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Abstrat
Computer ontrol is an intimate part of many modern devies, and yet there exist fewformal methods for designing and analyzing the omplex interations between the disreterealm of digital omputers and the ontinuous dynamis that hold sway outside of it. Ourgoal in the researh desribed here is verifying the safety of suh hybrid systems: systemswhih involve both disrete and ontinuous behaviors. We have developed omputationalmethods that determine in what states a system might �nd itself, and how a system anuse its ontrol authority to avoid reahing states that are known to be unsafe.Our main tool is the bakwards reahable set. Given some system dynamis and a set oftarget states, the bakwards reahable set is the set of states whih give rise to trajetoriesleading to the target set. If the target set is hosen as the known dangerous states of asystem, the reahable set enompasses those states whih lead to danger. Consequently,reahable sets an be used for safety veri�ation and for synthesis of safe ontrols.We desribe, prove the orretness of, and implement an algorithm|based on a time de-pendent Hamilton-Jaobi-Isaas partial di�erential equation|for omputing the bakwardsreahable set of a ontinuous dynami game. Unlike its alternatives, the method presentedhere an draw diretly upon the aurate numerial shemes developed in the level set lit-erature to solve suh Hamilton-Jaobi equations. The di�erential game formulation allowsus to handle not only traditional ontrol inputs, but also onservatively treat noise, modelunertainty and the unknown ations of other agents as adversarial disturbane inputs.While our tehnique an be applied to systems with nonlinear dynamis in any numberof state spae dimensions, its omputational ost sales poorly with dimension. We there-fore desribe a method for overapproximating reahable sets using quikly omputed lowerv



dimensional projetions. For safety veri�ation appliations, overapproximations are suÆ-ient.Finally, we show how an existing algorithm for omputing reahable sets of hybrid sys-tems an be aurately implemented by inorporating our method for �nding ontinuousreahable sets. The ontinuous, projetive and hybrid reahable set algorithms are alldemonstrated on a number of examples.
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Prefae
I'm moving in seventy two hours, and very soon I've got to deide whether I should eat orpak the box of Millenios� that I purhased bak when we thought the lights would go out inJanuary 2000 (we were only o� by sixteen months). That, ombined with a goodly dose ofprorastination, has got me thinking what I would have done if I'd been born one thousandyears ago. Sine \perpetual student" hadn't yet been invented, I'm guessing soothsayerwould have been a pretty good gig for me.I'm always happiest when I know what is going to happen in advane.y I ount myself luky,therefore, to have been born in a time when I an prophesize with the tools of mathematisand omputers rather than a dek of Tarot ards. I'm not alone in my fasination withpredition|the �elds of mathematis and omputer siene were both born from the questfor aurate and onsistent foresight|and I hope that this researh is just the beginning ofmy ontribution to this endeavor.Simulation was the original killer app, and its widespread availability has revolutionized theproess of design. In today's world, a major part of reating any new tehnologial produtis extensive testing through virtual models. One shortoming of traditional simulationmethods, however, is that they examine only one possible evolution of a system's state at atime. At the heart of my investigations is an alternative method of simulation that omputesall possible evolutions at one, so that we an be more on�dent that we understand all ofthe behaviors that a system might exhibit, and an design away any that might not be safe.�For those of you not familiar with them, MilleniosTM were \one in a lifetime", \limited edition", \oÆialereal of the millennium" Cheeriosr with not just the usual O's, but also extra speial 2's. And I've had abox of them in my upboard for almost two years. No kidding.yDespite rumors to the ontrary, I would not get into the srying business beause of its many opportu-nities for evil. That's not to say, however, that I wouldn't enjoy them as a perk.vii



The researh desribed in this thesis onstitutes just a few steps along the paths of simulationand veri�ation, steps that are far from the �rst or the last. This thesis is not a tutorial onontrol, veri�ation, reahability, hybrid systems, or level set methods. On the other hand,an undergraduate level bakground in numerial di�erential equations should be suÆientto understand the ontents, and I hope that I have written learly enough that the interestedreader an pik up neessary portions of the aforementioned researh �elds on the y.It's been thirteen years sine I started my university areer, and I've had a lot of help gettingto where I am today. Kaaren, my new wife but old ame, has been beside me through almostall of it; the last three years here at Stanford with her have been the happiest of my life. Asshe �nally prepares to embark on law shool, I an just hope that I haven't put any ideasin her head about spending the rest of her life there.From one love of my life to the others. Siene, mathematis, learning, teahing and writingare the reasons that I hose graduate shool, and my parents are the reason that I enjoythem so muh. It was my father who �rst introdued me to omputers and simulation manyyears agoz and thereby set the path whih I have followed sine. I have been arried farby my skills at writing, and they are the result of my mother's zealous editing ability; Ilook bak fondly now at so many grade shool essay drafts that were more red ink thanblak. If I had to pik one inident that lead me to where I am today, it would be my�rst high shool siene projet. I raised some mold under a variety of temperature andnutrient onditions, measured its growth daily, and wrote a little omputer simulation thatinterpolated growth patterns (in asii graphis!) for other onditions. I won a regionalaward for sienti� method, all thanks to my mother and father, for it was their idea,explanations, and patiene that allowed me to omplete the projet.I would also like to thank the rest of my (newly enlarged) family: Eri & Johanna, Jean,Leanor & Henry, Margie, Adi and Una. I don't see you as often as I would like, but I loveyou all just the same.I have had a fantasti time in my �ve years at Stanford, and that is beause of the peoplewith whom I've worked. Professor Claire Tomlin has been a wonderful supervisor andolleague. Her thesis researh on hybrid systems is one of the two pillars upon whih minezWhen he started in the �eld, he atually did predit the future with deks of (punhed) ards. I ountmyself doubly luky to have lived in the age of Matlab.viii



is built, and the timing of her arrival at Stanford ould not have been better. My approahto researh has a tendeny to be overly autious, but her enthusiasm, optimism and freshideas have kept me moving forward these past three years (and ying all over the plae forthe last half of that).Professor Ronald Fedkiw has taught me level set methods, the other pillar upon whih Ihave built my researh. He has spent portions of the last two years writing a book on thesemethods [109℄. This proess has a�orded me two great bene�ts: �rst, he has been thinkinghard about how best to explain the state of the art, and seond, when writing he regularlyprorastinates by oming into my oÆe to hat, thus giving me the opportunity to have mymany questions answered.Muh of the work in this thesis is ollaborative in nature, and I would like to thank myoauthors profusely for their help. It has been a great pleasure to work losely with Alexan-dre Bayen on several papers, espeially the ones that involved trips to Europe. Meeko Oishiintrodued me to the pleasure of being a oauthor without any writing duties, a position Ifear I will not often get to hold. And then there is Doug Enright. Cheer up Doug! You're�rst author on a JCP paper and I, for one, think your researh is muh ooler than mine.Professor Stephen Boyd has played a major role in shaping my understanding of ontroltheory and optimization through his inredible teahing and by serving on my readingommittee. With help from him and from Haitham Hindi I hope to further investigate therelative pros and ons of reahable set determination using LMIs and SDPs for the typesof nonlinear systems studied in this thesis. I would also like to thank Professors David Dilland Antony Jameson for making my oral defense suh a painless a�air.I'd like to thank Claire's lab|Alex, Meeko, Ronojoy Ghosh, Inseok Hwang, Gokhan Inal-han, Jung Soon Jang, Rodney Teo and Dusan Stipanovi|and Ron's lab|Doug, RobertBridson, Sergey Koltakov, Neil Molino, Igor Neverov, Joseph Teran, Eran Guendelman,Frederi Gibou and Du Nguyen|for putting up with my often boisterous presene atgroup meetings. My studies at Stanford would not have been possible without ProfessorsGene Golub, Andrew Stuart, Walter Murray, Jim Varah and Mark Greenstreet, who eahhelped in their own way to get me into and through the Sienti� Computing and Com-putational Mathematis program. I have also enjoyed working alongside the students inSCCM, inluding Eri Boman, Kris Bushelman, Maureen Doyle, Chen Grief, Hallgeir Mel-boe, Nhat Nguyen, Will Smit, Paul Tupper, and many others. Evelyn Boughton, Sherannix



Ellsworth, Arden King and Dana Parga have helped me jump through all of the hoops thata dotoral degree entails.On the tehnial side, hearty aknowledgment is due to Professors Stanley Osher and Hong-Kai Zhao for disussions about numerial shemes for solving Hamilton-Jaobi equations,Professors John Lygeros, L. C. Evans, Shankar Sastry and Alexander Kurzhanski for disus-sions about the previous and urrent time dependent Hamilton-Jaobi formulations, andProfessors Patrik Saint-Pierre and Jean-Pierre Aubin for disussions about the onne-tions with viability theory. The original idea for takling ontinuous reahability in higherdimensional systems using projetions ame out of work with Professor Mark Greenstreet.The researh desribed here has been supported by the Defense Advaned Researh ProjetsAgeny under the Software Enabled Control program (AFRL ontrat F33615-99-C-3014).While at Stanford I have also been supported by a Shool of Engineering fellowship from theGroswith family and by Texas Instruments as part of the Digital Signal Proessor UniversityResearh Fund.Finally, I would like to thank my many friends for keeping me from disappearing ompletelyinto my studies. Without help from Fraser & Katrina (and little Chloe), Zeke, Stephanie,Kevin & Allison (and little Amelie), Joel, Bruek, Greg, Eri & Sara, the many Chris,Susannah & Jim, Niky, Holly, Prita, Ujval, Igor, Florian and many others, this time atStanford would have been a long �ve years, instead of just a wonderful ash gone by.Computational siene may be the preferred method of divination in this age, but for betteror worse it works only for our mahines and leaves us just as muh in the dark as ever aboutour own future. What I an say, however, is that I've had a wonderful time here on thefarm, I've married the beautiful priness, and I'm ready to ride o� into the sunrise.xIan M. MithellStanford UniversityAugust 2002
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Chapter 1
Introdution
Mathematial models are widely used to design and analyze all types of systems in advaneof their onstrution. The ore of the researh desribed in this thesis is a omputational toolthat an be used to determine whether suh systems|for example, airplane autopilots|may at in unexpeted ways whih their users would onsider inorret or unsafe.1.1 What's So Interesting?Many modern devies are omposed of large numbers of subsystems, and while the behav-ior of eah subsystem is well understood in isolation, their interation may lead the wholesystem into states that are undesirable or unsafe. Consequently, veri�ation and validationhave reeived major attention in many �elds of engineering. The simplest form of omputa-tional validation is simulation. Provided with a reasonable mathematial model, simulationan expose the aws of a system muh more quikly and heaply than would onstrution ofa physial prototype. Simulation has proven partiularly useful during the iterative proessof design, where engineers seek to rapidly modify and evaluate new features and funtions.The major drawbak of simulation is that it only heks a single trajetory of the system ata time. For systems with many di�erent state values and/or many input signals, it would beprohibitively expensive to hek the safety of every possible system trajetory by simulation1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Di�erene between bakwards and forwards reahable sets.alone. The onern is that simulation of a few thousand, or even a few million, individualtrajetories might miss some isolated but important unsafe ase.One avenue that researhers have followed in their quest to ath every potential failuremode is the omputation of reahable sets. Reahable sets are a way of apturing thebehavior of entire groups of trajetories at one. There are two basi types of reahablesets, depending on whether an initial or a �nal ondition is spei�ed. For a forward reahableset, we speify the initial onditions and seek to determine the set of all states that an bereahed along trajetories that start in that set. Conversely, for a bakward reahable setwe speify a �nal or target set of states, and seek to determine the set of states from whihtrajetories start that an reah that target set. The di�erene is illustrated in �gure 1.1,in whih the arrows represent trajetories of the system.Computing the set of states from whih trajetories of a ontinuous dynami game an reaha given target set has its roots in the work of Isaas [75℄, who used his alulations to deriveapture regions for evaders in pursuit-evasion games, games that were motivated by thestudy of military jets and surfae to air missiles. Our major appliation for reahable setswill be to verify the orret behavior of systems. Figure 1.2 demonstrates how the bakwardreahable set an be used to verify a system's safety. To start with, we ollet all states thatare known a priori to be unsafe into the target set. The target set's bakward reahableset is the set of states whih give rise to unsafe trajetories. Therefore, if the initializationonditions for the system overlap with the bakwards reahable set, the system may beunsafe and should be modi�ed.



1.1. WHAT'S SO INTERESTING? 3

Figure 1.2: Using the bakward reahable set to verify safety.As an example, many of the systems we study involve ollision avoidane protools forairraft. The target set in our analyses is the set of states onsidered a ollision; for example,at ruising altitude the Federal Aviation Administration (FAA) mandates that ommerialairraft maintain a �ve mile horizontal separation. The bakwards reahable set inludesthose states whih will lead to a ollision. In this ase, positions many miles in front ofthe airraft will be part of the bakwards reahable set|far enough in front that the pilotould respond to a danger by hanging heading or altitude|but not positions behind theairraft, sine it will always be moving forward. If another airraft enters this reahableset, there is ause for alarm.The searh for methods of omputing the reahable sets of purely disrete systems, suhas those modeled by �nite automata, has met with onsiderable suess and has led to thedevelopment of powerful tools for automati veri�ation; for example, the binary deisiondiagram [35℄. Most engineering systems, however, are not purely disrete. Continuousdynamis are the norm in ontrol engineering problems, and in many modern systemsimportant behaviors arise from the interation between disrete and ontinuous omponents.While we have ways of simulating these systems, veri�ation and validation of their safetydemands a more rigorous approah.



4 CHAPTER 1. INTRODUCTION
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Figure 1.3: An example two dimensional set G (left), and one possible impliit surfaerepresentation J(x; y) (right, darker portion of mesh is J(x; y) � 0).1.2 Sope and GoalsThe fous of this thesis is on omputational methods for determining the reahable sets ofontinuous and hybrid systems. A hybrid system is one in whih the interation betweendisrete and ontinuous omponents plays an important role in determining the evolutionof the system's state. As desribed above, reahable sets an be used for safety veri�ation.In addition, we demonstrate how they an be used to synthesize ontrollers whih areguaranteed to at safely.The primary hallenges faed by attempts to ompute these reahable sets involve theunountable number of distint states in a ontinuous system. In a �nite disrete system,we an desribe the reahable sets by enumerating their member states and we an evolvethem by following individual trajetories. This strategy annot be applied in a ontinuoussetting, and we must look for other ways of answering two questions: how do we representreahable sets, and how do we evolve them aording to the system's dynamis?One popular way of desribing sets of ontinuous states is alled the impliit surfae funtionrepresentation. Consider a losed set G � Rn . An impliit surfae representation of G wouldde�ne a funtion � : Rn ! R suh that �(x) � 0 if x 2 G and �(x) > 0 if x =2 G. Impliit



1.2. SCOPE AND GOALS 5surfae representations are not unique. An example of a two dimensional set G is shown in�gure 1.3, along with one possible impliit surfae representation.Level set methods [110, 109℄ are a olletion of numerial tehniques for evolving impliitsurfaes aording to underlying ow �elds. Their governing equations are Hamilton-Jaobi(HJ) partial di�erential equations (PDEs), a lass of nonlinear, �rst order hyperboli PDEswhose solutions an exhibit shok and rarefation events. Despite the hallenges of workingwith suh a PDE, level set methods an in many ases aurately ompute the evolution ofimpliit surfae funtions under omplex, nonlinear ow �elds.The novel theoretial ontribution of this researh is the formulation of and proof that thevisosity solution of a Hamilton-Jaobi-Isaas (HJI) PDE desribes the ontinuous bak-wards reahable set. The HJI PDE allows for system models that ontain two adversariallyopposed input signal vetors. One input will try to keep the systems away from the tar-get set, while the other will try to drive it into the target set. Sine the target set is anunsafe set in our examples, these two inputs an be given the traditional names of ontroland disturbane. The latter lass of inputs is partiularly useful as a way of onservativelytreating not just the ations of an adversary, but also model unertainties and noise.Unlike any other formulation of the reahable set, our HJI PDE an be solved with the veryaurate numerial methods drawn from the level set literature. The bulk of this thesisdesribes pratial aspets of implementing level set algorithms to alulate reahable setsfor various ontinuous and hybrid systems. Extensive examples demonstrate the auraywith whih we an determine the reahable sets for systems with omplex nonlinear dy-namis and multiple inputs. We also ompare our method with ompeting algorithms foromputing forwards and bakwards reahable sets.The eventual goal of this researh is a tool that ould automatially analyze the safety ofgeneral nonlinear ontinuous and hybrid systems with up to perhaps �ve ontinuous statespae dimensions. The level set funtion basis on whih we build is oneptually well suitedto automati analysis beause it an handle suh general systems, but it sales poorly withdimension. One hapter is devoted to a projetion based tehnique that may allow eÆientapproximation of reahable sets for higher dimensional systems.



