: double integrator with stochastic viscosity
 - Discrete state Poisson processes: stochastic hybrid system model of TCP communication protocol

Hamilton-Jacobi Equations $D_t \varphi(x,t) + G(x,t,\varphi,\nabla\varphi,D_x^2\varphi) = 0$ $\varphi(x,0) = g(x)$ bounded and continous $G(x,t,r,p,\mathbf{X}) \leq G(x,t,s,p,\mathbf{Y}), \text{ if } r \leq s \text{ and } \mathbf{Y} \leq \mathbf{X}$

- Time-dependent partial differential equation (PDE)
- In general, classical solution will not exist
 - Viscosity solution φ will be continuous but not differentiable
- For example, classical Hamilton-Jacobi-Bellman
 - Finite horizon optimal cost leads to terminal value PDE

$$\varphi(x(t),t) = \min_{u(\cdot)} \left[g(x(T)) + \int_t^T \ell(x(s), u(s)) ds \right]$$

$$D_t\varphi(x,t) + \min_u \left[\nabla\varphi(x,t) \cdot f(x,u) + \ell(x,u)\right] = 0$$

The Toolbox of Level Set Methods

- A collection of Matlab routines to approximate the viscosity solution of time-dependent HJ PDEs
 - Fixed Cartesian grids
 - Arbitrary dimension (computational resource limited)
 - Vectorized code achieves reasonable speed
 - Direct access to Matlab debugging and visualization
 - Source code is provided for all toolbox routines
- Underlying algorithms
 - Solve various forms of Hamilton-Jacobi PDE
 - First and second spatial derivatives
 - First temporal derivatives
 - High order accurate approximation schemes
 - Explicit temporal integration

Level Set Methods

- Numerical algorithms for dynamic implicit surfaces and Hamilton-Jacobi partial differential equations
- Applications in
 - Graphics, Computational Geometry and Mesh Generation
 - Financial Mathematics and Stochastic Differential Equations
 - Fluid and Combustion Simulation
 - Image Processing and Computer Vision
 - Robotics, Control and Dynamic Programming
 - Verification and Reachable Sets

Why Use It?

- Does not escape Bellman's curse of dimensionality
 - Dimensions 1-3 interactively, 3-5 slow but feasible
- Pedagogical tool
 - Experiment with optimal control and differential game problems that have no analytic solution
 - Access to Matlab's visualization & debugging
 - Source code for all routines and examples
 - Reasonable speed with vectorized code
- Validation of faster but more specialized algorithms
 - Reduced order TCP model assumed form of high order moments of the distribution
- Study low dimensional systems
 - Mobile robots in 2–3 spatial dimensions
- Free (google "toolbox level set methods")

Using the Toolbox

- Similar to Matlab's ODE integrators
 - More parameters to specify
 - Formulation and scaling must be considered
 - Many examples are available
- PDE forms applicable to systems analysis

$$0 = D_t \varphi(x, t) + v(x, t) \cdot \nabla \varphi(x, t) + H(x, t, \varphi, \nabla \varphi) - trace[L(x, t)D_x^2 \varphi(x, t)R(x, t)] + \lambda(x, t)\varphi(x, t) + F(x, t, \varphi),$$

$$egin{aligned} D_t arphi(x,t) &\geq 0, & D_t arphi(x,t) &\leq 0, \ arphi(x,t) &\leq \psi(x,t), & arphi(x,t) &\geq \psi(x,t), \end{aligned}$$

Example: Optimal Cost to Go

- Specifically, study the classical double integrator
 - Bring point-like dynamic vehicle to a halt at the origin in minimum time, subject to acceleration bound $|b| \le 1$
- Leads to stationary (time-independent) HJ PDE

Stationary Hamilton-Jacobi

General cost to go function

$$\vartheta(x) = \inf_{b(\cdot)} \int_0^T \ell(x(t), b(t)) dt,$$

for closed target set \mathcal{T} , continuous running cost $\ell(x,b) > 0$, and terminal time

 $T = \min\{t \ge 0 \mid x(t) \in \mathcal{T}\}.$

If $\ell \equiv 1$, then $\vartheta(x)$ is the minimum time to reach \mathcal{T} .

