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Motivation: Sampled Data Systems

A common design pattern for cyber-physical systems:

Plant
(continuous time)

Controller
(discrete time)

Sensors
(time sampling)

Actuators
(zero order hold)

Traditional models of time evolution miss important features of this design:

• Continuous time models ignore the periodic nature of feedback.

• Discrete time models ignore plant evolution between samples.

The sampled data model captures these features.
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Previous Work

[Mitchell, Kaynama, Chen & Oishi, NAHS 2013]:

• Developed an algorithm to approximate sampled data discriminating kernels.

• Demonstrated on toy examples.

[Mitchell & Kaynama, HSCC 2015]:

• Described an algorithm to more accurately approximate sampled data
discriminating kernels robust to sample time jitter.

• Demonstrated on a partially nonlinear three dimensional model of quadrotor
altitude maintenance.
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[Mitchell et al, NAHS 2013]
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[Mitchell & Kaynama, HSCC 2015]
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Contributions

• Adapt algorithm to fixed time
capture basins.

• Construct discrete state automaton
/ look-up table for controller to
synthesize (set-valued) safe
feedback control signals.

• Demonstrate on a partially nonlinear
six dimensional longitudinal model
of quadrotor flight.
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Set-Valued Safe Control?

But the plant requires a single control signal!

• Proposed automaton represents a verified control envelope [Aréchiga &
Krogh, ACC 2014] which could be used to more efficiently design, modify or
tune proposed controllers to ensure safety.

• Set-valued constraints can be used online to check and possibly modify
exogenous input signal, such as human-in-the-loop or legacy controller

Plant
(continuous time)

Controller
(discrete time)

Sensors
(time sampling)

Actuators
(zero order hold)

Exogenous
Input
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Invariance Kernel

Inv ([ts, tf ],S) , {x(ts) ∈ S | ∀u(·),∀t ∈ [ts, tf ], x(t) ∈ S},

S

Inv([ts,tf], S)

• What states will remain safe despite input uncertainty.

• Inputs treated in a worst-case fashion.
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Viability Kernel

Viab ([ts, tf ],S) , {x(ts) ∈ S | ∃u(·),∀t ∈ [ts, tf ], x(t) ∈ S},

S

Viab([ts,tf], S)

• Also called controlled invariant set.

• Inputs treated in a best-case fashion.
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Capture Basin

Capt ([ts, tf ],ST ,SC) ,

{
x(ts) ∈ SC

∣∣∣∣∣ ∃u(·),∃tT ∈ [ts, tf ],∀t ∈ [ts, tT ],

x(t) ∈ SC ∧ x(tT ) ∈ ST

}
,

SC

Capt([ts,tf], ST, SC)

ST

• Trajectories must stay inside constraint SC until they reach target ST
• Inputs treated in a best-case fashion.
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Robust Reach Set

Reach ([ts, tf ],S) , {x(ts) ∈ Ω | ∀v(·), x(tf ) ∈ S}

S

Reach([ts,tf], S)

• Not a reach tube: Trajectories must reach S at exactly tf .
• Reach tube may not be the union of these reach sets [Mitchell 2007].
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Discriminating Kernel

Disc ([ts, tf ],S) , {x(ts) ∈ S | ∃u(·),∀v(·),∀t ∈ [ts, tf ], x(t) ∈ S},

That is hard to draw. . .

• Also called robust controlled invariant set.

• Two inputs “control” u(·) and “disturbance” v(·) treated adversarially.
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The Challenge: Efficient Parametric Representations

Existing algorithms used non-parametric representations; complexity is exponential
in state space dimension.

• Viability algorithms: for example [Saint-Pierre 1994; Cardaliaguet et al 1999].

• Level set methods: for example [Mitchell et al 2005].

• New: Outer approximation of capture basin (“region of attraction”) using
occupational measures and SDP for polynomial dynamics (no disturbance
inputs) [Henrion & Korda, IEEE TAC 2014].

In contrast, algorithms using parametric representations for reachable sets are
widely available.

• Ellipsoids: for example [Kurzhanski & Valyi 1996; Kurzhanski & Varaiya
2000; Kurzhanskiy & Varaiya 2006].

• Support functions / vectors: for example [Le Guernic 2009; Le Guernic &
Girard 2010; Frehse et al 2011].
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Discrete and Continuous Time

Discrete time:

x(t+ 1) = f(x(t), u(t), v(t)) general dynamics

x(t+ 1) = Ax(t) + Bu(t) + Cv(t) linear dynamics

• Assume state feedback: Choose u(t) knowing x(t).