6 CHAPTER 1. INTRODUCTION1.3 OutlineThis thesis presents the theory and implementation of algorithms for omputing the bak-wards reahable sets of ontinuous and hybrid systems.� Chapter 2 ontains the theory and implementation details behind our algorithm forontinuous systems, whih we will all our ontinuous reahable set algorithm. Itformulates the bakwards reahable set in terms of the solution of an HJI PDE, andproves that the visosity solution of this PDE is an impliit surfae representationof the bakwards reahable set. After omparing the properties of this formulationwith those of its ompetitors, we desribe how to implement a level set algorithm foromputing its visosity solution.� Chapter 3 demonstrates our ontinuous reahable set implementation on several ex-amples. The main example, the \game of two idential vehiles" is a lassial pursuit-evasion game. The hapter onludes with an example of how the reahable set anbe used to study the autolanding proedure in a modern ommerial airplane.� Chapter 4 disusses a tehnique that may allow us to skirt Bellman's \urse of dimen-sionality." The ost of most methods for solving the HJI PDE from hapter 2 growsexponentially with the ontinuous dimension of the system. This hapter examines atehnique for overapproximating the true reahable set using a series of overlappingprojetions into lower dimensional subspaes; these projetions would be muh lessexpensive to ompute.� Chapter 5 desribes hybrid systems, and how the algorithm for omputing ontinuousreahable sets an be adapted to work on a general hybrid system.� Chapter 6 demonstrates the omputation of hybrid system reahable sets on severalollision avoidane protool examples and a multimodal airraft autolanding system.Beause the methods in the later hapters draw upon those in the previous ones, the readerwill notie that the �rst hapters treat their subjets with more rigor. Our early fous inthis researh was the implementation and demonstration of these methods, and we are now



1.3. OUTLINE 7returning to formalize our results. While we have ompleted work on the ontinuous ase,formal treatment of the hybrid ase is still in progress.This thesis is a ompilation of results and examples from many papers with many oau-thors [102, 100, 137, 98, 99, 105, 103, 23℄. The ontribution of this author lies in thetheory, algorithms and implementations that ompute the reahable sets. Where possible,the presentation in these pages has been restrited to this author's ontribution; however,larity sometimes demands additional details be inluded. In partiular, the models in allof the examples were developed either by oauthors (setions 3.3 and 6.2) or drawn fromthe literature (the remaining examples). The algorithm for hybrid reahable sets presentedin setion 5.2 is drawn from [138℄; this author's ontribution lies in the implementation ofthe reah-avoid operator given in setion 5.3. Responsibility for the remaining results andtext lies, for better or worse, with this author.



8 CHAPTER 1. INTRODUCTION



Chapter 2
Reahable Sets for ContinuousSystems
This hapter details our method for omputing the reahable sets of purely ontinuoussystems. The �rst setion fouses on the theory, the seond on pratial implementation,and the third on related work in ontinuous reahability. The �nal setion is a proof of theorretness of our time-dependent Hamilton-Jaobi-Isaas formulation, and may be omittedby the asual reader. The bulk of this hapter is taken from [99℄.2.1 How to Compute the Reahable SetIn this setion we formally de�ne the reahable set for a ontinuous system, disuss a fewof its properties, and formulate a terminal value HJI PDE whose solution desribes it.2.1.1 The Reahable SetWe model our system with the ordinary di�erential equationdxdt = _x = f(x; a; b); (2.1)where x 2 Rn is the state, a is the input for player I and b is the input for player II.9



10 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMSAssumption 1. The input signals are drawn from the following setsa(�) 2 A(t) , f� : [t; 0℄! Aj�(�) is measurablegb(�) 2 B(t) , f� : [t; 0℄! Bj�(�) is measurablegwhere A � Rna and B � Rnb are ompat and t 2 [�T; 0℄ for some T > 0. We will onsiderinput signals whih agree almost everywhere to be idential.Notie the notational di�erene between the instantaneous value a 2 A of the input ofplayer I and the input signal a(�) 2 A(t), and likewise b 2 B and b(�) 2 B(t) for player II.Assumption 2. The ow �eld f : Rn � A � B ! Rn is uniformly ontinuous, bounded,and Lipshitz ontinuous in x for �xed a and b. Consequently, given a �xed a(�) 2 A(t),b(�) 2 B(t) and initial point, there exists a unique trajetory solving (2.1).Solutions of (2.1) are trajetories of our system and will be denoted by�f (s;x; t; a(�); b(�)) : [t; 0℄! Rnwhere dds�f (s;x; t; a(�); b(�)) = f(�f (s;x; t; a(�); b(�)); a(s); b(s)) almost everywhere;�f (t;x; t; a(�); b(�)) = x:In words, �f (s;x; t; a(�); b(�)) is the state spae loation at time s of a trajetory whose ow�eld is given by funtion f and whose initial ondition at time t � s was the state spaeloation x. Along this trajetory player I has been using input signal a(�) and player IIhas been using input signal b(�). We use �f (�;x; t; a(�); b(�)) to denote the entire trajetoryover all time greater than t. Note that we employ a semi-olon to distinguish betweenthe argument s of �f and the trajetory parameters x, t, a(�) and b(�). This somewhatompliated notation is neessary beause at various points in the remainder of this thesiswe must di�erentiate trajetories based on some or all of these parameters.Assumption 3. The target set G0 � Rn for our reahability problem is losed and anbe represented as the zero sublevel set of a bounded and Lipshitz ontinuous funtion



2.1. HOW TO COMPUTE THE REACHABLE SET 11g : Rn ! R G0 = fx 2 Rn jg(x) � 0g: (2.2)We assume that player I will try to steer the system away from the target with her inputa(�), and player II will try to steer the system towards the target with her input b(�). Forreaders who prefer a more intuitive understanding of the inputs, onsider that in many ofour examples the target set will represent the apture set in a pursuit-evasion game. Ourontrol will then be player I and the adversarial disturbane will be player II.In a di�erential game setting, it is important to address what information the players knowabout eah other's deisions. To speify our information pattern, de�ne �rst a strategy forthe seond player as a map  : A(t) ! B(t) whih spei�es an input signal for player IIas a funtion of the input signal that player I hooses. We will allow player II to use onlynonantiipative strategies; that is strategies 2 �(t) , f� : A(t)! B(t)ja(r) = â(r) 8r 2 [t; s℄ =) �[a℄(r) = �[â℄(r) 8r 2 [t; s℄g:Simply put, a nonantiipative strategy may not make an input deision for b(r) based oninformation about a(s) if s > r. It will turn out that allowing player II to use nonantiipativestrategies gives an advantage to player II over player I, but we postpone further disussionof information patterns and whether this is the orret one for our reahability purposesuntil setion 2.1.5.Note that in our formulation of the problem, a trajetory starts at some initial time t < 0and we would like to know if it has passed into or through the target set by time zero. Wewill sometimes want to disuss the length of time that a trajetory has had to evolve; weadopt the di�erential game notation � = �t to denote this positive quantity. We use thefree variables s and r to denote times in the range [t; 0℄.To solve the bakwards reahability problem, we want to determine the bakwards reahableset G(�) for � 2 [0; T ℄. Remembering that t = �� , we de�ne this set asG(�) , fx 2 Rn j9 2 �(t);8a(�) 2 A(t);9s 2 [t; 0℄; �f (s;x; t; a(�); [a℄(�)) 2 G0g: (2.3)Informally, G(�) is the set of states from whih there exists strategies for player II that forall inputs of player I will generate trajetories whih lead to the target set within time � .



12 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMS2.1.2 Properties of the Reahable SetIn subsequent setions we will disuss a variety of methods for determining the reahableset G(�), but �rst we will state two of its important properties. In the theorems that followlet B n(x; Æ) be the open ball in Rn around point x of size Æ > 0, and B n(x; Æ) be its losure.Theorem 1. If G0 is losed, then G(�) is losed. Conversely, if G0 is open, then G(�) isopen.Proof. We prove the �rst assertion, beause under Assumption 3 it applies to the asestudied in the remainder of this paper. The proof for the seond assertion is similar.If G0 is losed, then G{0 = Rn n G0 is open. In the proof below, we show that G(�){ isopen; onsequently, G(�) is losed. This proof is an adaptation of an ODE uniqueness prooffrom [30, setion 2.12℄.Reall that t = �� , onsider a point x̂t 2 G(�){ and hoose any  2 �(t). Complementingthe de�nition (2.3), we see that there exists a(�) 2 A(t) suh thatx̂s = �f (s; x̂t; t; a(�); [a℄(�)) 2 G{0for all s 2 [t; 0℄. Sine G{0 is open, there exists � > 0 suh that for any s 2 [t; 0℄, xs 2 G{0 forany xs 2 B n(x̂s; �).Now onsider a point xt 2 B n(x̂t; Æ) for some Æ > 0 whose value we will �x later. De�ningthe shorthand �̂(r) = �f (r; x̂t; t; a(�); b(�));�(r) = �f (r;xt; t; a(�); b(�));we an write �̂(r) = x̂t + Z rt f(�̂(�); a(�); b(�)) d�;�(r) = xt + Z rt f(�(�); a(�); b(�)) d�;



2.1. HOW TO COMPUTE THE REACHABLE SET 13and hene�̂(r)� �(r) = x̂t � xt + Z rt (f(�̂(�); a(�); b(�)) � f(�(�); a(�); b(�))) d�;k�̂(r)� �(r)k � kx̂t � xtk+ Z rt kf(�̂(�); a(�); b(�)) � f(�(�); a(�); b(�))k d�;k�̂(r)� �(r)k � Æ +K Z rt k�̂(�)� �(�)k d�; (2.4)
where K is the Lipshitz onstant for the ow �eld f . Letting (r) = ÆK + Z rt k�̂(�)� �(�)k d�;we see that  (t) = Æ=K,  (r) �  (t), and _ (r) = k�̂(r) � �(r)k. Rewriting (2.4) in termsof  yields the di�erential inequality_ (r)�K (r) � 0; (2.5)whih we an rewrite as e�Kr( _ (r)�K (r)) � 0;ddr (e�Kr (r)) � 0;Z rt dd�(e�K� (�)) d� � 0;e�Kr (r)� e�Kt (t) � 0; (r) � eK(r�t)Æ=K: (2.6)
Choose any s 2 [t; 0℄ and let Æ = e�K(s�t)K�=2. From (2.5) and (2.6) we an seek�̂(s)� �(s)k = _ (s);� K (s);� eK(s�t)Æ=K;� eK(s�t)e�K(s�t)K�=(2K);� �=2:Hene �(s) 2 B n(x̂s; �) � G{0 . Sine  2 �(t) and s 2 [t; 0℄ were arbitrary, xt 2 G(�){. Sine



14 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMSxt 2 B n(x̂t; Æ) was arbitrary, B n(x̂t; Æ) � G(�){ and therefore G(�){ is open.Theorem 2. The reahable set only grows as � inreasesG(�) � G(�̂)for 0 � � � �̂ � T .The proof of this theorem is a trivial onsequene of Theorem 3, and so we postpone it.2.1.3 A Hamilton-Jaobi-Isaas Equation for the Reahable SetIn this setion we state the main theoretial result of this hapter|that the reahable setan be determined by solving for the visosity solution of a time dependent HJI equation.Theorem 3. Let � : Rn � [�T; 0℄ ! R be the visosity solution of the terminal value HJIPDE Dt�(x; t) +min[0;H(x;Dx�(x; t))℄ = 0; for t 2 [�T; 0℄; x 2 Rn ;�(x; 0) = g(x);for x 2 Rn ; (2.7)where H(x; p) = maxa2A minb2B pTf(x; a; b): (2.8)If the zero sublevel set of g desribes the target set G0 aording to (2.2), then the zerosublevel set of � desribes the bakwards reahable set G(�)G(�) = fx 2 Rn j�(x; t) � 0g: (2.9)The signi�ane of this theorem is that we an harness well developed numerial shemesfrom the level set literature to ompute aurate approximations of �(x; t), and thereforeaurate approximations of G(�), for even ompliated nonlinear dynamis. The proof ofthis theorem is presented in setion 2.4, while setion 2.2 desribes its implementation andhapter 3 demonstrates its appliation to several example systems. A ompletely di�erentproof of the single player version of this theorem was developed independently in [90℄.



2.1. HOW TO COMPUTE THE REACHABLE SET 15Remark. Under Assumptions 1{3, it an be shown that �(x; t) is bounded and Lipshitzontinuous in both x and t [51, Theorem 3.2℄.In the past three years we have presented several alternative HJI PDE formulations foromputing the bakwards reahable set. In [135℄, the Hamiltonian was restrited to negativevalues only within the target set; unfortunately, the resulting potential for disontinuitiesin the solution makes aurate numerial implementation diÆult. In [102℄, minimizationwas performed as a separate, post-proessing step. While this formulation is more eÆient,it is more diÆult to reason about formally and may produe inorret results when theHamiltonian and/or target set are nononvex. Consequently, we now advoate using theformulation above for determining reahable sets.We onlude this setion with the postponed proof.Proof of Theorem 2. We will show that x 2 G(�) implies x 2 G(�̂) for 0 � � � �̂ � T .Reall that t = �� and let t̂ = ��̂ . Assume x 2 G(�), whih by Theorem 3 implies�(x; t) � 0. If � is the solution of (2.7), thenDt�(x; t) = �min[0;H(x;Dx�(x; t))℄ � 0:Thus, �(x; t̂) � �(x; t) � 0, whih implies x 2 G(�̂).2.1.4 Hamilton-Jaobi Equations and Visosity SolutionsThe proof of Theorem 3 in setion 2.4 proeeds by drawing a onnetion between thebakwards reahable set and a zero sum di�erential game, from whih (2.7) arises. In thissetion we give a brief introdution to Hamilton-Jaobi equations, their onnetion withoptimal ontrol and di�erential games, and the onept of visosity solutions. The purposeof this setion is to provide the reader with enough ontext to understand remarks made inthe remainder of the thesis. For a omprehensive disussion of these topis, see [19℄.We begin with the onept of value funtion and the Dynami Programming Priniple.To simplify the disussion, we will restrit ourselves to the single player optimal ontrolase, although the de�nitions and results an be extended to the two player, zero sum



16 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMSdi�erential game. Consider a single input system with dynamis _x = f(x; b) and trajetories�f (�;x; t; b(�)). De�ne the ost or payo� of a trajetory asC(x; t; b(�)) = Z 0t ` (�f (�;x; t; b(�))) d�+ g (�f (0;x; t; b(�))) ;and assume that the input will seek to minimize the ost. The omponents of the ost arethe running ost ` : Rn ! R and the terminal ost g : Rn ! R. The value funtion for thisproblem is a funtion V : Rn � [�T; 0℄! R suh thatV (x; t) = infb(�)2B(t)C(x; t; b(�)):In words, V (x; t) spei�es the ost of the optimal trajetory whih starts at point x at timet.The Dynami Programming Priniple (DPP) provides a way to ompute the value funtion.Assume that we have two valid input signals b1(�) 2 B(t) and b2(�) 2 B(t) for some system.De�ne two more signalsb3(s) = b1(s� h) for s 2 [t+ h; 0℄; h > 0b4(s) = 8<:b1(s); for s 2 [t; r℄;b2(s); for s 2 ℄r; 0℄; for any r 2 [t; 0℄; s 2 [t; 0℄:Informally, b3(�) is a opy of b1(�) delayed by time h and b4(�) is a onatenation of b1(�)and b2(�). If b3(�) 2 B(t+ h) and b4(�) 2 B(t), then the DPP holds for that system and itsorresponding value funtion satis�es the equationV (x; t) = minb(�)2B(t) �Z t+ht ` (�f (�;x; t; b(�))) d�+ V (�f (t+ h;x; t; b(�)); t + h)� ; (2.10)for �T � t � t+h � 0 and V (x; 0) = g(x). In words, (2.10) says that the best possible ostat the present time and state is given by hoosing an input that minimizes the sum of theost of using that input for a short time h and the best possible ost to go from the stateahieved after using that input for time h.If we assume that V is di�erentiable, we an arrive at an HJ PDE by rearranging (2.10)



2.1. HOW TO COMPUTE THE REACHABLE SET 17and dividing by h to getminb(�)2B(t) "V (�f (t+ h;x; t; b(�)); t + h)� V (x; t)h + R t+ht ` (�f (�;x; t; b(�))) d�h # = 0;and then letting h! 0 minb2B � ddtV (x; t) + `(x)� = 0;DtV (x; t) + minb2B DxV (x; t) � f(x; b) + `(x) = 0;DtV (x; t) +H(x;DxV (x; t)) = �`(x); (2.11)where the Hamiltonian H(x; p) = minb2B pT f(x; b) is the single player version of (2.8). Ifwe set the running ost `(x) � 0, then (2.11) beomes the single player version of (2.7).The DPP was applied to optimal ontrol problems by Bellman in the late �fties and todi�erential games by Isaas in the sixties (for referenes and more details, see [19, setions I.9and VIII.4℄). Consequently, we will (somewhat inonsistently) all HJ PDEs involving asingle player Hamilton-Jaobi-Bellman (HJB) equations, and those involving two playersHamilton-Jaobi-Isaas (HJI) equations.While the derivation above is intuitively attrative, it was reognized immediately that forall but a few ases the value funtion V is not di�erentiable. Consequently, the derivationis not tehnially orret and, even if it were, lassial solutions to the HJ PDEs wouldnot exist. The lak of a lassial solution arises beause HJ PDEs an exhibit shoks andrarefations. To de�ne these terms, we need to look �rst at the harateristis of the PDEs.The harateristis of HJB and HJI PDEs orrespond to optimal trajetories of the under-lying system's dynamis. Beause our PDE (2.7) ontains no running ost, the terminalondition's values are transmitted without modi�ation along harateristis|for example,given some optimal trajetory �f (�;x; t; b(�)) of the single input system, �(x; t) is equal to�(�f (0;x; t; b(�)); 0), and �f (�;x; t; b(�)) is a harateristi of (2.11) with `(x) � 0. A shokours when harateristis ollide; in other words, there exist multiple optimal input sig-nals and hene trajetories that lead to the same point in the state spae. A rarefationis in some sense the opposite, and ours when multiple optimal input signals and hene