To solve, find viscosity solution of $\min_{b \in \mathcal{B}} \left[\nabla \vartheta(x) \cdot f(x,b) - \ell(x,b) \right] = 0 \text{ in } \mathbb{R}^d \setminus \mathcal{T},$ $\vartheta(x) = 0 \text{ on } \partial \mathcal{T}.$

Transformation to Time-Dependent HJ

Create implicit surface definition of $\ensuremath{\mathcal{T}}$

$$arphi(x,0) egin{cases} \leq 0, x \in \mathcal{T}; \ = 0, x \in \partial \mathcal{T}; \ \geq 0, x \in \mathbb{R}^d \setminus \mathcal{T}. \end{cases}$$

Under assumption $\nabla \varphi(x,0) \cdot f(x,b) \neq 0$ on ∂T , make change of variables

$$\nabla \vartheta(x) \leftarrow \frac{\nabla \varphi(x,t)}{D_t \varphi(x,t)}$$

and get toolbox appropriate PDE

$$D_t \varphi(x,t) + \min_{b \in \mathcal{B}} \frac{\nabla \varphi(x,t) \cdot f(x,b)}{\ell(x,b)} = 0.$$

After solving, set ϑ to be crossing time

$$\vartheta(x) = \{t \mid \varphi(x,t) = 0\}.$$

Double Integrator Time to Reach

• Contours of minimum time to reach $\vartheta(x)$

Implemented in the Toolbox

- Part of the standard toolbox distribution (version 1.1 beta)
 - Examples/TimeToReach/doubleIntegratorTTR
- PDE terms utilized

 $0 = D_t \varphi(x, t)$ $+ v(x, t) \cdot \nabla \varphi(x, t)$ $+ H(x, t, \varphi, \nabla \varphi)$ $- trace[L(x, t) D_x^2 \varphi(x, t) R(x, t)]$ $+ \lambda(x, t) \varphi(x, t)$ $+ F(x, t, \varphi),$

 $egin{aligned} D_t arphi(x,t) &\geq 0, & D_t arphi(x,t) \leq 0, \ arphi(x,t) &\leq \psi(x,t), & arphi(x,t) \geq \psi(x,t), \end{aligned}$

Example: Stochastic Continuous System

- Underlying double integrator model
 - Stochastically varying wind friction (viscosity)
 - Minimize continuous terminal cost g(x) at fixed finite time horizon

Stochastic Differential Game

Expected cost with fixed horizon \boldsymbol{T}

$$\varphi(x_0, t_0) = E\left[\inf_{b(\cdot)} \sup_{a(\cdot)} \left(\int_{t_0}^T \ell(x, s, a, b) ds + g(x(T)) \right) \right].$$

where system evolves according to SDE

$$dx(t) = f(x(t), t, a, b)dt + \sigma(x(t), t)dB(t), \quad x(t_0) = x_0,$$

with adversarial inputs a and b.

Find viscosity solution of

$$D_t \varphi + H(x, t, \nabla \varphi) + \frac{1}{2} \operatorname{trace} \left[\sigma \sigma^T D_x^2 \varphi \right] = 0.$$

$$H(x, t, p) = \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} \left[p \cdot f(x, t, a, b) + \ell(x, t, a, b) \right],$$

$$\varphi(x, T) = g(x).$$

Stochastic Double Integrator Results

Implemented in the Toolbox

- Separate code release on toolbox website
 - PublicationCode/HSCC2005/SDE/viscousIntegrator
- PDE terms utilized

 $0 = D_t \varphi(x, t)$ $+ v(x, t) \cdot \nabla \varphi(x, t)$ $+ H(x, t, \varphi, \nabla \varphi)$ $- trace[L(x, t) D_x^2 \varphi(x, t) R(x, t)]$ $+ \lambda(x, t) \varphi(x, t)$ $+ F(x, t, \varphi),$