• Conservative treatment of uncertainty: Choose v(t) knowing x(t) and u(t).

Continuous time:

ẋ(t) = f(x(t), u(t), v(t)) general dynamics

ẋ(t) = Ax(t) + Bu(t) + Cv(t) linear dynamics

• “Non-anticipative strategies” rigorously resolve input ordering issue;
equivalent to state feedback in all but artificially constructed examples.

• Optimal input signals often have little regularity and hence may not be
physically realizable.
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Continuous-Time Viability Algorithm

[Maidens et al, Automatica 2013], [Kaynama et al, HSCC 2012]

• Let ρ be a small computational timestep and M a
uniform bound on f .

• Start with an under-approximation K↓ of K

K↓ := {x ∈ K | dist(x,Kc) ≥ ρM}

• Iteratively compute Kn+1:

K0 = K↓,
Kn+1(P ) = K0 ∩ Reach ([0, ρ],Kn)

• Discriminating kernel algorithm is straightforward, albeit notationally
complicated.

• Discrete time algorithm omits initial erosion: K0 = K.
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Ellipsoidal Representations

Ellipsoidal techniques (under-)approximating the maximal reach set:

K Reach♯
t(K,U)

ℓ(τ)

ℓ(τ − t)

• Key operations (set evolution, intersection) are accomplished through ODEs
and convex optimization.

• Class of ellipsoids are not closed under these operations, so
underapproximations must be used.

• Set evolution for linear dynamics possible in discrete or continuous time.

• Control and/or disturbance inputs can be treated.
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Sampled Data Model of Time

Plant
(continuous time)

Controller
(discrete time)

Sensors
(time sampling)

Actuators
(zero order hold)

• Use continuous time model of the plant

ẋ(t) = f(x(t), u(t), v(t)) general dynamics;

ẋ(t) = Ax(t) + Bu(t) + Cv(t) linear dynamics.

• However, control input is piecewise constant in time

upw(t) = ufb(x(tk)) for tk ≤ t < tk+1

where ufb : Ω→ U is a feedback control policy.
• Disturbance input is allowed to vary (measurably) continuously.
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Sampled Data Formulation

• Assume fixed sample time, but can be extended to handle timing jitter.

• Sampled data algorithm uses continuous time algorithm in an augmented
state space

x̃ ,

[
x
u

]
f̃(x̃, v) ,

[
f(x, u, v)

0

]
.

• Move between original and augmented state space with tensor products and
projections

Projx

(
X̃
)
,

{
x ∈ Ω

∣∣∣∣∃u, [xu
]
∈ X̃

}
,

Proju

(
X̃ , x

)
,

{
u ∈ U

∣∣∣∣ [xu
]
∈ X̃

}
.
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Finite Horizon Sampled Data Capture Basin

Define

• Sample period δ

• Horizon T = N̄δ

• Constraint set SC

• Target set ST ⊂ SC
• Finite horizon sampled data capture basin

Captsd ([0, T ],ST ,SC) ,

x0 ∈ SC

∣∣∣∣∣∣∣
∃upw(·),∃i ∈ {0, 1, . . . , N̄},

∀v(·),∀t ∈ [0, iδ],

x(t) ∈ SC ∧ x(iδ) ∈ ST

 .

If a safe infinite horizon feedback controller uinffb (x) is available for x ∈ ST , then
capture basin is also infinite horizon safe.
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Capture Basin Algorithm

• For i = 1, 2, . . . , N̄

Ei , E(Capti (ST ,SC))

E0 = E(ST )

E(I1) , E(Inv ([0, δ],SC × U)),

E(Ri) , E(Reach ([0, δ], Ei−1 × U)),

E(Ci) , Inscribedα (E(Ri) ∩ E(I1)) ,

Ei = Projx (Inscribed0 (E(Ci) ∩ E(Ω× E(U)))) ,

• Overapproximates the sampled data capture basin

N̄⋃
i=0

Ei ⊆ Captsd ([0, T ],ST ,SC) .

• Provides a safe control policy

Uctrl(x, i) , Proju (E(Ci), x) ∩ E(U).