18 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMStrajetories emanate from the same terminal point in state spae. Examples of shok pointsan be seen in �gure 3.3, and an example of a rarefation in �gure 3.4.If shoks and rarefations are present, a lassial solution to an HJ PDE may not exist.Researhers therefore sought an appropriate de�nition of a non-lassial or weak solutionto the PDE. Visosity solutions|�rst de�ned in [44℄ but desribed in their more usefulpresent form in [43℄|were a signi�ant breakthrough in this proess. A bounded, uniformlyontinuous funtion �(x; t) is a visosity solution to the HJ PDEDt�(x; t) +H(x;Dx�(x; t)) = 0;provided that for eah in�nitely di�erentiable test funtion  (x; t)� if �(x0; t0)�  (x0; t0) is a loal maximum of the funtion ��  , thenDt (x0; t0) +H(x;Dx (x0; t0)) � 0� if �(x0; t0)�  (x0; t0) is a loal minimum of the funtion ��  , thenDt (x0; t0) +H(x;Dx (x0; t0)) � 0While this de�nition is neither partiularly enlightening nor onstrutive, it turns out thatvisosity solutions are of great pratial value. For an introdution to visosity solutions,we reommend [50, hapter 10℄, whih ontains a reasonably understandable proof of theirexistene and uniqueness. The existene proof inludes the derivation of the HJB equationfrom the DPP, and a demonstration that the visosity solution is the appropriate weaksolution to desribe the value funtion of an optimal ontrol problem. For the two inputase [51℄ proves that the visosity solution of the HJI equation is the value funtion for atwo player, zero sum di�erential game.Note that visosity solutions are not the same as vanishing visosity solutions. The latterare the solutions �(�)(x; t) in the limit �! 0 of the linear seond order PDEDt�(�) +H(x;Dx�(�)) = �D2x�(�): (2.12)



2.1. HOW TO COMPUTE THE REACHABLE SET 19For � > 0, the Laplaian operator on the right hand side (the \visosity") guaranteesthat �(�) is di�erentiable, and hene that lassial solutions to the PDE exist. As � ! 0,this visosity term vanishes and a unique limit solution may not exist. However, if thisvanishing visosity solution does exist, it is the same as the (Crandall & Lions) visositysolution de�ned above.The literature also ontains several other weak solutions to Hamilton-Jaobi and relatedPDEs, inluding some multivalued solutions that have appliations in wave propagationand imaging problems, but we will not disuss them further here.2.1.5 Information Patterns for Di�erential GamesThroughout this thesis, we have hosen to let player II selet a nonantiipative strategy thatan respond to the input hoies of player I. In this setion we disuss some possible alter-natives to this information pattern. We onsider four basi types of ontrols for the gameplayers|open loop, state feedbak, nonantiipative strategies, and antiipative strategies.Beause our reahable sets generally represent \unsafe" portions of the state spae, weusually prefer to overapproximate them rather than underapproximate them. Therefore,whenever a hoie must be made between giving player I or player II an advantage, wehoose to give it to player II, who is trying to make the reahable set larger. If in anotherontext player I should be given the advantage, it is straightforward to modify the de�nitionof the reahable set (2.3) and the Hamiltonian (2.8).An open loop strategy requires that both players deide their entire input signals a(s) andb(s) for all s 2 [t; 0℄ without any knowledge of the other players' deisions. State feedbakallows players I and II to hoose a(s) and b(s) respetively based on the urrent valueof �f (s;x; t; a(�); b(�)). We de�ned nonantiipative strategies in setion 2.1.1. Our systemdynamis are deterministi, so by allowing player II to make deisions about b(s) with fullknowledge of a(r) for r 2 [t; s℄, a nonantiipative strategy gives player II all the informationof state feedbak, plus player I's urrent input a(s). While player I is at a slight disadvantageunder this information pattern, at a minimum she has aess to suÆient information touse state feedbak, beause player II must delare her strategy before player I hooses aspei� input and thus player I an determine the response of player II to any input signal.



20 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMSAn antiipative strategy would be equivalent to allowing player II to hoose b(s) based onknowledge of a(r) for all r 2 [t; 0℄; in other words, player I would have to reveal her entireinput signal in advane to player II.The systems in whih we are interested use state feedbak ontrollers. Clearly the openloop pattern of information is unsuitable for verifying suh systems, and the antiipativestrategy model is inappropriate as well beause it e�etively auses player I to operateopen loop. While state feedbak might be a more appropriate model of our systems thannonantiipative strategies, it is not so easily turned into an HJ PDE. We have thereforehosen to use nonantiipative strategies, and give whatever advantage they onfer to playerII. It an be proven that the value of the di�erential game (2.30) under nonantiipativestrategies is always less than the value under state feedbak [18℄, and onsequently we willonly overapproximate the reahable set.2.2 Implementing a Level Set AlgorithmNonlinear PDEs suh as (2.7) exhibit a number of properties that make their solutionsdiÆult to determine either analytially or numerially; for example, even with smoothinitial onditions g(x) and ow �eld f(x; a; b), the solution of (2.7) an develop kinks|loations where the derivatives beome disontinuous|in �nite time. However, beause HJPDEs desribe a number of important physial proesses, tehniques have been developedto �nd numeri approximations of their solutions.As desribed setion 2.1.4, we seek the visosity solution of (2.7). A family of algorithmsalled level set methods have been designed spei�ally to ompute approximations to thevisosity solution for time dependent HJ PDEs with ontinuous initial onditions and Hamil-tonians suh as (2.7). In this setion we examine the details of adapting level set methodsto the approximation of reahable sets.We assume throughout that the human modeler provides a way of omputing the opti-mization over inputs a and b neessary to ompute H(x; p) in (2.8), and onentrate onnumerially determining the zero level set of the solution � to (2.7). Note that we do notrequire the modeler to perform a dynami optimization over the entire input signals a(�)and b(�). In almost all of the examples we have studied so far, the stati optimization of a



2.2. IMPLEMENTING A LEVEL SET ALGORITHM 21and b for a partiular x and p is trivial|in most ases f(x; a; b) is a linear funtion of a andb (although nonlinear in x). For an example where this optimization was not so simple, seesetions 3.3 or 6.2.2.2.1 The Numerial ShemeAs disussed in setion 2.3.3, the goal of our implementation is to ompute with as muhauray as possible a signed distane funtion for the boundary of the reahable set. Theauray of the derivative approximations desribed below is measured in terms of theorder of their loal trunation errors: on a grid with spaing h, an order p method forapproximating a funtion u with a numerially omputed û has error ku� ûk = O(hp). Ingeneral, we will all any sheme with order two or greater (p � 2) a high order sheme.Beause our state spae is Rn , we ompute an approximation of the value of �(x; t) atthe nodes of a �xed Cartesian grid in Rn � [T; 0℄. Within (2.7), there are three termsthat must be evaluated: the spatial derivative Dx�(x; t), the Hamiltonian H(x; p) and thetime derivative Dt�(x; t). One of the appealing properties of level set methods is that wean separately hoose tehniques for approximating eah of these terms at eah node usingvalues of � at the node and its neighbors.Spatial DerivativeTraditional �nite di�erene approximations of order p for the spatial derivative of a funtionrepresented on a grid assume that the funtion and at least its �rst p � 1 derivatives areontinuous. Clearly this property will not hold in the presene of the kinks in �(x; t). Nev-ertheless, onvergent numerial approximations of Dx�(x; t) were developed shortly aftervisosity solutions were �rst proposed [45℄. In our ode, we rely primarily on a weighted,essentially non-osillatory �fth order aurate approximation for our high �delity ompu-tations [111, 109℄, although we have implemented a basi �rst order aurate sheme forspeed [110, 125℄.A key feature of all these shemes is their use of diretional approximations. Considerapproximating Dx�(x; t) for x 2 R (so n = 1). At a grid point xi, there exists a left



22 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMSapproximation D�x � and a right approximation D+x �; a �rst order aurate version wouldbe D�x �(xi; t) = �(xi; t)� �(xi�1; t)xi � xi�1 ;D+x �(xi; t) = �(xi+1; t)� �(xi; t)xi+1 � xi :Ahieving higher order auray requires the use of values from more than a grid point'simmediate neighbors and, as mentioned above, assumes ontinuity of higher derivatives.The assumption will fail near kinks, and as a result the solution will beome osillatory andunstable. Essentially non-osillatory (ENO) shemes ompute several di�erent approxima-tions to the left and right, and then hoose to use only the least osillatory. A weightedessentially non-osillatory (WENO) sheme takes advantage of all the approximations insmooth regions of the solution to inrease the order of auray, but reverts to ENO nearkinks. Our �fth order aurate WENO sheme uses three neighbors on eah side to om-pute a node's left and right approximations to Dx�(x; t). Extension to multidimensionalspaes (n > 1) is oneptually trivial, sine the approximation of Dx�(x; t) an be omputedseparately for eah dimension.It should be noted that none of these �nite di�erene shemes an ahieve better than �rstorder auray in the immediate viinity of a kink, beause the �rst derivative does notexist at suh a point. The added omplexity of the shemes adds auray only away fromthese points; a property whih is sometimes alled high resolution to distinguish it fromtrue high order auray. Experimentally, we have found that high resolution methodslike WENO are worth the added omplexity beause the fully �rst order aurate shemesannot deliver suÆiently aurate reahable sets.HamiltonianWe have hosen to use the well studied Lax-Friedrihs (LF) approximationĤ(x; p+; p�) , H �x; p�+p+2 �� 12�T (p+ � p�); (2.13)where p+ and p� are the right and left approximations of p respetively and H(x; p) isgiven by (2.8). The seond term in this approximation is a high order numerial dissipation



2.2. IMPLEMENTING A LEVEL SET ALGORITHM 23added to damp out spurious osillations in the solution. The omponents of the vetor �depend on the partial derivatives of H with respet to its seond argument�i = maxp2I �����H�pi ���� (2.14)where I is a hyperube ontaining all the values that the vetor p takes on over the om-putational domain (see [111℄ for details). We an understand this dissipative term as beinganalogous to an � 6= 0 Laplaian term �D2x� in the vanishing visosity version (2.12) of theHJ PDE. When p+ 6= p� and � 6= 0, we add some dissipation to the equation in orderto avoid a sharp kink that would lead to numerial instability. Too muh dissipation willexessively smooth the approximate solution (rounding o� what should be sharp orners inthe reahable set), while too little will lead to numerial instability. The amount hosenby (2.14) is suÆient to guarantee stability and experimentally appears not to be overlydissipative.A number of other options for the numerial Hamiltonian were onsidered [111, 45, 109℄.A Loal Lax-Friedrihs (LLF) sheme redues the size of the set I in (2.14) and thereforeadds less dissipation. Experimentally, we saw little di�erene between LF and LLF inthe examples we have studied thus far for two reasons: regular reinitialization of � (seesetion 2.2.2) already tightly restrits the range of possible values of p, and the swithingnature of the optimal inputs a and b in (2.8) mean that the Hamiltonian's partials dependonly slightly on the atual value of p. For these same reasons we did not use the Roewith entropy �x or Gudonov Hamiltonians desribed in [111℄. Both attempt to furtherredue dissipation by hoosing either the left or right approximation of the spatial derivativeaording to whih is the upwind approximation; however, in our experiene the slightredution in dissipation was not worth the e�ort required to determine the upwind diretion.Time DerivativeWe appeal to the method of lines to treat the time derivative of (2.7). From (2.13) we seehow to ompute Ĥ at any node, and so we an treat the value of � at that node as thesolution to the ordinary di�erential equation (ODE) Dt�+min[0; Ĥ ℄ = 0. Among the manynumerial ODE solvers that exist, the expliit Runge-Kutta (RK) shemes are partiularlyeasy to implement. Like any expliit solver for time dependent PDEs, the timestep �t



24 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMSthat an be taken by our RK integrator is restrited by the Courant-Friedrihs-Lewy (CFL)ondition to be some ow speed dependent multiple of the spatial grid size �x. In fat,applying standard RK shemes to the solution of HJ PDEs will lead to instability unless�t is proportional to �x2, a restrition that would greatly inrease omputational ostfor a �xed time interval [�T; 0℄. Therefore, we use Total Variation Diminishing (TVD)RK shemes [129, 109℄, whih will not introdue osillations into the solution when �t isproportional to �x. We have implemented �rst (whih is just forward Euler) and seondorder aurate TVD RK shemes. Beause of the CFL ondition, the timestep is usuallymuh smaller than the grid spaing; onsequently, it is possible to use less aurate methodsin time than in spae without a notieable degradation in solution quality.2.2.2 Pratial DetailsAfter the numerial sheme is hosen, a number of pratial details must be worked out inorder to produe reasonable approximations to reahable sets.Initial ConditionsWe assume that the modeler an provide a signed distane funtion representation for G0.Construting suh a funtion manually is straightforward for many basi geometri setssuh as irles, polygons, ylinders and prisms (see setion 3.1.2 for an example involving aylinder). Using minimum, maximum and negation operators it is possible to form approxi-mate signed distane funtions for unions, intersetions, omplements and set di�erenes ofsuh basi sets. For example, if sets G1 and G2 are represented by signed distane funtionsg1(x) and g2(x) then G1 [ G2 is represented by min[g1(x); g2(x)℄;G1 \ G2 is represented by max[g1(x); g2(x)℄;G{1 is represented by � g1(x);G1nG2 is represented by max[g1(x);�g2(x)℄: (2.15)While the resulting funtions are only approximately signed distane, they an be turnedinto true signed distane funtions by applying reinitialization to them (see below).



2.2. IMPLEMENTING A LEVEL SET ALGORITHM 25Boundary ConditionsThe HJ PDE (2.7) that we are trying to solve is de�ned over all of Rn , and hene has nophysial boundary. Unfortunately, we an numerially approximate the solution only on a�nite domain, so we must introdue boundaries and enfore some form of boundary ondi-tions. For periodi dimensions we hoose our omputational domain to inlude one ompleteperiod and enfore periodi boundary onditions; for example, the relative heading  r insetion 3.1. For the remaining dimensions, our options are more limited and none are physi-ally orret. We have hosen to use an homogeneous Neumann boundary ondition, whihsets the diretional derivative of �(x; t) normal to the boundary to zero. This hoie seemsthe least likely to introdue instability and thereby destroy the solution globally, althoughit will disturb the solution loally. Through regular reinitialization and by working on aomputational domain large enough that the zero level set never approahes the boundary,however, we ensure that the boundary ondition does not wrek our reahability results bydisturbing the motion of the zero level set.ReinitializationAs disussed in setion 2.3.3, there are a number of advantages to having � in the form of asigned distane funtion for the boundary of the reahable set. However, even if the modelerprovides a signed distane funtion for the terminal onditions g(x), evolution aordingto (2.7) an quikly distort �. Physially inorret boundary onditions on the edges of theomputational domain an also ause problems. Therefore, we periodially halt the regularomputation in our algorithm and reonstrut a proper signed distane representation of�. Sine we are only onerned with the loation of the zero level set of � for determiningreahability, we an modify its value away from this level set as muh as neessary to ensurethat kDx�k = 1.Beause of its wide use in level set methods, several di�erent tehniques for reinitializationhave been developed [39, 132, 53, 125℄. We have hosen to exeute a few disrete timestepsof a solver for the PDE D~t ~�(x; ~t) = sign(~�(x; ~t))(1 � kDx ~�(x; ~t)k);~�(x; 0) = �(x; t): (2.16)



26 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMSNote that this PDE is run in an auxiliary timeframe ~t. If it were run to onvergene, thenkDx ~�k = 1, but in pratie we run one to ten disrete timesteps to some ~tf , and then reset�(x; t) = ~�(x; ~tf ) to get kDx�k � 1. Analytially, sign(~�) = 0 on the zero level set of �, andso that level set should never move. In pratie, we need to use a smoothed sign funtion,suh as sign(�) = �p�2 +�x2 ;to avoid moving the zero level set too muh.We have hosen this method for two reasons. First, its initial onditions do not requireexpliit determination of the zero level set of �. It is diÆult to perform suh expliitonstrutions at higher than �rst order auray or to extend them to higher dimensionalspaes. Seond, we an use the high resolution tehniques from setion 2.2.1 for omputingspatial and time derivatives, and so our reinitialization will not ause a loss of aurayin our omputation. It is also possible to implement a fast but aurate Gudonov solverfor (2.16) [53℄, and so reinitialization will not introdue any added dissipation. The majordisadvantage of this method is its speed when ompared against ompetitors suh as thefast marhing method with expliit front onstrution [139, 125℄. Approximately half of theexeution time of our urrent implementation is spent in reinitialization.Loalizing ComputationThe HJ PDE (2.7) desribes the evolution of � in all of Rn ; however, we are only interested inits zero level set. Consequently, we an restrit our e�ort to grid nodes near the boundarybetween positive and negative values of �. In the level set literature this idea has beenvariously alled loal level set [116℄ or narrowbanding [125℄. We have implemented a newvariant of this method in our ode [101℄, and typially restrit our e�ort to within three tosix nodes on eah side of the interfae.Beause the boundary of the reahable set is of one dimension less than the state spae,onsiderable savings are available for two and three dimensional problems. If the number ofnodes in eah dimension is n (proportional to �x�1) and the dimension d, the total numberof nodes is O(nd); the CFL ondition on timestep means that total omputational ost for a



2.3. ALTERNATIVE ALGORITHMS 27�xed time interval [�T; 0℄ is O(nd+1). With loal level sets, we redue omputational ostsbak down to O(nd), and we have seen this ost behavior experimentally.
2.3 Alternative AlgorithmsIn this setion we review a variety of alternative tehniques for �nding reahable sets. Webreak these shemes into two lasses. We will all a sheme onvergent if there exists someproof that its approximation of the reahable set onverges to the true reahable set asthe approximation is re�ned; for the onvergent shemes disussed below an approxima-tion is re�ned by using a �ner grid in omputations. The other lass of shemes is alledoverapproximative, beause they are generally designed to guarantee that any errors in theapproximation make the reahable set larger. We are not aware of any proofs of onver-gene for the overapproximative shemes, but none were designed with that formal goal inmind. Do not take these names too seriously, beause many overapproximative tehniquesan be modi�ed to produe guaranteed underapproximations, and at least one onvergenttehnique an guarantee overapproximations as well.Drawing on the voabulary of PDEs, another way to di�erentiate these two lasses ofreahable set methods is as Eulerian or Lagrangian approximations. An Eulerian approahapproximates the solution's values at the nodes of a �xed grid� using �nite di�erene, �niteelement or �nite volume tehniques. In ontrast, a Lagrangian approah follows the ow ofthe solution by omputing along trajetories of the dynamis; a proess that is equivalentto solving a PDE by the method of harateristis. All of the onvergent shemes fall intothe Eulerian ategory, while most of the overapproximative shemes are Lagrangian.A �nal distintion between the two lasses of algorithms is whether they ompute forwardsor bakwards reahable sets. All of the onvergent algorithms work bakwards, while allof the overapproximative tehniques were designed to work forwards. This division is di-retly linked to the di�erene between Eulerian and Lagrangian approahes and may be�By\�xed" we mean that the mesh points do not move during omputation. These algorithms may add orsubtrat mesh points; for example, via adaptive mesh re�nement strategies. The grids are usually Cartesian,although there is no reason that the algorithms ould not be implemented on irregular meshes.