 $egin{aligned} D_t arphi(x,t) &\geq 0, & D_t arphi(x,t) \leq 0, \ arphi(x,t) &\leq \psi(x,t), & arphi(x,t) \geq \psi(x,t), \end{aligned}$

Transmission Control Protocol (TCP)

- Handles reliable end-to-end delivery of packets over Internet
 - Window size *w* controls transmission rate
 - Permitted number of transmitted but unacknowledged packets
- When transmitting a file, connection is in one of two states:
 - Slow Start (SS): window size grows exponentially
 - Congestion Avoidance (CA): window size grows linearly
- When a packet is dropped:
 - Switch to CA and cut window size in half

Example: Stochastic Hybrid System

- Window size is continuous variable, evolves deterministically
- Discrete transitions
 - Start of transfer, packet drop, end of transfer
 - Occur at "instantaneous rate" λ , cause window size reset ϕ
- Separate SS_i and CA_i modes and transitions for each file size k_i

Stochastic Hybrid System

Terminal payoff

 $\varphi(q_0, x_0, t_0) = E[\varphi_T(q(T), x(T))],$ where $q(t_0) = q_0$, $x(t_0) = x_0$, and continuous evolution $\dot{x} = f(q, x, t).$ Discrete transition or reset maps $(q, x) = \phi_j(q^-, x^-, t)$ occuring at intensities $\lambda_j(q, x, t) \ge 0$ with $x \in \mathbb{R}^d$, $q \in \mathcal{Q}$, $j \in \{1, 2, ..., m\}.$

Then (for identity resets in x), find viscosity solution of

$$D_t \varphi(q, x, t) + \nabla \varphi(q, x, t) \cdot f(q, x, t) + \sum_{j=1}^m \lambda_j(q, x, t) \left(\varphi(\phi_j(q, x, t), t) - \varphi(q, x, t) \right) = 0$$

Steady State Measures of Rate

- Seek measures of rate = (window size / round trip time)
- For example, to find average rate over a set of modes Q_m , solve PDE backwards in time to steady state with terminal conditions

$$\varphi_T(q,w) = \begin{cases} w, & \text{for } q \in \mathcal{Q}_m; \\ 0, & \text{otherwise.} \end{cases}$$

Measures of Rate Results

- Compare measures of rate for various drop probabilities
- Results match well with reduced order model
 - Validates assumption regarding high order distribution moments
 - [Hespanha, HSCC 2004] & [Hespanha, sub. Int. J. Hybrid Systems]

Implemented in the Toolbox

- Separate code release on toolbox website
 - PublicationCode/HSCC2005/CommunicationTCP/kolmogorovTCP
- PDE terms utilized

$$\begin{split} 0 = & D_t \varphi(x, t) \\ &+ v(x, t) \cdot \nabla \varphi(x, t) \\ &+ H(x, t, \varphi, \nabla \varphi) \\ &- \operatorname{trace}[\mathbf{L}(x, t) D_x^2 \varphi(x, t) \mathbf{R}(x, t)] \\ &+ \lambda(x, t) \varphi(x, t) \\ &+ F(x, t, \varphi), \end{split}$$
 $D_t \varphi(x, t) \geq 0, \qquad D_t \varphi(x, t) \leq 0, \end{split}$

 $arphi_t arphi(x,t) \leq 0, \qquad D_t arphi(x,t) \leq 0, \\ arphi(x,t) \leq \psi(x,t), \qquad arphi(x,t) \geq \psi(x,t), \end{cases}$

Example: Continuous Reachable Sets

 Nonlinear dynamics with adversarial inputs

$$D_t\phi(x,t) + \min\left[0, H(x, \nabla\phi(x,t))\right] = 0$$

$$H(x,p) = \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} \left[p \cdot f(x,a,b) \right]$$