• All operations can be efficiently implemented for ellipsoids.
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Discrete Control Automaton Ensures Runtime Safety

Create a mode for each horizon i = 0, 1, . . . , N̄ .

mode m(i)

x(t)  Capti (ST, SC)

u(t)  UC(x, i)

current

mode

successor mode

(guaranteed feasible)

mode m(i−1)

x(t)  Capti−1(ST, SC)

u(t)  UC(x, i−1)

predecessor mode

mode m(i+1)

x(t)  Capti+1(ST, SC)

u(t)  UC(x, i+1)

maximum horizon

mode m(N)

x(t)  CaptN(ST, SC)

u(t)  UC(x, N)

target set ST

mode m(0)

x(t)  Capt0(ST, SC)

u(t)  UC(x, 0)

m(N−1)

m(i+2)

m(1)

m(i −2)

Plant
(continuous time)

Controller
(discrete time)

Sensors
(time sampling)

Actuators
(zero order hold)

• Not every mode transition is shown; in fact, every mode is connected to every
other node (including self-loops).
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Look-Up Table Ensures Runtime Safety

Mode Valid States Safe Inputs

m(N̄) CaptN̄ (ST ,SC) Uctrl(x, N̄)
...

...
...

m(i+ 1) Capti+1 (ST ,SC) Uctrl(x, i+ 1)
m(i) Capti (ST ,SC) Uctrl(x, i)

m(i− 1) Capti−1 (ST ,SC) Uctrl(x, i− 1)
...

...
...

m(0) ST uinf
fb (x)

• Table data Capti (ST ,SC) and Uctrl(x, i) are computed offline.

• At sample time tk, choose a row for which x(tk) is in the valid states to find
a safe set of input values.

• If x(tk−1) was valid for mode m(i), then x(tk) is guaranteed to be valid for
mode m(i− 1).
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Filtering an Exogenous Input

Let ũ(·) be the exogenous input signal.

Plant
(continuous time)

Controller
(discrete time)

Sensors
(time sampling)

Actuators
(zero order hold)

Exogenous
Input

• Upon choosing mode m(i) at time tk, let

upw(t) =

{
ũ(tk), if ũ(tk) ∈ Uctrl(x(tk), i);

ū, otherwise;

• The clipped input ū ∈ Uctrl(x, i) is chosen “near” the value ũ(tk) in some
sense; for example

ū = q +
ũ(tk)− q

‖L(ũ(tk)− q)‖2
where L is the Cholesky factorization of Q−1, Q is the shape matrix for
Uctrl(x(tk), i) and q is its center vector.

Other mechanisms for filtering the exogenous input are possible.
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Related Work

• Much work on traditional control objectives; for example [Goodwin et al, IEEE
Control Systems Magazine 2013], [Karafyllis & Krstic, IEEE TAC 2012], [Monaco &
Normand-Cyrot, Euro. J. Control 2007], [Nes̆ić & Teel, IEEE TAC 2004].

• In [Tsuchie & Ushio, ADHS 2006]: Controller determines switches, more restrictive
(but more realistic?) class of jitter, requires trajectory solutions.

• In [Karafylllis & Kravaris, Int. J. Control 2009]: Define r-robust reachability, but
requires Lyapunov-like function.

• In [Simko & Jackson, HSCC 2014]: Taylor models and SMT solver, but only initial
state is nondeterministic.

• In [Gillula, Kaynama & Tomlin, HSCC 2014]: Sampled data viability kernel (no
disturbance input) with polytopic set representation.

• In [Aréchiga & Krogh, ACC 2014]: Theorem prover to verify invariants and control
envelopes robust to parameter variations and sample time uncertainty.

• In [Kaynama, Michell, Oishi & Dumont, IEEE TAC 2015]: Discrete control
automaton built from ellipsoidal approximations of discriminating kernels to ensure
safety for continuous time systems.

• In [Dabadie, Kaynama & Tomlin, IROS 2014]: robust sampled data reach set is
complement of (jitter-free) discriminating kernel.
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Nonlinear Longitudinal Model of a Quadrotor

• From [Bouffard 2012]

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = u1K sinx5,

ẋ4 = −g + u1K cosx5,

ẋ5 = x6,

ẋ6 = −d0x5 − d1x6 + n0u2,

• Inputs: total thrust u1 and desired
roll angle u2

x5

x1

x2
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Constraints

Safety constraint set SC :

x1 ∈ [−1.7,+1.7],

x2 ∈ [+0.3,+2.0],

x3 ∈ [−0.8,+0.8],

x4 ∈ [−1.0,+1.0],

x5 ∈ [−0.15,+0.15],

x6 ∈ [−π2 ,+π
2 ].

LQR controller experimentally known to
stablize from states in ST :

x1 ∈ [−1.2,+1.2],

x2 ∈ [+0.5,+1.7],

x3 ∈ [−0.5,+0.5],

x4 ∈ [−0.8,+0.8],

x5 ∈ [−0.1,+0.1],

x6 ∈ [−0.3,+0.3].