28 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMS
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Backwards TrajectoriesFigure 2.1: Comparing Eulerian and Lagrangian bakwards reahable sets.fundamental. Consider the simple two dimensional system_x1 = 2;_x2 = a;a 2 [�1;+1℄;G0 = [�1;+1℄� [�1;+1℄:The left side of �gure 2.1 shows the (orret) bakwards reahable set as omputed by ourEulerian time-dependent HJI formulation. Notie that for any initial state with x1 < �3,player I may hoose her input a(�) so as to avoid the target set G0 entirely. In the HJIequation, this behavior manifests as a shok in the solution at x1 = �3. A Lagrangiansolution to this problem would trak trajetories leaving the boundary of the usable part ofG0 (see [17℄); those trajetories are shown on the right side of �gure 2.1 and ontinue beyondthe shok at x1 = �3. The hallenge in the Lagrangian approah is to detet and stop thetrajetories at the shok. Suh detetion is relatively easy in two dimensions (where shoksare points), but beomes almost impossible in three or more dimensions. There is a learparallel between this diÆulty in omputing bakwards reahable sets and the failure ofharateristi based methods to orretly ompute the solution of nonlinear PDEs beyondshoks. Consequently, Lagrangian tehniques are poorly suited to bakwards reahable setomputation in the presene of shoks. In a onverse way, Eulerian tehniques inorretlyintrodue shoks when omputing the forwards reahable sets of ertain systems; however,we will not further disuss the issue here.



2.3. ALTERNATIVE ALGORITHMS 292.3.1 Convergent MethodsIn this setion we examine two formulations of the reahability problem whih an theo-retially ompute the exat reahable set G(�). Analytially, their results are equivalent toone another and to those produed by our formulation (see Theorem 5), but their pratialimplementations di�er.To simplify the presentation below, we restrit ourselves to the optimal ontrol ase of asingle input attempting to drive the system into the target set. The dynamis in this aseare _x = f(x; b); (2.17)beause this restrition is equivalent to removing player I from the game in setion 2.1. Asa onsequene, we no longer need worry about the strategy of player II and an de�ne thereahable set in the slightly simpler formG(�) , fx 2 Rn j9b(�) 2B(t);9s 2 [t; 0℄; �f (s;x; t; b(�)) 2 G0g: (2.18)A Stati Hamilton-Jaobi FormulationThe �rst, and perhaps most basi among all reahability formulations draws on the time toreah funtion, whih we will de�ne ast(x; b(�)) ,8<:minf� = �tj�(0;x; t; b(�)) 2 G0g; if f� j�(0;x; t; b(�)) 2 G0g 6= ;;+1 otherwise: (2.19)Note that t(x; b(�)) � 0, beause our trajetories always start from some t � 0. Theminimum time to reah funtion is thenT(x) , infb(�)2B(�1) t(x; b(�)): (2.20)For more details on this formulation, see [18, 19℄ (the de�nitions (2.19) and (2.20) arerespetively equivalent to the funtions tx(b) and T (x) disussed in [18, 19℄, although thestatement of (2.19) di�ers slightly due to the shifted time domain in our formulation). Those



30 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMSreferenes also disuss how to move these de�nitions and most of the results desribed belowinto the di�erential game setting.Based on (2.19) and (2.20), it is easy to dedue the following fat.Fat 4. The reahable set G(�) is the � sublevel set of the minimum time to reah funtionG(�) = fx 2 Rn jT(x) � �g: (2.21)Although there exists a stati Hamilton-Jaobi equation whose solution is T(x), it involvesin�nite boundary onditions applied along a boundary whih annot always be determineda priori. Consequently, pratial implementations work with the bounded disounted mini-mum time to reah funtion TD(x), whih is related to T(x) through the Kru�zkov transformTD(x) , 1� e�T(x):Using a single player version of the Hamiltonian (2.8)H(x; p) = minb2B pTf(x; b);TD(x) is the solution to the following stati Hamilton-Jaobi equationTD+H(x;DxTD) + 1 = 0for x 2 G{0 ;TD(x) = 0for x 2 �G0: (2.22)Sine 0 � TD(x) � 1, we do not need to represent unbounded values in oating pointarithmeti. For many systems of interest, however, we annot guarantee that ontinuoussolutions of (2.22) exist. A system is small time ontrollable if at every point in the statespae the system's trajetory an be driven in any possible diretion by some hoie of theinput. For a small time ontrollable system, the solution of (2.22) is ontinuous. Unfortu-nately, many important examples are not small time ontrollable; for example, our airplanemodels always have a positive forward veloity, so there does not exist any input whihwill drive the system instantaneously bakward. The TD funtion whih would arise whilestudying suh a system would in most ases be disontinuous. Continuity is even less likelyfor di�erential game models, and without ontinuity level set methods annot be applied.



2.3. ALTERNATIVE ALGORITHMS 31Using an appropriately onstruted �nite di�erene approximation of the partial derivativeDxTD, however, an iterative numerial algorithm for �nding the visosity solution of (2.22)has been developed and implemented [52, 20℄. The resulting reahable set is G(�) = fx 2Rn jTD(x) � 1 � e��g. When the true solution TD(x) is ontinuous, it an be provedthat this algorithm's approximation onverges to that true solution as the grid is re�ned.The ost of the algorithm is proportional to the number of grid points, whih is usuallyexponential in the dimension of the state spae.Extrating the boundary of the reahable set from TD(x) may prove diÆult for two reasons.For ases in whih TD(x) is disontinuous, the solution's auray near the disontinuity|whih is frequently the boundary of the reahable set|is signi�antly degraded. Even gridlevel resolution of a disontinuity's loation may be diÆult to ahieve. In regions whereTD(x) is smooth, the exponential mapping an ause problems as e�� gets very lose tozero. This e�et will limit subgrid resolution of the boundary even when using shemeswith higher order auray on problems with ompletely ontinuous solutions.An alternative algorithm for omputing reahable sets from the minimum time to reahfuntion is desribed in [34℄; it is based on Dijkstra's algorithm [48℄ for omputing minimumtime paths over disrete grids. A very eÆient sheme for omputing T(x) under ertainonditions on the ow �eld (2.17) has reently been developed for the single player ase [126℄.A Formulation from Viability TheoryAn alternative approah to reahability is based on viability theory [12℄ and set valuedanalysis [14℄. The �rst step is to transform our ordinary di�erential equation with oneinput (2.17) into an input free di�erential inlusiondxdt = _x 2 F (x) , ff(x; b) 2 Rn jb 2 Bg: (2.23)The right hand side F of this equation is a set valued map|for any x, F (x) � Rn . Forreasons related to the existene and uniqueness of solutions to (2.23) [13℄, viability theorytypially assumes that F (x) is onvex and nonempty for any x 2 Rn and that the graph ofF is losed with linear growth in x; an F with these properties is alled a Marhaud map.We make the following assumption in any subsequent disussion involving viability theory.



32 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMSAssumption 4. The set valued map F is a Marhaud map. If the ow �eld f satis�esAssumptions 1 and 2, then the only additional onstraint we need to put on F to guaranteethat it is Marhaud is that its value F (x) is a onvex set for any x 2 Rn .A solution of (2.23) is a trajetory �F (� ;x) : [0;1℄! Rn suh thatdd� �F (� ;x) 2 F (�F (� ;x)) almost everywhere;�F (0;x) = x:We use the symbol ; for set valued maps in the same way that ! is used for regularfuntions. De�ne SF : Rn ; C([0;+1℄;Rn) so that SF (x) is the set of absolutely ontinuoustrajetories leading from a point x 2 Rn . Thus �F (�;x) 2 SF (x).With these de�nitions in plae, we an de�ne the � �nite horizon apture basin of the targetset G0 under di�erential inlusion F asCaptF (G0; �) , fx 2 Rn j9�F (�;x) 2 SF (x);9�̂ 2 [0; � ℄; �F (�̂ ;x) 2 G0g: (2.24)In words, the apture basin is the set of states from whih emanate at least one trajetoryleading to G0 in time � or less. The equivalene of the apture basin and reahable set isstated in Theorem 5. The onept of apture basin an also be extended to the di�erentialgame setting in the form of leadership and disriminating kernels, see [13℄ for more details.Based on earlier work [56, 123℄ an algorithm has been developed to ompute CaptF (G0; �)diretly [38℄. The sheme divides the state spae into a �xed grid. Eah point on the grid islabeled by a boolean variable whih is true if that mesh point is within the apture basin|initially, only points in G0 will have a true value. Given a �xed timestep �� , a disreteapproximation of F at eah mesh point is omputed, from whih one an determine whatother mesh points an be reahed in a single timestep. The proedure is iterative, where ateah step a mesh point's value is set to true if it an be reahed from any mesh point that isalready true (this proedure is the forward Euler sheme adapted to set valued di�erentialinlusions). Any mesh point whih is true after �=�� timesteps is in CaptF (G0; �). Theost of the algorithm is doubly exponential in the dimension of the state spae, beause ingeneral F must be disretized for eah mesh point separately. A slightly modi�ed version of



2.3. ALTERNATIVE ALGORITHMS 33this algorithm an be used to ompute underapproximations of the visosity solution T(x)of the stati Hamilton-Jaobi equation [38, 22℄.The approximation provided by this algorithm an be shown to onverge to the true apturebasin as the grid is re�ned [38℄, although no expliit onvergene rate is given. Unlikethe methods based on PDEs, this algorithm an guarantee an overapproximation of thereahable set if the disretization of F is suÆiently overapproximated. Beause of theboolean nature of the data on the grid, this algorithm has no problem treating systemswhose time to reah funtion is disontinuous. Conversely, absolutely no subgrid resolutionof the apture basin is possible beause every grid point is either ompletely inside orompletely outside of it. Adaptive mesh re�nement in the neighborhood of the apturebasin's boundary has been used to develop more aurate approximations, but the ostgrows very quikly as the grid is made �ner.Convergent Formulations Generate the Same Reahable SetTheorem 5 (Equivalene of Convergent Formulations). The following sets are equiv-alent G(�) = CaptF (G0; �) = fx 2 Rn jT(x) � �g = fx 2 Rn j�(x; t) � 0gWe keep our proof brief in order to maintain the fous of this setion on the omparison ofvarious reahability algorithms.Proof. Beause the set of trajetories whih solve (2.17) is the same as the set of trajetorieswhih solve (2.23) [42, setion 0.4℄, the equivalene of G(�) and CaptF (G0; �) is a trivialonsequene of their de�nitions. In the viability literature, the � sublevel set of T(x) isgiven as an alternative de�nition for the apture basin [13, de�nition 2.7.4℄, so learly theseond and third sets are equivalent. Theorem 3 provides the equivalene of G(�) and thezero sublevel set of �(x; t); the proof is developed in setion 2.4.



34 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMS2.3.2 Overapproximative MethodsAs a group, these methods share the goal of eÆiently omputing an approximation of thereahable set whose error is of a guaranteed sign. All methods an produe an overapprox-imation, and with modi�ed parameters some an instead produe an underapproximation.We will disuss the former, but note those ases where the latter an be found as well.All these methods have used the same two part strategy to reah this goal, although theirimplementations of that strategy di�er signi�antly. The �rst part of the strategy is tohoose some �xed representation for the reahable sets; for example, a polyhedra. Theseond is to restrit the lass of ontinuous ow �eld, in most ases to linear dynamis.In some ases the assumptions are strong enough that a losed form solution or overap-proximation is possible. In others, the assumptions lead to an optimization problem whosesolution represents an overapproximation. If that optimization problem is onvex (a linearprogram for example), then it an be solved eÆiently and reliably.In the remainder of this setion, we desribe the partiular assumptions made by eah ofthese overapproximative reahability algorithms; however, beause the fous of this thesis ison an analytially onvergent tehnique, we will not disuss their implementations in detail.Many early reahability tools [89, 142℄ operated on timed automata, whih are systemswith onstant dynamis ( _x =  where  2 Rn is a onstant). Researh on suh systems isstill ongoing, see [24℄ for example. Another early tool, HyTeh [68, 69℄ applied to systemsin whih the dynamis lay in a bounded, onstant interval _x 2 [ _xmin; _xmax℄ and the setswere onvex polyhedra. A more reent o�spring of HyTeh is HyperTeh [71℄. It usesinterval arithmeti to bound the dynamis loally in spae and time, so it is muh moreappropriate for nonlinear systems than its predeessor. Interval arithmeti also means thatits overapproximation omes with a very strong guarantee, but restrits the representationof the reahable set to (possibly nononvex) unions of hyperretangles. These algorithmsare basially treating di�erential inlusions, so a single input an be handled trivially, buttreating two adversarial inputs, as would arise in a di�erential game, is not possible.Teaming polyhedral representations with linear or aÆne dynamis has been a popular strat-egy. Dynamis of the form _x = Ax where A 2 Rn�n is a onstant matrix have expliitsolutions, and a onvex polyhedron evolving under suh a ow �eld remains a onvex poly-hedron, although the reahable set is usually nononvex. The tool d/dt [46, 29, 9, 47℄ traks



2.3. ALTERNATIVE ALGORITHMS 35the motion of suh onvex polyhedra under linear ows, and ollets their nononvex unioninto \orthogonal polyhedra". This algorithm has also been adapted to derive underap-proximations, sine suh a omputation is required to guarantee their overapproximations.ChekMate [40, 41℄ uses an optimization based reahability algorithm formulated to handlegeneral dynamis, but only guaranteed to work for linear dynamis. Another optimizationbased method for handling pieewise aÆne dynamis ( _x = Ax + , where  2 Rn is a on-stant) and polyhedral reahable sets is desribed in [25℄. The algorithm in Coho [63, 64℄uses linear programming to takle nonlinear dynamis with bounding aÆne intervals, andrepresents reahable sets in dimensions higher than two as projetions into two dimensionalsubspaes.Representation size sales well with dimension for some restritive lasses of polyhedra|forexample, onvex polyhedra spei�ed as the intersetion of a olletion of halfspaes|butin many ases the true reahable sets for systems will be grossly overapproximated bysuh polyhedra. Pratial implementations frequently resort to representations that salepoorly but an manage at least three to six dimensions; to our knowledge none has beendemonstrated on a system with higher dimension. Many of these algorithms an treat singleinput systems, and a few an be extended to di�erential game settings.Another set representation that sales very well to higher dimension is ellipsoids. Undertime varying linear dynamis with a single input and starting with an ellipsoidal targetset, ellipsoids whih tightly overapproximate or underapproximate the evolved shape ofthe target set an be omputed via expliit formulas [86, 85℄. The approximations an bere�ned by taking intersetions or unions of additional ellipsoids. The VeriSHIFT tool [28℄implements these methods.All of the methods desribed previously in this setion are similar in that they start withan expliit representation of the target set, and ompute an expliit representation of thereahable set. An alternative approah would be to divide the state spae into a �nitenumber of sets a priori, and then ompute the reahable set using a disrete algorithm.In an early version of suh a sheme [84℄, the state spae was divided into a uniform grid;this algorithm turns out to be very similar to the apture basin algorithm desribed in se-tion 2.3.1, but laked any formal onvergene results. A more reent algorithm [134℄ worksonly with polynomial dynamis and the zero sublevel sets of polynomials. By partitioning