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -v_a + v_b \cos x_3 + ax_2 \\ v_b \sin x_3 - ax_1 \\ b - a \end{bmatrix}$$
$$= f(x, a, b)$$

$$a \in \mathcal{A} = [-1, +1]$$

 $b \in \mathcal{B} = [-1, +1]$
 v_a, v_b constant

A Different Continuous Reachable Set

- Acoustic capture [Cardaliaguet, Quincampoix & Saint-Pierre, Ann. Int. Soc. Dynamic Games 1999]
 - Variation on homicidal chauffeur, where evader must reduce speed when near pursuer

Example: Hybrid System Reachable Sets

• Mixture of continuous and discrete dynamics

Implemented in the Toolbox

- Part of the standard toolbox distribution (version 1.0)
 - Examples/Reachability/
- PDE terms utilized

 $0 = D_t \varphi(x, t)$ + $v(x, t) \cdot \nabla \varphi(x, t)$ + $H(x, t, \varphi, \nabla \varphi)$ - trace[$L(x, t) D_x^2 \varphi(x, t) R(x, t)$] + $\lambda(x, t) \varphi(x, t)$ + $F(x, t, \varphi)$,

 $egin{aligned} D_t arphi(x,t) &\geq 0, & D_t arphi(x,t) \leq 0, \ arphi(x,t) &\leq \psi(x,t), & arphi(x,t) \geq \psi(x,t), \end{aligned}$

Future Work

- Toolbox additions
 - Implicit temporal integrators
 - Fast stationary Hamilton-Jacobi solvers
 - Particle level set methods
 - Adaptive grids
- More application examples
 - Hybrid system reachable sets
 - Image processing
 - Financial instrument pricing
- Wish List
 - Full nondeterministic hybrid system theory
 - Toolbox front end for specifying hybrid system verification problems—requires (nondeterministic) hybrid system specification language

A Toolbox of Hamilton-Jacobi Solvers for Analysis of Nondeterministic Continuous and Hybrid Systems

For more information contact

Ian Mitchell Department of Computer Science The University of British Columbia

mitchell@cs.ubc.ca
http://www.cs.ubc.ca/~mitchell

Truth in Advertising

- Comparison to analytic solution not very good
 - But difficult to compare quantitatively to other algorithms

Additional Slides?

- HSCC 04 air3D example with weird control policy
- Future work

Implicit Surface Functions

- Surface S(t) and/or set G(t) are defined implicitly by an isosurface of a scalar function $\phi(x,t)$, with several benefits
 - State space dimension does not matter conceptually
 - Surfaces automatically merge and/or separate
 - Geometric quantities are easy to calculate

Ian Mitchell, University of British Columbia

Constructive Solid Geometry

- Simple geometric shapes have simple algebraic implicit surface functions
 - Circles, spheres, cylinders, hyperplanes, rectangles
- Simple set operations correspond to simple mathematical operations on implicit surface functions

- Intersection, union, complement, set difference

High Order Accuracy

- Temporally: explicit, Total Variation Diminishing Runge-Kutta integrators of order one to three
- Spatially: (Weighted) Essentially Non-Oscillatory upwind finite difference schemes of order one to five

- Example: approximate derivative of function with kinks

The Toolbox is not a Tutorial

- Users will need to reference the literature
- Two textbooks are available
 - Osher & Fedkiw (2002)
 - Sethian (1999)

Why Use It?

- Dynamic implicit surfaces and Hamilton-Jacobi equations have many practical applications
- The toolbox provides an environment for exploring and experimenting with level set methods
 - Fourteen examples
 - Approximations of most common types of motion
 - High order accuracy
 - Arbitrary dimension
 - Reasonable speed with vectorized code
 - Direct access to Matlab debugging and visualization
 - Source code for all toolbox routines
- The toolbox is free

http://www.cs.ubc.ca/~mitchell/ToolboxLS

Under development

- PDE terms
 - More general Dirichlet and Neumann boundary conditions
 - Fast signed distance function construction
- Other methods
 - Implicit temporal integrators
 - Static Hamilton-Jacobi
 - Vector level set methods
 - Particle level set methods
- More application examples
 - Hybrid system reachable sets
 - Image processing