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Shortest Path via the Value Function

• Assume isotropic holonomic vehicle

d
dtx(t) = ẋ(t) = u(t), ‖u(t)‖ ≤ 1.

• Plan paths to target set T optimal by cost
metric

ψ(x0) = inf
x(·)

∫ tf

t0

c(x(s)) ds,

tf = argmin{s | x(s) ∈ T }.

• Value function ψ(x) satisfies Eikonal
equation

‖∇ψ(x)‖ = c(x), for x ∈ Ω \ T ;

ψ(x) = 0, for x ∈ T .

Top: Goal location (blue circle) and
obstacles (grey).
Middle: Contours of value function.
Bottom: Gradients of value function
(subsampled grid).
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Path Extraction from Value Function

• Given the value function, optimal state
feedback action

u∗(x) =
∇ψ(x)

‖∇ψ(x)‖
.

• Typical robot makes decisions on a periodic
cycle with period δt so path is given by

ti+1 = ti + ∆t,

x(ti+1) = x(ti) + ∆t u∗(x(ti)).

• Even variable step integrators for
ẋ(t) = u∗(x(t)) struggle

Top: Fixed stepsize explicit (forward
Euler).
Middle: Adaptive stepsize implicit
(ode15s).
Bottom: Sampled gradient algorithm.
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Gradient Sampling for Nonsmooth Optimization I

Gradient sampling algorithm [Burke, Lewis & Overton, SIOPT 2005]

• Evaluate gradient at k random samples
within ε-ball of current point x(ti)

x(k)(ti) = x(ti) + ε δx(k),

p(k)(ti) = ∇ψ(x(k)(ti)).

• Determine consensus direction

p∗(ti) = argmin
p∈P(ti)

‖p‖

P(ti) = conv{p(1)(ti), . . . , p(K)(ti)}.

P(ti) approximates the Clarke
subdifferential at x(ti).

Gradient samples (yellow) and
consensus direction (red).

Plotted in state space.

Plotted in gradient space.
Convex hull (blue) also shown.
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Gradient Sampling for Nonsmooth Optimization II

Gradient sampling algorithm [Burke, Lewis & Overton, SIOPT 2005]

If ‖p∗(ti)‖ 6= 0

• Choose step length s by Armijo line search
along p∗(ti).

• Set new point

x(ti+1) = x(ti)− s
p∗(ti)

‖p∗(ti)‖
.

If ‖p∗(ti)‖ = 0

• There is a Clarke ε-stationary point inside
the sampling ball.

• Shrink ε and resample.

Gradient samples (yellow) and
consensus direction (red).

Plotted in state space.

Plotted in gradient space.
Convex hull (blue) also shown.
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Particle Filters

Monte Carlo localization (MCL) [Thrun, Burgard & Fox, Probabilistic Robotics,
2005] is often used to estimate current state for mobile robots.

• State estimate is a collection of N weighted samples{
(w(k)(t), x(k)(t)) for k = 1 . . . N

}
.

• Predict: Draw new sample state x(k)(ti+1) when action u(ti) is taken

x(k)(ti+1) ∼ p(x(ti+1) | x(k)(ti), u(ti)).

• Correct: Update weights w(k)(ti+1) when sensor reading arrives

w(k)(ti+1) = p(sensor reading | x(k)(ti+1)) w(k)(ti),

• Resample states and reset weights regularly.

We always work with particle cloud after resampling (when all weights are unity).
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Narrow Corridor Simulation

Choosing action by AMCL expected state (roughly the mean of particle locations).

• Chattering despite very accurate localization.

• Chattering remains even as step size reduced.

Simulated traversal of a narrow corridor in ROS/Gazebo.
Estimated (blue) and true (green) paths shown.
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The Gradient Sampling Particle Filter (GSPF)

Choosing action by GSPF.

• Sample the gradients at the particle locations.

• If ‖p∗(ti)‖ 6= 0, then p∗(ti) is a consensus descent direction for current state
estimate.

Simulated traversal of a narrow corridor in ROS/Gazebo.
Estimated (blue) and true (green) paths shown.
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Finite Wall Scenario

If ‖p∗(ti)‖ = 0 there is no consensus direction.

Finite wall scenario displays the two
typical types of stationary points:

• Minimum (left side): Path is
complete(?)

• Saddle point (right side): Seek a
descent direction.

Cost. Value approximation.
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Classify the Stationary Point

Quadratic ansatz for value function in neighborhood of samples

ψ̄(x) = 1
2 (x− xc)T A(x− xc) + bT (x− xc) + c

• Fit to the existing gradient samples

∇ψ̄(x) = A(x− xc) + b.

• Solve by least squares

min
A,b
‖p(k)(ti)−Ax(k)(ti)− b‖

and set xc = A−1b.

• Examine eigenvalues {λj}dj=1 of A

I If all λj > 0, local minimum.
I If any λj < 0, corresponding eigenvectors

are descent directions.

ψ̄(x) at minimum.

ψ̄(x) at saddle.
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Classification Experiments: Minimum

State space view of path.

State space gradient samples
(gold) and eigenvectors of
Hessian of ψ̄(x) (blue).

Inward pointing eigenvector
arrow pairs correspond to

positive eigenvalues.
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Classification Experiments: Saddle

State space view of path.

Gradient space convex hull

State space eigenvectors of
Hessian of ψ̄(x).
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Resolve the Stationary Point

Three potential responses to detection of a stationary point

• Stop: If it is a minimum and localization is
sufficiently accurate.

• Reduce sampling radius: Collect additional sensor
data to improve localization estimate.

I Rate and/or quality of sensing can be reduced when
consensus direction is available.

I Localization should be improved by independent
sensor data.

• Vote: If it is a saddle and improved localization is
infeasible.

I Let v be the eigenvector associated to a negative
eigenvalue and α =

∑
k sign(−v

T p(k)).
I Travel in direction sign(α)v.

Resolution by using an
improved sensor.

Resolution by voting.
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Path Planning Under Uncertainty

• Differential games and the Hamilton-Jacobi-Isaacs equation
I [Evans & Souganidis, Indiana University Mathematics Journal, 1984]

• Robust MPC
I [Mayne, Automatica, 2014]

• Asymptotically optimal sampling-based planners in belief space
I [Bry & Roy, ICRA 2011]
I [Luders & How, ACC 2014]

• Efficient POMDP solvers
I [Pineau, Gordon, & Thrun, IJCAI 2003]
I [Bai, Hsu, & Lee, IJRR 2014]

• QMDP
I [Littman, Cassandra, & Kaelbling, ICML 1995]
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Conclusions

Gradient sampling particle filter (GSPF)

• Utilizes natural uncertainty in system state
to reduce chattering due to non-smooth
value function and/or numerical
approximation.

• Easily implemented on existing planners and
state estimation.

Future work

• Nonholonomic dynamics.

• Convergence proof.

• Scalability to more particles.
Actions synthesized by nearest

neighbor lookup on RRT* tree. GSPF
is not only for value functions.
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