36 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMSthe state spae with a \ylindrial algebrai deomposition" based on the system's polyno-mials, a disrete approximation of the dynamis an be onstruted whih requires fewerstates and less overapproximation than does the uniform grid partitioning. Another set ofanalysis tools [88, 87℄ based on similar ideas for linear systems is under development.In pratial terms, many nonlinear systems are studied as though they were linear withvarying parameters. The reahable sets generated by several linear parameter varying ap-proximations to one partiular nonlinear system are ompared in [128℄.Finally, there are lear ties between reahable set omputation and the huge �eld of Lya-punov theory (for more on Lyapunov theory, see [124, hapter 5℄). In its simplest form, aLyapunov funtion is a funtion of the system's state whih dereases in value along everytrajetory of the system's dynamis. Among the many uses of Lyapunov funtions is thedetermination of invariant sets, whih are sets of states from whih trajetories annot es-ape. Beause the funtion's value dereases along every system trajetory, the sublevel setof a Lyapunov funtion is an impliit surfae representation of an invariant set. An exampleof a Lyapunov funtion is the minimum time to reah funtion (2.20).In many appliations, the reahable set of interest is also an invariant set. It should omeas no surprise that for general systems, Lyapunov funtions are diÆult to �nd. However,algorithms are now available to eÆiently onstrut quadrati Lyapunov funtions (yieldingellipsoidal invariant sets) for systems with linear dynamis and multiple inputs [31℄. Thealgorithms use linear matrix inequalities and semide�nite programming, so they an handlesome types of nonlinearities in the dynamis, inluding setor bounded nonlinearities [74,73℄.2.3.3 Comparing the Various TehniquesThey share the same general strategy, and so the overapproximative methods generallyshare the same strengths and weaknesses when omputing reahable sets. Their representa-tions of reahable sets are usually hosen to sale polynomially with state spae dimensionn, although the worst ase for a few an be exponential in n; for example, orthogonal poly-hedra. If their representation's size exhibits polynomial growth for pratial appliations,these methods sore a signi�ant win over the onvergent shemes, sine exeution time and



2.3. ALTERNATIVE ALGORITHMS 37memory requirements generally sale linearly with the size of the reahable set's representa-tion. Despite this advantage, none of these shemes is appropriate to the nonlinear systemsthat we study. Few of the overapproximative methods an handle nonlinear dynamis, andthe approximations of those that do are too oarse for pratial appliation.The algorithms for the three onvergent methods|our time dependent Hamilton-Jaobi,the stati Hamilton-Jaobi, and the apture basin approah|all ompute numerial solu-tions on Eulerian grids. As a onsequene, these algorithms are less prone to numerialinstability than those implemented with moving representations (suh as most overapprox-imative shemes), but they will fail to resolve any features of the reahable set smaller thanthe spaing between grid nodes. Beause the number of grid nodes usually grows exponen-tially with dimension, these methods all su�er from Bellman's urse of dimensionality andare not immediately pratial for dimension greater than four or �ve. On the other hand,all three shemes an handle nonlinear dynamis in a di�erential game setting, and make noassumptions about the shape of the reahable set. Their approximations of the reahableset are not only theoretially onvergent, but also aurate to about the grid resolution inpratie.The di�erenes between the three algorithms are more subtle, but still worth examining.In our mind, the most important is auray. In pratie, neither the stati HJ nor theapture basin algorithm an deliver subgrid resolution of the reahable set. As shown insetion 3.1.4, our algorithm resolves the boundary of the reahable set to less than onetenth of a grid ell in most of the state spae. This auray is signi�ant beause of thehigh ost of re�ning the grid|doubling the resolution of the stati HJ or apture basinalgorithms requires eight times as muh work in three dimensions or sixteen in four. Ourimplementation generates a signed distane funtion representation of the reahable set: atany point x in state spae, j�(x; t)j is the distane to the nearest point on the boundary ofthe reahable set, and sign(�(x; t)) determines whether x is inside or outside. Consequently,for any x we an extrat not only the distane to the boundary, but also the diretion ofthe nearest point on the boundary.y However, the other two algorithms do have strengths.Both naturally handle state onstraints, while our time dependent formulation annot in itsurrent form. On a grid of �xed size, both are likely to be faster than our time dependentyThe diretion is given by �Dx�(x; t)=kDx�(x; t)k, and an prove useful for synthesizing safe ontrolinputs (see setion 3.1.5).



38 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMSformulation, although it has been diÆult to ome by omparable exeution times. Theapture basin algorithm an guarantee an overapproximation of the reahable set. On theother hand, if we wish to use the reahable set to synthesize optimal ontrol inputs, it willbe easier to determine those ontrols from the minimum time to reah funtion generatedby the stati HJ formulation.2.4 Diret Proof of the Time Dependent FormulationAt the end of this setion we prove Theorem 3. The proof depends on some results fromthe literature of visosity solutions and di�erential games, and on the de�nition of a newsystem whih has an augmented set of inputs for player II.2.4.1 Augmenting the DynamisIn the proof, we will use a modi�ed set of system dynamis in whih we augment player II'sinputs with the salarb(�) 2 B(t) , f� : [t; 0℄! [0; 1℄j�(�) is measurableg:De�ne the augmented input for player II as~b = hb bi 2 B � [0; 1℄;and similarly de�ne ~B, ~B(t) and ~�(t). The di�erential game referred to in the remainder ofthis setion will be played with dynamis~f(x; a;~b) , bf(x; a; b); (2.25)and its trajetories will be denoted by � ~f (s;x; t; a(�);~b(�)).From (2.25), we see that player II may hoose to play the game with normal dynamis bytaking b = 1, may hoose slowed dynamis with b 2 ℄0; 1[, or may hoose to freeze thedynamis entirely by taking b = 0. Beause the latter ase proves important, we will allthis additional salar b the freezing input. We need to add the freezing input to the system



2.4. DIRECT PROOF OF THE TIME DEPENDENT FORMULATION 39beause the HJI PDE whih we introdue in the next setion is only able to determinewhether a trajetory is in the target set at exatly time zero. If we used this PDE on theoriginal system, player I ould \avoid" the target by driving a trajetory into the targetand then out the other side before time zero. But with the freezing input available, playerII an stop a trajetory's evolution if it ever enters the target set.Clearly, there is a lose onnetion between trajetories of the augmented system (2.25)and trajetories of the original system (2.1). We an formalize the onnetion through thepseudo-time variable � : [t; 0℄! [t; 0℄, whih for any b(�) 2 B(t) is given by�(s) , t+ Z st b(�) d� (2.26)Note that �(s) is ontinuous and monotonially inreasing. We will also need the (possiblydisontinuous) inverse funtion ��1 : [t; �(0)℄ ! [t; 0℄, whih we de�ne by��1(�) , inff� 2 [t; 0℄j�(�) � �g (2.27)Lemma 6 (Equivalene of Trajetories). For any a(�) 2 A(t) and ~b(�) = hb(�) b(�)i 2~B(t), de�ne � as in (2.26) and ��1 as in (2.27). Then for every trajetory of the origi-nal system, there is a trajetory of the augmented system related through the pseudo-timevariable � �f (�(s);x; t; a(��1(�)); b(��1(�))) = � ~f (s;x; t; a(�);~b(�))for any s 2 [t; 0℄.Proof. De�ne the shorthand�f (s) , �f (s;x; t; a(��1(�)); b(��1(�)));� ~f (s) , � ~f (s;x; t; a(�);~b(�)): (2.28)Then we an write � ~f (s) = � ~f (t) + Z st d� ~f (�)d� d�;= x+ Z st f(� ~f(�); a(�); b(�))b(�) d�;



40 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMSand �f (�(s)) = �f (t) + Z �(s)t d�f (�)d� d�;= x+ Z �(s)t f(�f (�); a(��1(�)); b(��1(�))) d�;= x+ Z st f(�f (�(�)); a(�); b(�))b(�) d�;where we have used a hange of variables � = �(�) after the seond step. From these twoequations and the fat that b(�) 2 [0; 1℄,�f (�(s)) � � ~f (s) = Z st (f(�f (�(�)); a(�); b(�)) � f(� ~f (�); a(�); b(�)))b(�) d�;k�f (�(s))� � ~f (s)k � Z st k(f(�f (�(�)); a(�); b(�)) � f(� ~f (�); a(�); b(�)))b(�)k d�;� Z st kf(�f (�(�)); a(�); b(�)) � f(� ~f (�); a(�); b(�))k d�;� K Z st k�f (�(�)) � � ~f (�)k d�; (2.29)
where K is the Lipshitz onstant for the ow �eld f . Letting (s) = Z st k�f (�(�)) � � ~f (�)k d�;we see that  (t) = 0,  (s) � 0, and _ (s) = k�f (�(s)) � � ~f (s)k. Rewriting (2.29) in termsof  we get the di�erential inequality_ (s)�K (s) � 0;whose only solution is  (s) � 0 (the steps needed to show this fat are the same as thosegiven in the proof of Theorem 1 in setion 2.1.2). Therefore �f (�(s)) = � ~f (s).2.4.2 The Di�erential Game and its SolutionWe will work with a �nite horizon di�erential game [17℄ played over time horizon [�T; 0℄whose dynamis are governed by the ow �eld (2.25). A trajetory in this game has a



2.4. DIRECT PROOF OF THE TIME DEPENDENT FORMULATION 41terminal ost C(x; t; a(�);~b(�)) = g(� ~f (0;x; t; a(�);~b(�))):and no running ost. The goal of player I will be to maximize this ost, while player II willtry to minimize it. Consequently, the value of our di�erential game will be�(x; t) = inf~2~�(t) supa(�)2A(t)C(x; t; a(�); ~[a℄(�))= inf~2~�(t) supa(�)2A(t) g(� ~f (0;x; t; a(�); ~ [a℄(�))) (2.30)Lemma 7. The value funtion �(x; t) of our game is the visosity solution of the Hamilton-Jaobi-Isaas terminal value PDEDt�(x; t) + ~H(x;Dx�(x; t)) = 0; for t 2 [T; 0℄; x 2 Rn ;�(x; 0) = g(x);for x 2 Rn ; (2.31)where ~H(x; p) = maxa2A min~b2 ~B pT ~f(x; a;~b): (2.32)Proof. This lemma is just a speial ase of Theorem 4.1 in [51℄.2.4.3 The Proof of Theorem 3We need one more intermediate result before proving Theorem 3.Lemma 8. For t 2 [T; 0℄, the value funtion �(x; t) given by (2.30) desribes the reahableset G(�) fx 2 Rn j�(x; t) < 0g � G(�) � fx 2 Rn j�(x; t) � 0g: (2.33)Proof. We prove the relations in (2.33) by showing thatx 2 G(�) =) �(x; t) � 0; (2.34)�(x; t) < 0 =) x 2 G(�): (2.35)



42 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMSCase 1: We will assume that x 2 G(�) and �(x; t) > 0 and derive a ontradition. Consider�rst the impliations of (2.30).�(x; t) = inf~2~�(t) supa(�)2A(t)C(x; t; a(�); ~[a℄(�)) > 0;=) 9� > 0;8~ 2 ~�(t); supa(�)2A(t)C(x; t; a(�); ~[a℄(�)) > 2� > 0;=) 9� > 0;8~ 2 ~�(t);9â(�) 2 A(t); C(x; t; â(�); ~[â℄(�)) > � > 0: (2.36)Now onsider the impliations of x 2 G(�). By (2.3) there is a  2 �(t) suh that for theâ(�) from (2.36) and b(�) = [â℄(�) there exists s 2 [t; 0℄ suh that �f (s;x; t; â(�); b(�)) 2 G0.By (2.2), g(�f (s;x; t; â(�); b(�))) < 0. Choose freezing input signalb(r) = 8<:1; for r 2 [t; s[;0; for r 2 [s; 0℄:Combine this b(�) with the b(�) hosen above to get ~b(�), an input whih will generate atrajetory � ~f (r;x; t; â(�);~b(�)) = 8<:�f (r;x; t; â(�); b(�)); for r 2 [t; s℄;�f (s;x; t; â(�); b(�)); for r 2 [s; 0℄:In partiular, � ~f (0;x; t; â(�);~b(�)) = �f (s;x; t; â(�); b(�)), and so g(� ~f (0;x; t; â(�);~b(�))) < 0.Sine b(�) = [â℄(�) and b(�) is learly nonantiipative, ~b(�) is also nonantiipative and wehave a ontradition of (2.36). Therefore we have proved (2.34).
Case 2: Assume �(x; t) < 0. Fix � > 0 suh that�(x; t) < �2� < 0:By (2.30) there exists ~ 2 ~�(t) suh thatsupa(�)2A(t)C(x; t; a(�);~b(�)) = supa(�)2A(t) g(� ~f (0;x; t; a(�);~b(�))) < ��;



2.4. DIRECT PROOF OF THE TIME DEPENDENT FORMULATION 43where ~b(�) = ~[a℄(�). Therefore, for all a(�) 2 A(t),g(� ~f (0;x; t; a(�);~b(�))) < �� < 0;or equivalently, � ~f (0;x; t; a(�);~b(�)) 2 G0:So hoose an arbitrary a(�) 2 A(t). Let~[a℄(r) = ~b(r) = hb(r) b(r)i ;for r 2 [t; 0℄ and note that sine ~b(�) is nonantiipative, b(�) must be nonantiipative. De�ne� as in (2.26). Then by Lemma 6,�f (�(0);x; t; a(��1(�)); b(��1(�))) = � ~f (0;x; t; a(�);~b(�)) 2 G0:We have therefore shown for arbitrary a(�) 2 A(t) that there exists a nonantiipative b(�) 2B(t) and s = �(0) 2 [t; 0℄ suh that�f (s;x; t; a(�); b(�)) 2 G0:By (2.3), x 2 G(�) and we have proved (2.35).The proof of Theorem 3 is now straightforward.Proof of Theorem 3. From Lemma 7 we know that the value funtion � for the di�erentialgame is the visosity solution to (2.31). If � does not develop plateaus|regions of onstantvalue|at its zero level set, then the fat that G(�) is losed from Theorem 1 and thebounds (2.33) from Lemma 8 implyG(�) = fx 2 Rn j�(x; t) � 0g:A suÆient but not neessary ondition to avoid plateaus is that whenever Dx� exists,kDx�k 6= 0; this ondition is enfored by the level set algorithms in our implementation viareinitialization (see setion 2.2.2).



44 CHAPTER 2. REACHABLE SETS FOR CONTINUOUS SYSTEMSFor the �nal step of the proof, start with ~H from (2.32) and H from (2.8). Then we seethat ~H(x; p) = maxa2A min~b2 ~B pT ~f(x; a;~b);= maxa2A minb2B minb2[0;1℄ pT (bf(x; a; b));= maxa2A minb2B minb2[0;1℄ b pTf(x; a; b);= minb2[0;1℄ b�maxa2A minb2B pT f(x; a; b)� ;= min�0;maxa2A minb2B pT f(x; a; b)� ;= min[0;H(x; p)℄:Consequently, the two HJI PDEs (2.7) and (2.31) are equivalent, and so � is also the solutionof (2.7).



Chapter 3
Examples of Continuous ReahableSets
The lassial \game of two idential vehiles" [75℄ is our primary example, and in the �rstsetion of this hapter we use it to demonstrate and numerially validate our implemen-tation. The aousti apture example is drawn from the literature on omputing viabilitykernels and apture basins [38℄. The �nal example shows how we an use reahable setsto analyze the autolanding protool followed by pilots of a omplex modern ommerialjetliner, so as to detet potentially onfusing displays or proedures.3.1 The Game of Two Idential VehilesIn this setion we use the algorithms from setion 2.2 to ompute reahability for a threedimensional kinemati model of two adversarial vehiles: the pursuer wishes to get withina ertain distane of the evader. In the dynami game literature this problem is alled thegame of two idential ars [95℄, and the reahable set orresponds to the set within whihthe pursuer an apture the evader. Our previous publiations [135, 102, 100℄ have alledthis problem the three dimensional airraft ollision avoidane example.45



46 CHAPTER 3. EXAMPLES OF CONTINUOUS REACHABLE SETS
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Figure 3.1: Coordinate system for the game of two idential vehiles.3.1.1 The ModelWe model our two vehiles with a ommonly used, very simple kinemati system. The stateof eah vehile is represented by a loation in the x� y plane and a heading  relative tothe x-axis. The evolution of these states is governed by the vehile's forward veloity v androtational veloity ! ddt 2664xy 3775 = 2664v os v sin ! 3775 :For the purposes of this example, we �x the linear veloities of the vehiles and use theangular veloities as the inputs, so v will be a onstant while a and b will orrespond to !.We say that a ollision has ourred if the two vehiles ome within distane d of oneanother. Our goal is to determine the set of states from whih the pursuer an ause aollision to our. Translating into reahability terms, G0 is the set of all states where thetwo vehiles are within d units of one another, the evader is player I (input a), the pursueris player II (input b), and the set in whih the pursuer an ause a ollision despite thebest e�orts of the evader is G(�). Beause G0 depends only on the relative positions of the



3.1. THE GAME OF TWO IDENTICAL VEHICLES 47variable meaningxr relative position in ight diretion of evaderyr relative position perpendiular to ight diretion of evader r relative heading (0 �  r < 2�)z state vetor (z = �xr yr  r�T )a angular veloity and input of evader (jaj � 1)b angular veloity and input of pursuer (jbj � 1)va speed of evader (va = 5)vb speed of pursuer (vb = 5)d minimum safe separation distane (d = 5)G0 ollision set (G0 = B 2(0; d) � [0; 2�℄ � R3)Table 3.1: Variable de�nitions for the game of two idential vehiles.vehiles, we an simplify the system down to three dimensions by working in relative oor-dinates. Furthermore, beause the variable x has speial meaning in the plane, throughoutthis setion we will denote the state vetor as z 2 R3 . We �x the evader at the origin andfaing along the positive xr axis (see �gure 3.1 and table 3.1). Then the pursuer's relativeloation and heading are desribed by the ow �eld_z = ddt 2664xryr r3775 = 2664�va + vb os r + ayrva sin r � axrb� a 3775 = f(z; a; b): (3.1)
The reahability algorithm we have presented an solve this problem for any hoies ofparameters. However, beause it an be solved almost analytially (see setion 3.1.3), wewill fous on a partiular instane in whih the two vehiles' ontrol authority and speedare idential d = 5;va = vb = 5;A = B = [�1;+1℄:Using the analyti solution, we an validate our numerial results.