Ian M. Mitchell — 25



Linearized Model

• For ellipsoidal analysis, linearize dynamics about ū1 and x̄5


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

 =

linear︷ ︸︸ ︷

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1
2
Kū1 cos x̄5 0

0 0 0 0 − 1
2
Kū1 sin x̄5 0

0 0 0 0 0 1
0 0 0 0 −d0 −d1




x1
x2
x3
x4
x5
x6

 +



0 0
0 0

K(sin x̄5 − 1
2
x̄5 cos x̄5) 0

K(cos x̄5 + 1
2
x̄5 sin x̄5) 0

0 0
0 n0


[
u1
u2

]

+



0
0

− 1
2
ū1K(x̄5 cos x̄5)

1
2
ū1K(x̄5 sin x̄5) − g

0
0


︸ ︷︷ ︸

constant

+



0
0

1
2
Kx5u1 cos x̄5 − 1

2
K(x5 − x̄5)2ū1 sin ξ

− 1
2
Kx5u1 sin x̄5 − 1

2
K(x5 − x̄5)2ū1 cos ξ

0
0


︸ ︷︷ ︸

linearization error

for some ξ in the

range of possible

values of x5.

• Compute capture basins robust to bound on the linearization error.
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Hybridization to Reduce Error Bound

• Leading error term is
1
2Kx5u1 cos x̄5.

• To reduce range of error, use hybrid
model with values of
ū1 ∈ {g − 0.5, g, g + 0.5} and
x̄5 ∈ {−0.05, 0.00,+0.05} for each
mode.

• Adjust SC and range of inputs for
each model hybridization mode as
well.

x5 ∈ [−0.1,+0.1] + x̄5

u1 ∈ [−0.5,+0.5] + ū1

u2 ∈
[
− π

16 ,+
π
16

]
+ x̄5

x̅5 = 0, 
u̅1 = g

x̅5 = 0, 
u̅1 = g−0.5

x̅5 = 0, 
u̅1 = g+0.5
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Capture Basin Calculation

• Create three pairs of SC and ST to
better fill box constraints with
ellipsoids.

• Could also use multiple direction
vectors for ellipsoidal reachability
calculations, but a single vector did
a good job.

` =
[
0 0 0 1 0 0 0 0

]T
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Capture Basin Results

Compute capture basin approximations
over

• 5 hybridization modes.

• 3 constraint set approximations.

• 1 direction vector.

• 10 sample periods with δ = 0.1s.

Computation takes ∼ 15s for each
combination of mode, constraint set and
direction vector over 10 sample periods.
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Runtime Application

Compare exogenous pilot input with UC(x(t),m) for several modes m.

Heuristic for selecting modes:

• Current hybridization and constraint
set with horizons
{i− 1, i, i+ 1, i+ 2} (4 modes).

• Current horizon i with all
hybridizations and contraint sets
(14 modes).

Plant
(continuous time)

Controller
(discrete time)

Sensors
(time sampling)

Actuators
(zero order hold)

Exogenous
Input

• If pilot input is inside UC(x(t),m), choose m with largest horizon.

• If pilot input is not inside, choose m that gets closest and project input onto
UC(x(t),m).
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Runtime Results

• Each mode comparison requires
evaluating a quadratic function (18
modes takes ∼ 0.03s).

• Input u2 is clipped for t ∈ [6, 12]
because of threat of exceeding
bounds on x1.

• Input u2 is allowed much higher
value for t ≈ 16 without clipping.

• LQR controller is not invoked for
t ∈ [0, 20] even though capture
basin horizon is T = 1.
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0

2

x1

State Trajectories
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0

1

2
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−1

0
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x3
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−1

0

1

x4
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−0.1

0

0.1

x5
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2

x6
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Limitations

• No formal proof of LQR controller’s infinite horizon safety.

• Worst case treatment of linearization error leads to overly conservative results.

• Ellipsoids offer poor approximation of boxes, which leads to overly
conservative results.

• Algorithm does not account for feedback delay or state uncertainty.

• Input clipping may not be the appropriate shared control strategy.
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Conclusions & Future Work

In this paper we

• Described a method to construct a control automaton / look-up table
returning set-valued safe control inputs for a sampled data system.

• Implemented an efficient algorithm constrained to linear dynamics but able to
handle some nonlinearity through robust analysis.

• Demonstrated technique on a six dimensional nonlinear longitudinal quadrotor
model with a human-in-the-loop pilot providing an exogenous input signal.

In the future we plan to

• Investigate methods to handle realistic signal delay and timing jitter.

• Seek more accurate representations able to handle more general dynamics.

• Adapt techniques to learned models.

• Identify methods of sharing control which humans find more suitable than
clipping.
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