48 CHAPTER 3. EXAMPLES OF CONTINUOUS REACHABLE SETS3.1.2 The Hamilton-Jaobi FormulationSine a ollision an our at any relative heading, the target set G0 depends only on xrand yr and inludes any state within distane d of the planar originG0 = fz 2 R3jx2r + y2r � d2g;whih an be onverted into a signed distane funtiong(z) =px2r + y2r � d; (3.2)for our HJ PDE's terminal onditions.From (2.8) we see that our Hamiltonian isH(z; p) = maxa2A minb2B �pT f(z; a; b)� ;= maxa2[�1;+1℄ minb2[�1;+1℄24�p1va+p1vb os r + p2va sin r+ a(p1yr � p2xr � p3) + bp335 ;= �p1va + p1vb os r + p2va sin r + jp1yr � p2xr � p3j � jp3j; (3.3)
one we have plugged in the bounds on the inputs a and b.We wish to determine the in�nite horizon reahable setG , lim�!1G(�):For this example, we �nd that H(z;Dz�(z; t)) � 0 for � > 2:6, and so we take�(z) = limt!�1�(z; t) = �(z;�2:6):Note that taking this limit t! �1 is not appropriate for all systems. Based on the resultsin the next setion, we know for this example that the reahable set has eased to growfor � > 2:6, and onsequently that the Hamiltonian is non-negative for t < �2:6. Wean likewise take the limit in other examples where we an show that the Hamiltonian isguaranteed to be non-negative for all t � t̂ for some bounded t̂. But a problem arises if theHamiltonian merely approahes zero asymptotially from below as t ! �1. In that ase,Theorem 1 and hene Theorem 3 may not apply to the in�nite horizon reahable set.
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barrier        
capture circle Figure 3.2: Two slies at onstant  r through the reahable set, as determined by Merz'smethod.3.1.3 An \Almost Analyti" SolutionUsing di�erential game theory, it is possible to determine optimal inputs for both pursuerand evader and thereby �nd points lying on the surfae of the reahable set. In [95℄,A. W. Merz solved for the game with the pursuer at the origin; we have reently rereatedthese results, and then modi�ed them to solve the game with the evader at the origin [98℄(the two ases are not quite symmetri).All points on the boundary of the reahable set are the endpoints of bakwards time tra-jetories whose input signals (both evader and pursuer) are seleted from a limited set ofpieewise onstant funtions whih were shown in [95℄ to over the optimal solutions pos-sible over all valid (not neessarily pieewise ontinuous) input signals. The evader's inputis always extremal (�1), but the pursuer will sometimes hoose a zero input instead of anextremum. Note that multiple input histories may exist leading to any partiular pointon the boundary, but we need follow only one of those histories to �nd eah point. UsingMerz's tehnique, we an determine the state of these speially hosen trajetories as anexpliit (although omplex) funtion of time.
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Figure 3.3: Trajetories leading to the rossover point for two slies of the reahable set, asdetermined by Merz's method. Beause there is more than one distint trajetory leadingto these points, they are examples of shok points of the orresponding HJI PDE.Two slies at onstant  r through the reahable set are shown in �gure 3.2. The dottedirle is the ollision set G0, and the solid line is the slie of G. The \rossover points" labeledin the �gure an be reahed by two separate trajetories whose input signals are radiallydi�erent. Those trajetories are shown in �gure 3.3 for the same two slies through thereahable set. Sine trajetories orrespond to harateristis of the related HJI equation,the fat that two radially di�erent harateristis meet indiates the presene of a shokin the underlying optimal ow �eld.Computationally, the rossover point for a slie is the solution of an impliit trigonometriequation. Without a losed form expliit solution, these points must be determined bynumerial root �nding algorithms; however, suh algorithms easily �nd roots to a relativepreision signi�antly higher than that possible in an iterative PDE solver. All other pointson the boundary an be determined to within roundo� error from the expliit trajetoryfuntions. We all Merz's solution \almost analyti" beause we an ompute most pointson the boundary expliitly and the remaining few to very high relative preision.Figure 3.4 shows some of the trajetories leading to points on the upper surfae of theboundary for one of the slies. Notie that many points on the boundary arise from traje-tories that start at a single point z = h�5 0 2�iT on the target set. As mentioned before,
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Figure 3.4: A sampling of trajetories leading to points on the boundary of the reahableset, as determined by Merz's method. Beause many of these bakwards time trajetoriesemanate from a single point in state spae (lying in the upper left portion of the �gure, onthe ollision irle), this point is the start of a rarefation in the orresponding HJI PDE.trajetories orrespond to harateristis of the HJI equation, so this behavior demonstratesa rarefation in the underlying optimal ow �eld.3.1.4 Computational ResultsFigure 3.5 shows the reahable set for this example, as omputed by our algorithm ona 1003 grid using a �fth order WENO spatial approximation of Dz, the Lax-Friedrihsapproximation of the Hamiltonian (3.3), and a seond order TVD RK approximation ofDt. Overlaid on the surfae are approximately 2600 boundary points as determined by thealmost analyti solution. Notie the sharp looking ridge that runs along the top side ofthe top right half of the helial bulge, and then drops to the bottom side on the bottomleft half of the bulge. This ridge orresponds to the rossover points that appeared on theslies of the reahable set in the previous setion. The shok in the optimal ow �eld atthese points generates a kink in the level set funtion, whih appears as a sharp ridge inthe visualization.Figure 3.6 shows the growth of the reahable set. On the left is the initial ylinder repre-sented by g(z) in (3.2). Figure 3.7 shows the onverged set from several di�erent angles.The rendering software for �gures 3.6 and 3.7 was written by Professor Ronald Fedkiw.Animated versions of these sequenes are available at [96℄.
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Figure 3.5: Reahable set for the game of two idential vehiles (as omputed by the levelset algorithm) and points on its boundary (as omputed by Merz's method). Points areonly shown on the top half, sine the bottom is symmetri. The sharp ridge on the bulgeof the set (visible as a whiter urve due to lighting) orresponds to the rossover points ofthe analyti solution and lies on a shok of the underlying optimal ow �eld. The analytisolution to the HJI PDE would have a disontinuous derivative along this urve, althoughdissipation in our numerial method has slightly smoothed our approximate solution.We an build some intuition for the shape of the reahable set by onsidering a few horizontalslies through it. The relative heading oordinate  r is the vertial oordinate in these�gures, so a horizontal slie represents all possible relative planar oordinates of the twovehiles at a �xed relative heading. Now onsider a horizontal slie at the vertial midpointof the reahable set shown in �gure 3.7|the slie through the most extended part of thehelial bulge. The relative heading for this slie is  r = �; the ase in whih the two airrafthave exatly opposite headings, so it is not surprising that the reahable set is largest atthis point. If we look instead at a horizontal slie at the top or bottom of the reahableset ( r = 0 or  r = 2�, whih are equivalent), then the slie is no more than the initial
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Figure 3.6: Growth of the reahable set (animation at [96℄).

Figure 3.7: Other views of the reahable set (animation at [96℄).ollision set|the airraft start faing the same diretion and have idential dynamis, sothe evader an always avoid a ollision unless the system starts in a ollision state.The goal of our algorithms is to produe a signed distane funtion representation of thereahable set. Using the almost analyti solution, we an determine a large olletion ofpoints zi that lie exatly on the boundary, so if our PDE solver were exat we should have�(zi) = 0 for all i. Sine � is a signed distane funtion, j�(zi)j measures how far zi liesfrom the approximated boundary and therefore our error. If zi is not a grid point, we useinterpolation to determine the value of �(zi). Figure 3.8 demonstrates onvergene of ouralgorithm in both maximum and average error for a set of approximately 60000 analytisurfae points zi as the grid resolution is inreased. The grid spaing �x for eah grid sizeis shown for omparison. Our algorithm manages to keep the maximum error (even nearthe kink) to approximately one grid ell, and the average error muh smaller than one tenthof a grid ell.The ow �eld in this example is fully three dimensional and inludes urving rarefationand shok fronts. We know of no other three dimensional Hamilton-Jaobi problem withsimilarly omplex behavior for whih an analyti representation of the solution is avail-able. Consequently, we believe this example presents an exellent validation tool for othernumerial Hamilton-Jaobi and level set implementations. We have made Matlab sriptsavailable for generating the boundary point sets used in this setion for validation of ourimplementation [97℄ and more details on the validation proedure an be found in [98℄.



54 CHAPTER 3. EXAMPLES OF CONTINUOUS REACHABLE SETS

50 70 100 140 200
10

−4

10
−3

10
−2

E
rr

or

Grid Size n

(5,2) Scheme

1 norm
∞ norm
∆ x

Figure 3.8: Maximum and average error in the approximation of the boundary dereaselinearly as the grid is re�ned. Error is measured by the absolute value of the signed distanefuntion j�(zi)j at eah of approximately 60000 points zi lying on the boundary of theanalytially determined reahable set. The \(5,2) Sheme" refers to the use of a �fth orderWENO approximation of Dx and a seond order TVD-RK approximation of Dt.3.1.5 Synthesizing a Safe Controller from the Reahable SetIt is straightforward to use the results from the previous setion to evaluate the safety of apartiular on�guration in the game of two idential vehiles. For some relative oordinatestate z and using their respetive optimal input signals, the pursuer an ause a ollisionwith the evader if �(z) � 0, but the evader an esape if �(z) > 0.A more interesting appliation, for whih we have only preliminary results, is the �ltering ofpotentially unsafe inputs suh that they guarantee safety in a minimally intrusive manner.The idea is to take some potentially unsafe input for the evader vehile|for example, onehosen to minimize travel time or fuel onsumption, or one generated by an inattentivehuman pilot|and modify it as little as possible to guarantee that no ollision will our. Ifthe pursuer is far away, no �ltering is neessary. The same is true if the vehiles are losetogether but have the same heading. If the vehiles are traveling in opposite diretions ona ollision ourse, however, the �lter may have to take over omplete ontrol.Our preliminary implementation takes as input the urrent relative oordinates of the vehi-les z and the desired but potentially unsafe input au. The instantaneous dynamis of the
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Figure 3.9: Annotated frame from the ollision avoidane example animation.
Figure 3.10: Evader keeps pursuer from entering the reahable set, and hene avoids ollision(animation at [96℄). Note that the shape of the slie of the reahable set depends on therelative heading of the two vehiles.system are omputed _z = f(z; au; b), onservatively assuming the worst possible pursuerinput b. The projetion of _z onto the gradient Dz�(z) is the omponent of the dynamiswhih is allowing the pursuer to ome loser to the reahable set. By inverting the dynam-is, we an determine what modi�ation af must be made to au in order to remove thisomponent. From �(z) we an determine whether the pursuer is lose to the reahable set'sboundary. In theory, we should only have to apply af if the pursuer is right on the boundaryof the reahable set, thereby generating an input as = au + af whih is guaranteed to keepthe pursuer from entering the reahable set, and hene from ausing a ollision. In pratie,we linearly inrease the fration of af applied as the pursuer approahes the reahable setin order to keep the system from stuttering along the boundary. The range at whih webegin �ltering depends on the oarseness of the grid used to ompute �(z).Figure 3.9 shows an annotated frame from an animation of the ollision system, and aseries of frames from that animation are shown in �gure 3.10. The evader starts on the leftsurrounded by the solid ollision irle, while the pursuer starts on the right. The dottedshape surrounding the evader is the slie of the reahable set for the urrent relative headingof the two vehiles; for example, in the leftmost �gure the vehiles have relative heading
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Figure 3.11: Pursuer starts within the reahable set, and an thus ause a ollision despitethe evader's e�orts (animation at [96℄). r � � and so the horizontal midplane slie of the reahable set is shown. The dashedarrow extending from the evader's nose is au, the dotted arrow af and the solid arrow as;the solid arrow extending from the pursuer shows its input hoie b. By implementing the�lter desribed above, the evader keeps the pursuer from entering the reahable set andthus from ausing a ollision as time progresses from left to right.Figure 3.11 shows a sequene in whih the pursuer starts within the reahable set and ausesa ollision (denoted by the solid ollision irle). Although the pursuer starts well withinthe reahable set at the beginning of the sequene, it lies muh loser to the edge of theollision irle at the end. This drift ours in part beause the pursuer in this simulation isnot implementing an optimal strategy, but merely steering itself like a heat seeking missiletoward the urrent position of the evader. Although not implemented at present, it ispossible to reate an optimal pursuit strategy based on state feedbak and the reahableset representation �(z); were this strategy implemented then the pursuer ould ome loserto the evader by the end of the sequene.These results are only preliminary, so it should ome as no surprise that the algorithmoutlined above has some de�ienies. Inversion of the model dynamis to determine theappropriate �ltering input af is prone to instability. Despite the gradual introdution of afas the pursuer approahes the reahable set's boundary, the system still shows hatteringbehavior under ertain irumstanes. We are urrently investigating improvements to thisappliation.3.2 Aousti CaptureThis example is a variation of the lassial homiidal hau�eur problem. As in that problem,the evader is free to travel in any diretion, while the pursuer has a limited turn radius.



3.2. ACOUSTIC CAPTURE 57variable meaningx relative position along pursuer's broad dimensiony relative position along pursuer's narrow dimensionz state vetor (z = �x y�T )a veloity vetor and input of evader (a 2 B 2(0; 1) � R2 )b angular veloity and input of pursuer (jbj � 1)We speed of evader (We = 1:3)Wp speed of pursuer (Wp = 1:0)R turn radius of pursuer (R = 0:8)S radius beyond whih evader an safety use maximum speed (S = 0:5)G0 pursuer's apture region (G0 = [�3:5;+3:5℄ � [�0:2; 0℄ � R2 )Table 3.2: Variable de�nitions for the aousti apture example.The di�erene in this ase is that the evader's limited speed is further redued if she getstoo lose to the pursuer. This restrition might appear in situations where the evader mustredue speed as the pursuer approahes in order to keep her aousti signal from beingdeteted.Our version of the problem is taken from [38℄, although we rotate their oordinate frame90Æ ounterlokwise to make x horizontal and inreasing to the right. The game an beanalyzed in two dimensional relative oordinates with the pursuer �xed at the origin. Therelative dynamis areddt "xy# =Wp " 0�1#+ WpR " y�x# b+ 2Wemin�px2 + y2; S� a = f(z; a; b); (3.4)where the variables are de�ned in table 3.2. From (3.4) we see that the evader an go inany diretion, but her speed dereases with proximity to the pursuer if the pursuer is withindistane S. The pursuer's apture region is a wide but shallow retangle near the origin.From (2.8) and (3.4) we �nd the optimal HamiltonianH(z; p) = maxa2A minb2B �pTf(z; a; b)� ;= maxa2B 2(0;1) minb2[�1;+1℄24�p2Wp+bWpR (p1y � p2x)+ (pTa)(2We)min�px2 + y2; S�35 ;= �p2Wp � WpR jp1y � p2xj+ kpk(2We)min�px2 + y2; S� ;



58 CHAPTER 3. EXAMPLES OF CONTINUOUS REACHABLE SETSwhere we hoose inputs a = pkpk 2 B 2(0; 1);b = � sign(p1y � p2x) 2 [�1;+1℄:The growth of the reahable set is shown in �gure 3.12. The grey region is G(�) for thespei�ed � values, and the dashed retangle is the pursuer's apture region G0. The unusualbehavior in this example is the development of a hole in G(�) for � � 2, a hole whih isentirely detahed from G0. Beause the hole does not touh G0, any attempt to ompute itsboundary by straightforward Lagrangian methods|for example, by following trajetoriesbakwards from G0 in the hope that they would identify the hole|ould not sueed.The solution of this problem is omputed in [38℄ by an algorithm for �nding disriminatingkernels, whih are di�erential game relatives of the optimal ontrol based apture basin men-tioned in setion 2.3.1. An alternative approah draws on Isaas' ideas and determines thevalue funtion of this game by onstruting appropriate semi-permeable surfaes [114, 115℄.However, it seems unlikely that the geometrial tehniques used in this latter onstrutionould be extended to problems with dimension higher than two.3.3 Take O� / Go Around Proedure AnalysisThis setion desribes the reahable set analysis performed as part of a study of the pilot'sprotool for automated landing in a modern ommerial passenger jet. We fous here onthe portions of the analysis whih involve reahable set alulation; for the full protoolveri�ation methodology, see [105℄.3.3.1 Model of a Landing AirraftThe point mass model of longitudinal dynamis that we use is taken from [100℄ and adaptedby modifying lift and drag parameters to suit the airraft under onsideration.ddt 2664Vz3775 = 2664 1m [T os��D(�; V )�mg sin℄1mV [T sin�+ L(�; V )�mg os ℄V sin 3775 (3.5)
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Figure 3.12: Growth of the reahable set for the aousti apture example.
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Figure 3.13: Notation for the landing airraft example.
variable meaningV speed of airraft ightpath angle of airraftz altitude of airraftx state vetor (x = �V  z�T )T engine thrust and ontrol input� angle of attak and ontrol input� pith angle (� = �+ )m airraft mass (m = 190000 kg)g gravity (g = 9:81 m=s2)L(�; V ) airraft liftD(�; V ) airraft dragTable 3.3: Variable de�nitions for the model of a landing airraft.



3.3. TAKE OFF / GO AROUND PROCEDURE ANALYSIS 61mode aps gear CL0 CL� CD0 Kare 30 down 0.8212 5.105 0.025455 0.04831TOGA-max 20 down 0.4225 5.105 0.024847 0.04831TOGA-up 20 up 0.4225 5.105 0.019704 0.04589Table 3.4: Aerodynami onstants for various airraft geometries.The state variables are speed V , ightpath angle  and altitude z. We assume a suÆientlylong runway and thus do not model horizontal distane traveled. The ontrol inputs (playerI, denoted by input a in previous setions) are engine thrust T and angle of attak �. Themodel does not inlude any disturbane inputs (player II, previously denoted by input b).The notation we use is illustrated in �gure 3.13, while the variables and parameters of (3.5)are summarized in table 3.3.
The lift L(�; V ) and drag D(�; V ) funtions are modeled based on empirial data [83℄ andPrandtl's lifting line theory [4, 118℄:L(�; V ) = 12�SV 2CL(�);D(�; V ) = 12�SV 2CD(�); (3.6)where � = 1:225 kg=m3 is the density of air and S = 427:80 m2 is the wing surfae area.The dimensionless lift CL(�) and drag CD(�) oeÆients depend on the geometry and ighton�guration of the airraft. We model two geometry hanges that our during the �nalstages of landing: extension of the wing aps and deployment of the landing gear. The apsinrease lift and lower the speed at whih the airraft will stall, while both aps and landinggear inrease the drag. The e�ets of geometry hanges are inorporated by hanging theoeÆients in CL(�) = CL0 + CL��;CD(�) = CD0 +KC2L(�): (3.7)We estimated these values, whih are typial for large ivil airraft, from data in [21, 122,54, 121, 77℄. Table 3.4 summarizes the oeÆient values for several di�erent geometries.



62 CHAPTER 3. EXAMPLES OF CONTINUOUS REACHABLE SETS3.3.2 The ProblemOur goal is a safety study of the proedures that a pilot follows when attempting an au-tomated landing. We would like to examine how the airraft's automati systems interatwith the pilot through the okpit interfae|inluding visual displays, audible warningsand tatile feedbak from the ontrol olumn|as well as the protools that the pilot learnsduring training and from the manuals written by the airraft manufaturer. We are look-ing for instanes of mode onfusion, whih ours when the airraft automation does notrespond as a pilot expets. Mode onfusion is a leading ause of inidents, whih are smallproblems or irregularities that do not by themselves ause aidents, but whih pilots reportafter they land. Sine they an be preursors to aidents, the study of inidents forms animportant part of aident prevention researh.To study the automated landing system, we dedued from ight manuals and the ommentsof pilots a typial landing protool. During the �nal stage of approah (alled are) theengines are at idle, the aps are fully extended, and the landing gear are down. Undernormal irumstanes touhdown will our, followed by deeleration to a taxi speed (alledrollout). If the pilot detets some danger, suh as debris on the runway, she an initiatea take o� / go around (TOGA) by pressing a button on the ontrol olumn. If TOGAours, the engines are inreased to maximum thrust and the aps are retrated in orderto avoid a landing (TOGA-max ). One the airraft has begun to limb, the landing gearare retrated and the engine thrust is allowed to vary again (TOGA-up). The airraft willthen limb to a prede�ned missed approah altitude and await instrutions from the ontroltower. Note that during this sequene the autoland system has diret ontrol of the Tand � inputs, while the pilot manually adjusts the aps and landing gear aording to theproedure outlined above.�We study the safety of this protool by onsidering whether it allows the autoland systemto keep the airraft within its safe ight envelope. The envelope is a range of state variablesand inputs whih the airraft manufaturer and Federal Aviation Administration (FAA)have delared to be safe; for example, the airraft must always stay above its stall speed toavoid loss of ontrol. Table 3.5 summarizes the bounds on the state variables and inputs�In fat, the pilot's ap and gear ontrols are not diret mehanial links but rather omputer mediatedhydrauli or eletri atuators; however, the autoland system annot diretly ontrol these atuators andmust depend on the pilot to do so.



3.3. TAKE OFF / GO AROUND PROCEDURE ANALYSIS 63V (m/s)  (degrees) z (m) � (degrees) T (N)mode min max min max min min max rangeare 55.57 87.46 -6.0 0.0 0 -9 +15 TidleTOGA-max 63.79 97.74 -6.0 0.0 0 -8 +12 TmaxTOGA-up 63.79 97.74 0.0 +13.3 0 -8 +12 [ Tidle, Tmax ℄Table 3.5: Safe ight envelope bounds for various ight modes.

Figure 3.14: Safe ight envelopes of are and TOGA modes ompared.for the various modes. At touhdown (z = 0) the envelope also requires � 2 [0Æ; 12:9Æ℄ toprevent the airraft's tail from hitting the runway, and _z � �1:829 m/s to avoid damagingthe landing gear. We do not model the dynamis after touhdown.To analyze the airraft's behavior, we ompute the maximally ontrollable subset of thesafe ight envelope; in other words, the largest set of states within the envelope for whihthe autolander an use its input authority over T and � to keep the airraft within theenvelope. We also all this subset the ontrollable envelope. We ompute two ontrollableenvelopes, one for the are and one for the ombination of the two TOGA modes. Weombine the two TOGA modes beause the swith between them is automati and ourswhen _z = 0()  = 0. Consequently, when omputing the reahable set for the ombinedTOGA mode we use the dynamis for TOGA-max when  � 0 and those for TOGA-upwhen  > 0. Figure 3.14 shows the are and ombined TOGA envelopes as de�ned by the



64 CHAPTER 3. EXAMPLES OF CONTINUOUS REACHABLE SETSparameters in table 3.5. The are mode is muh narrower in the  diretion beause aredoes not allow the airraft to limb ( > 0), while TOGA-up does. On the other hand, theare mode does allow for lower speeds beause the aps are extended and hene the stallspeed is lower in are than in either of the TOGA modes.Determining the maximally ontrollable subset of an envelope with a reahable set requiresthe same alulation but a di�erent visualization than those used in the previous two ex-amples. In this ase, the unsafe set G0 is everything outside the safe ight envelope (so theexteriors of the sets in �gure 3.14). As the alulation proeeds, G(�) grows and hene theontrollable envelope shrinks.The optimal Hamiltonian, as determined from (2.8) and (3.5), is ompliated and we willnot inlude all the details here. The proess is the same as that presented in previoussetions, exept that �nding the optimal value of the inputs T and � is ompliated by thefat that they enter nonlinearly into the dynamis|a quadrati in � term in D(�; V ) andthe trigonometri terms T sin� and T os�. It an be shown that the optimal values alwaysour at endpoints in the range of T and almost always at endpoints in the range of �. Forthose few ases where the optimal ours at an intermediate value of �, we use a quadratiapproximation of the true transendental equation for the optimal �; experimentally we havedetermined that the quadrati is aurate to within 1%. For details on this optimization,see [23℄3.3.3 The Reahable Set AnalysisThe onverged ontrollable envelopes for the are and TOGAmodes are shown in �gure 3.15.Notie that the are envelope extends beyond the TOGA envelope at low speeds, indiatinga potential problem with the standard proedure outlined in the airraft manuals. We testedthis senario in a ommerial ight simulator by initiating a TOGA from a very low speed;the result was a stall warning. When he was asked to perform the maneuver, the pilotantiipated that ap retration might lead to suh behavior; however, there is ause foronern when any airraft behavior during suh a high tempo, low altitude period of ightis not well spei�ed in advane. More details of how these results an be applied to formalmethods in interfae and proedure design an be found in [105, 106℄.
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Figure 3.15: Maximally ontrollable envelopes of are and TOGA modes ompared
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Chapter 4
Projetive Overapproximation ofReahable Sets
The primary shortoming of our formulation of reahable sets|or, in fat, of any of theonvergent formulations disussed in setion 2.3|is the exponential growth of omputa-tional ost with respet to the dimension of the system being analyzed. In this hapter wedisuss a method that might redue this omputational burden. The bulk of this hapteris taken from [103℄. It was inspired by the projetion based ideas of [63, 64℄ for ontinuousspaes, and that of [59, 62, 61, 60℄ for disrete state spaes, as well as researh whih usesintersetions and projetions of level set funtions to treat urves [36℄ and geometri op-tis [108℄. We believe this method ould be equally well applied (and indeed speialized) toother methods for determining reahable sets, inluding d/dt, Chekmate, and the methodsfrom viability theory mentioned in setion 2.3.1. In addition, this tehnique may be appliedto redue omputational omplexity in overapproximation of boundary propagation in otherdisiplines.4.1 Computing the Reahable Set in a ProjetionThe Hamilton-Jaobi-Isaas formulation and level set solution desribed in hapter 2 pro-vides a omputationally elegant method to determine the set of reahable states of a on-tinuous dynami game. Treating unertainties in the system as the adversarial disturbane67



68 CHAPTER 4. PROJECTIVE OVERAPPROXIMATION OF REACHABLE SETSinputs, this game formulation allows one to ompute reahable sets onservatively: in se-tion 3.1 the omputed set represents the set of states for whih there exists a disturbaneation whih, even if the best possible ontrol ation is played, the system state may bepushed into the target set.The main problem with this proedure is the expense of omputing the full reahable set.Instead, we wish to represent a high dimensional reahable set as the intersetion of aolletion of reahable sets omputed in some lower dimensional subspaes. If we anformulate some way to evolve the lower dimensional reahable sets|alled the projetions|suh that they are eah an overapproximation of the full reahable set, then their intersetionwill also be an overapproximation. The key is to evolve the projetions without referringexpliitly to the full dimensional reahable set. It turns out that the HJI formulationprovides this for free: in any projetion, we simply augment the spae of disturbane inputswith the unmodeled dimensions and form a new HJI PDE in a lower dimensional spae.Throughout the remainder of this hapter, we onsider for larity the spei� ase in whihthe true reahable set is of dimension three, and work with a set of projetions in twodimensional spaes spanned by subsets of the oordinate axes. The generalization bothto higher dimension, as well as to projetions of di�erent dimension, is not theoretiallydiÆult, yet issues regarding the seletion of projetive subspaes are important, and willbe disussed following the presentation of some examples.4.1.1 Subspaes and ProjetionsWe onsider the state spae R3 spanned by its oordinate axes e1, e2 and e3. Let Yi be thesubspae spanned by oordinate axis ei, and Yij the subspae spanned by oordinate axesei and ej. Note that Y123 = R3 .De�ne the projetion operators:� pi [x℄, whih projets a point x 2 R3 into the subspae Yi, de�ned as:pi [x℄ = xi:



4.1. COMPUTING THE REACHABLE SET IN A PROJECTION 69� pij [x℄, whih projets a point x 2 R3 into the subspae Yij , de�ned as:pij [x℄ = "xixj# :We sometimes write the pair hxi xjiT as xij.� p�1ij [yij℄, whih represents the bak projetion of the point yij 2 Yij into R3 , de�nedas: p�1ij [yij℄ = fx 2 R3 jpij [x℄ = yijg:Note that p�1ij [yij℄ is a subset of R3 .
We sometimes abuse notation by applying these operators to sets instead of points. Forexample, if X � R3 , then the projetion of X into Yij is represented aspij [X ℄ = fyij 2 Yij j9x 2 X with pij [x℄ = yijg:
As de�ned in (2.9), we represent the true, full dimensional reahable set G(�) as the zerosublevel set of the salar funtion �(x; t) (remembering that usually � = �t). In subsequentdisussions we will have reason to refer to sublevel sets other than the zero sublevel set.In those ases we use a supersript to denote the partiular sublevel set in whih we areinterested. For some set M represented by the signed distane funtion �M : R3 ! R, andsome onstant d 2 R, Md = �x 2 R3 j�M(x) � d	 :The projetions' reahable sets are represented by impliit surfae funtions de�ned in theirrespetive subspaes Yij(�) = fyij 2 Yij j�ij(yij ; t) � 0g;



70 CHAPTER 4. PROJECTIVE OVERAPPROXIMATION OF REACHABLE SETSwhere �ij : Yij � R ! R. The intersetion of the projetions is given byX (�) = 3\i=1 3\j=i+1 p�1ij [Yij(�)℄= fx 2 Xjpij [x℄ 2 Yij(�) for i; j 2 f1; 2; 3g; j > ig;= fx 2 Xj�ij (pij [x℄ ; t) � 0 for i; j 2 f1; 2; 3g; j > ig: (4.1)Notie that p�1ij [Yij(�)℄ will be a prism in R3 whose ross setion is Yij(�); for example,p�112 [Y12(�)℄ is a prism aligned with the e3 axis whose ross setion in the e1-e2 plane isY12(�). Therefore, X (�) from (4.1) is simply the intersetion of three orthogonal prisms.We overload the projetion operators to apply them to impliit surfae funtions. First,de�ne the depth of a point yij 2 Yij asD(yij ; t) = minx2p�1ij [yij ℄�(x; t):There are a number of possible ways to de�ne a projetion of the full dimensional funtion�, but we will use the depth operator:pij [�℄ : Yij � R ! R; pij [�℄ (yij ; t) = D(yij; t): (4.2)With this de�nition,G(�) = �x 2 R3 j�(x; t) � 0	 =) pij [G(�)℄ = fyij 2 Yij jpij [�℄ (yij ; t) � 0g :The inverse projetion for the impliit surfae funtion of a subspae is easier to de�nep�1ij [�ij ℄ : R3 � R ! R; p�1ij [�ij ℄ (x; t) = �ij(pij [x℄ ; t): (4.3)Under this de�nition, p�1ij [�ij ℄ (x; t) is an impliit surfae funtion in R3 for the prismp�1ij [Yij ℄ aligned normal to the ei-ej plane whose ross setion is Yij(�).Finally, de�ne the set evolution operator S� (�), whih omputes the bakwards reahableset over time � of its set valued argument. For example, G(�) = S� (G(0)) = S� (G0). Thisoperator is normally implemented by the HJI PDE (2.7).



4.1. COMPUTING THE REACHABLE SET IN A PROJECTION 714.1.2 The Linear Rotation ExampleTo illustrate these de�nitions and the projetion evolution proedure, we use a simpleexample involving purely rotational dynamis (about the e3 axis) and no inputs. Thedynamis are given by the linear rigid body rotation_x = Ax = f(x); (4.4)with x 2 R3 and A 2 R3�3 A = �26640 �1 01 0 00 0 03775For this example, we will ompute the forward evolution of the initial set under the rotationrather than a forward or bakward reahable set, beause it is easier to visualize the progressof this evolution and its projetions. The entire region swept out by this evolution wouldbe the forward reahable set. If the initial set is represented impliitly by some �0(x), wean ompute the evolution of this initial set by solving a regular HJ PDE forward in time(note that t � 0 in this ase)Dt�(x; t) +H(x;Dx�(x; t)) = 0;�(x; 0) = �0(x);H(x; p) = p � f(x): (4.5)We an safely use an HJ PDE for this forward evolution beause the dynamis f(x) doesnot ontain shoks, or even ow that might be mistaken for a shok when sampled ona Cartesian grid. The projetion based overapproximation method outlined below willassume that St (�) set evolution is aomplished with the forward time PDE (4.5). Themethod an be diretly adapted to the omputation of regular bakward reahable sets byinstead using (2.7) for S� (�) set evolution.Beause we are working in forward time on a system with no inputs, trajetories of the



72 CHAPTER 4. PROJECTIVE OVERAPPROXIMATION OF REACHABLE SETSsystem will be denoted by �f (�;x; 0) whereddt�f (t;x; 0) = A�f (t;x; 0) almost everywhere;�f (0;x; 0) = x:This notation is an input free version of the trajetory notation used in previous hapters,with the trajetories starting at time zero. When we return to bakwards reahable sets,we will return to trajetories starting at negative times.For the purposes of this example, let G0 be our initial set and G(�) be the same set rotatedunder (4.4) for time t = � (in the future we will all G(�) a reahable set, even though itis only a forward time evolution in this partiular example). The dynamis are saled suhthat G(2) = G(0) = G0. Ideally, we would like G0 to be a sphere of radius r = 0:30 enteredat the point  = h0:00 0:55 0:00iT . Solving for the visosity solution �(x; t) of (4.5) withf(x) from (4.4) and �0(x) =p(x1 � 1)2 + (x2 � 2)2 + (x3 � 3)2 � r (4.6)would generate an impliit surfae representation of G(�), but would require solving (4.5)over three spatial dimensions. To redue omputational osts, we will instead seek a methodof overapproximating G0 and G(�) that requires solving PDEs in only two spatial dimensions.We work on three separate two dimensional projetions into the subspaes Y12, Y13, andY23. The orresponding reahable sets are Y12(�), Y13(�), and Y23(�). The initial setsYij(0) for eah of these subspae reahability problems are onstruted by projeting thefull dimensional initial sphere G0 down into the subspae as Yij(0) = pij [G0℄. These Yij(0)and their intersetion X (0) are shown in �gure 4.1. Sine X (0) is restrited by our pro-jetive geometry to be the intersetion of three axis aligned prisms, it is unavoidably anoverapproximation of the initial sphere G0.4.1.3 Evolving a ProjetionOur goal in this setion is to develop an HJI PDE whih an be applied in a lower dimen-sional subspae to evolve an overapproximative projetion of the true reahable set, thus
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Figure 4.1: Initial projetion sets for the linear rotation example.avoiding the need to solve an expensive full dimensional PDE. First, however, we look athow to evolve an overapproximative projetion using a full dimensional PDE.Fous on a single projetion whose index is ij, and denote the index of the unmodeled di-mension as k. If Yij(�) is an overapproximative projetion of G(�), then G(�) � p�1ij [Yij(�)℄.Coneptually, Yij(�) ould be evolved by an inverse projetion into R3 , evolution by Æ� andprojetion bak down into Yij , written asYij(� + Æ�) = pij hSÆ� �p�1ij [Yij(�)℄�i (4.7)Then G(�) � p�1ij [Yij(�)℄ =) SÆ� (G(�)) � SÆ� �p�1ij [Yij(�)℄� ;=) pij [G(� + Æ�)℄ � Yij(� + Æ�):Consequently, we an ensure that Yij(�) remains an overapproximative projetion of G(�)provided that we an perform the three steps of (4.7) on our impliit surfae funtionrepresentation �ij(x; t) of Yij(�). Projetion is aomplished by (4.2) and inverse projetionby (4.3). For this example SÆ� (�) is aomplished in R3 by solving (4.5). Let p(x) =



74 CHAPTER 4. PROJECTIVE OVERAPPROXIMATION OF REACHABLE SETSDxp�1ij [�ij ℄ (x; t). Sine p�1ij [Yij(�)℄ is a prism in R3 , pk [p(x)℄ = pk(x) = 0 for all x 2 R3 ;furthermore, pi(x) and pj(x) are independent of xk. Examining the Hamiltonian of (4.5)more losely H(x; p(x)) =p(x) � f(x);=pi(xi; xj ; xk)fi(xi; xj; xk) + pj(xi; xj ; xk)fj(xi; xj ; xk)+ pk(xi; xj ; xk)fk(xi; xj ; xk);=pi(xi; xj)fi(xi; xj; xk) + pj(xi; xj)fj(xi; xj ; xk):So the only dependene of the Hamiltonian (and thus the time evolution in general) ondimension k is through the xk dependene in fi and fj. Geometrially, this dependenewill manifest as a rotation of the prism p�1ij [Yij(�)℄ so that it is no longer parallel to ek.When this rotated prism is projeted bak down into Yij , the projetion's boundary will bedetermined by those parts of the prism that rotated the most. Maximum rotation ourswhere the ow �eld is most losely aligned with the outward normal of the initial prism|preisely those states x where p(x) � f(x) is minimized (the gradient p(x) points in thediretion of the inward normal).From this argument, we dedue that using the modi�ed HamiltonianH 0(x; p(x)) = minxk pi(xi; xj)fi(xi; xj ; xk) + pj(xi; xj)fj(xi; xj; xk) (4.8)in (4.5) for all x 2 R3 would not modify the projetion into Yij of the time evolved prism.Although the time evolved prism itself would not be the same, in the end we are onlyonerned with its projetion.The only reason we had for working with the projetive overapproximation in R3 was thedependene of the time evolution operator SÆ� (�) on the missing dimension xk. Aftersubstituting the Hamiltonian (4.8) into the evolution PDE (4.5), SÆ� (�) no longer has anydependene on xk, and we an therefore work entirely in the lower dimensional Yij .The �nal onern is how to bound the range of xk when minimizing in (4.8). We know thatxk 2 Yk, but minimizing over suh an unbounded range ould lead to a negative value ofarbitrarily large magnitude for (4.8). Fortunately, we have aess to some sets within whihall feasible reahable states should lie. If it were available, G(�) would provide a tight boundon possible values of xk. In pratie, we will have to settle for the overapproximation X (�);



4.1. COMPUTING THE REACHABLE SET IN A PROJECTION 75however, expanding the interval of feasible xk by using X (�) instead of G(�) an only ausethe Hamiltonian (4.8) to be more negative and hene Yij(�) to grow more than neessaryduring the time evolution step. Sine Yij(�) was an overapproximative projetion of G(�)to begin with, further exess growth annot ause the overapproximation to fail.To formalize the bounds on xk, de�ne the set valued slie funtion for some M � R3 andyij 2 Yij as Fk(M; yij) = fyk 2 Ykj9x 2M with pij [x℄ = yij and pk [x℄ = ykg;= fpk [x℄ 2 Ykjx 2 p�1ij [yij℄ \Mg: (4.9)In words, Fk(M; yij) is a slie throughM along the subspae Yk at the point yij; its valuewill therefore be an interval in Yk. If M is desribed by the zero sublevel set of funtion�M : R3 ! R, then we an write a mathematial desription of FkFk(M; yij) = fyk 2 Ykj�M(yi; yj; yk) � 0g: (4.10)Given this de�nition, we an formulate a time evolution HJI PDE operating entirely inYij for the impliit surfae funtion �ij(yij ; t) of the overapproximative projetion Yij(�).Instead of (4.5), use Dt�ij(yij; t) +H(yij;Dx�ij(yij ; t)) = 0;�ij(yij ; 0) = pij [�0℄ (yij); (4.11)for those yij 2 pij [X (�)℄, with HamiltonianH(yij ; p) = minyk2Fk(M;yij) pifi(yi; yj ; yk) + pjfj(yi; yj ; yk); (4.12)where M is either G(�) or X (�).The derivation above is very informal, but its onlusion has a fasinating impliation.Comparing (4.12) with (2.8), we see that the unmodeled dimension is in e�et a disturbaneinput to the lower dimensional subspae's dynamis.This observation leads to an alternative interpretation of (4.11) and (4.12). For the linearrotation example, G(�) is the set of trajetory points �f (t;x; 0) for those trajetories with



76 CHAPTER 4. PROJECTIVE OVERAPPROXIMATION OF REACHABLE SETSinitial points �f (0;x; 0) 2 G0. If Yij(�) is to be a projetive overapproximation of G(�), thenYij(�) must ontain pij [�f (t;x; 0)℄ for all these trajetories (sine it is an overapproximation,it may also ontain other points). Consider any time s 2 [0; t℄ and the point �f (s;x; 0)along the full dimensional trajetory. By hoosing the unmodeled dimension yk from theset Fk(G(s); yij), we allow yk = pk [�f (s;x; 0)℄. Thereforepij h _�f (s;x; 0)i = pij [f(pi [�f (s;x; 0)℄ ; pj [�f (s;x; 0)℄ ; pk [�f (s;x; 0)℄)℄will be among the possible ow �elds for the subspae's dynamis. Sine s was arbitrary,pij [�(�;x; 0)℄ is a feasible trajetory of the subspae's dynami system, and sopij [�f (t;x; 0)℄ 2 Yij(�):Conjeture 9. Let G(�) be time evolved by some HJI PDE in R3 and Yij(�) by some HJIPDE in Yij . If the unmodeled dimension xk 2 Yk of the full dimensional system dynamis_x = f(x) is treated as a disturbane input to the subspae's dynamis, thenpij [G(�)℄ � Yij(�);where that input xk is drawn from a slie Fk(M; yij) of an appropriate M for points yij 2Yij .We initially formulated this onjeture based on our numerial suess in omputing over-approximating projetions. Setions 4.1.4 and 4.2 showase some of those results. In theremainder of this setion we outline what might be required to prove the onjeture, andthen disuss some implementation details.If M = G(�), proving the onjeture requires showing that Fk(G(�); yij) is a valid set fromwhih to draw disturbane inputs suh that the visosity solution of the appropriate HJIPDE (either (4.11){(4.12) or (2.7)) will still solve for the reahable set in whih we areinterested. The problem is that the input onstraint set Fk(G(�); yij) depends on both timet and state yij. In hapter 2 we turned the omputation of a bakwards reahable set into aterminal payo� di�erential game and used results in [51℄ to show that the di�erential gameould be solved with an HJI PDE; however, those results assumed that the ontrol anddisturbane input onstraint sets were onstant. State dependent input onstraints were



4.1. COMPUTING THE REACHABLE SET IN A PROJECTION 77investigated in [27℄, but only for the optimal ontrol ase (no disturbane inputs). It is notlear whether a di�erential game with time and state dependent input onstraints wouldsatisfy a dynami programming priniple. Without satisfying suh a priniple, it is unlikelythat the visosity solution of an HJI PDE would solve the di�erential game.In pratial terms, we do not have aess to G(�) and must use M = X (�). To prove theonjeture in this ase would require the additional step of showing thatG(�) � X (�) =) SÆ� (G(�)) � SÆ� (X (�)) :While we are investigating methods of proving or disproving the onjeture, we have deidedto onentrate our e�ort on implementation of the projetion tehnique rather than itstheoretial aspets, in order to determine whether it an be applied to real problems. Anumber of implementation details arise when solving (4.11) and (4.12), of whih we brieydesribe the three most important.� In pratie, the unmodeled dimension should be hosen from a slightly bloated versionof X (�) to avoid the hane that Fk(X (�); yij) = ; for some yij on the boundary ofYij(�). Choosing d as some small multiple of the grid spaing, we use Fk(X d(�); yij)instead.� The omputational domain in Yij is always larger than Yij(�). Assuming that we keepd relatively small (to avoid exessive overapproximation), for those yij =2 pij �X d(�)�,we will still get Fk(X d(�); yij) = ;. One way of solving (4.11) and (4.12) in thoseases is to use veloity extension [1℄ to extend the ow �eld arti�ially into Yij(�){.� Some projetions approximate the reahable set better than others; however, eahprojetion is individually an overapproximation of the reahable set, so if pi [Yij(�)℄ �pi [Yik(�)℄, then we know that the extra range in pi [Yik(�)℄ is not atually feasible.Thus, we an lip Yik(�) along dimension xi until pi [Yij(�)℄ = pi [Yik(�)℄. Moregenerally, we an safely lip any portions of Yij(�) whih lie outside of pij [X (�)℄.Without this lipping proess, poorly behaved projetions an quikly grow largerthan pratial omputational domains.



78 CHAPTER 4. PROJECTIVE OVERAPPROXIMATION OF REACHABLE SETS4.1.4 Evolving the Linear Rotation Example's ProjetionsThe presentation in the previous setion was somewhat abstrat, so in this setion we willapply the algorithm to the example from setion 4.1.2. Consider how to evolve the initialprojetive overapproximation Y13(0). From (4.2) and (4.6)�13(x1; x3; 0) =p(x1 � 1)2 + (x3 � 3)2 � r;whih is a irle in Y13. We an evolve Y13(�) by solving the HJI PDEDt�13(x1; x3; t) +H (x1; x3;Dx1�13(x1; x3; t)Dx3�13(x1; x3; t)) = 0; (4.13)with Hamiltonian (using the dynamis (4.4))H(x1; x3; p1; p3) = minx22F2(X (�);x1;x3) �(�p1x2 + p30): (4.14)While F2(X (�); x1; x3) is a set valued funtion of x1 and x3, for illustration we an desribeits value (an interval of Y2) at a few points for t = 0 based upon (4.2) and (4.6)F2(X (0); 0; 0) = [2 � r; 2 + r℄;F2(X (0); r; 0) = [2; 2℄:PDEs similar to (4.13){(4.14) are used for Y12(�) and Y23(�).Figure 4.2 shows the results of applying the projetive evolution algorithm to the linearrotation example. The upper left �gure shows the initial onditions and is the same as�gure 4.1. The remaining subplots show the progress of the overapproximation through ahalf rotation of the dynamis. By t = 1, the projetion Y13(�) has grown from its initialirle to a square. This growth ours beause of the freedom in hoosing x2 in (4.14).Similar growth ours in Y23(�) beause there is freedom in hoosing x1 for the dynamisin Y23. In ontrast, Y12(�) remains a irle, beause the free dimension x3 in Y12 has noe�et on the dynamis (4.4). In fat, Y13(�) and Y23(�) would grow larger than the squaresshown were it not for the lipping proedure mentioned in the previous setion. Figure 4.3ompares X (�) with the true reahable set G(�) at a variety of times in a loser view. Asadvertised, G(�) � X (�).
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Figure 4.2: Evolution of the linear rotation example's projetive overapproximations Yij(�)(ontours on the walls) and X (�) (solid objet).4.2 Solving the Game of Two Idential Vehiles Projetively
The linear rotation was a toy example; in this setion we examine the projetive overap-proximation algorithm's appliation to the real reahable set problem from setion 3.1. Weuse the indexed state vetor notation from this hapter in the analysis, soz = 2664xryr r3775 beomes x = 2664x1x2x33775 :We use a single projetion into the relative loation plane Y12. Beause the unmodeleddimension|the relative heading x3|is already restrited to Y3 = [0; 2�℄, there is no need
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Figure 4.3: Comparing the projetion based approximation X (�) (mesh) to the true reah-able set G(�) (solid) at several times.to keep trak of any other projetions. We simply solveDt�12(x1; x2; t) + min [0;H(x1; x2;Dx1�12(x1; x2; t);Dx2�12(x1; x2; t))℄ = 0;with HamiltonianH(x1; x2; p1; p2) = maxa2A minb2B minx32[0;2�℄ p1f1(x1; x2; x3; a; b) + p2f2(x1; x2; x3; a; b)(where f(x; a; b) is given by (3.1)) and terminal onditions�(x1; x2; 0) =qx21 + x22 � d:The leftmost subplot of �gure 4.4 shows the initial ollision irle Y12(0), while the remainingsubplots show the growth of Y12(�) until it onverges to a �xed point Y12 in the rightmostfor t & 2:6. Figure 4.5 ompares the overapproximation of the reahable set p�112 [Y12℄ tothe true reahable set G from two angles. Although p�112 [Y12℄ is signi�antly larger thanG, in the left hand view it an be seen that to within grid resolution, Y12 = p12 [G℄, whih
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Figure 4.4: Growth of the projetive reahable set Y12(�) for the game of two identialvehiles.

Figure 4.5: Two views omparing the true reahable set G (solid) with the bak projetionp�112 [Y12℄ of the projetive reahable set (mesh) for the game of two idential vehiles.is the best that any projetive representation ould hope to ahieve. The real payo� isomputational time. While the full dimensional reahable set G takes about 20 minutes toompute on a three dimensional grid, the projetive overapproximation Y12 takes less thanone minute on a higher resolution two dimensional grid.Figure 4.6 shows a series of frames from an animation of the ollision avoidane senario ofsetion 3.1.5 when the evader uses the projetive overapproximation Y12 of the bakwards
Figure 4.6: Evader keeps pursuer from entering the projetive overapproximation Y12 of thereahable set, and hene onservatively avoids ollision.



82 CHAPTER 4. PROJECTIVE OVERAPPROXIMATION OF REACHABLE SETSreahable set. When omparing �gure 4.6 to �gure 3.10, notie that the slie of reahable setin the frames of �gure 4.6 does not depend on relative heading, sine that is the unmodeleddimension in the projetion. By onstrution, the evader an keep the pursuer from enteringY12, and as long as the pursuer does not enter, a ollision is impossible. Using Y12 isa onservative strategy|it is an overapproximation of the true reahable set|but it isguaranteed to be safe and an be reomputed muh more quikly than the true reahableset should model parameters hange.
4.3 DisussionWhile the outline of the projetive overapproximation algorithm above was spei� to pro-jeting a three dimensional spae into oordinate aligned two dimensional subspaes, thepower of this HJI based approah is that it an be generalized so easily. Both the full spaeand the projetion subspaes an be higher dimensional. The projetion subspaes neednot be aligned with the oordinate axes, nor need all subspaes be of the same dimension;in fat, there are systems in whih it might be useful to allow the projetion subspaes tohange smoothly with time. In a projetion with multiple unmodeled dimensions, all theunmodeled dimensions are just treated as a disturbane input vetor onstrained by theappropriate projetion of X (�) into the subspae spanned by the unmodeled dimensions.There is no theoretial reason to onstrain the number of projetions|for example, weould add to the linear rotation problem a projetion into the subspae whose oordinateaxes are e1+ e3 and e1� e3, if we thought that suh a projetion would help restrit exes-sive overapproximation in X (�). The only onstraints are implementation omplexity andomputational resoures.All of this exibility in the hoie of projetions leads to the question of how to hooseappropriate projetions for a partiular system. For the linear rotation example, the naturaloordinate axis projetions turned out to be very e�etive (see setion 4.1.4). In partiular,the Y12 projetion aptured the relevant system dynamis and thus onstrained the othertwo less e�etive projetions through the lipping proedure. We an simulate the e�etof poorly hosen projetions by using the same three oordinate axis aligned projetions,
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Figure 4.7: Evolution of the linear rotation example with poorly hosen projetions.but rotating the system dynamis ounterlokwise by 45Æ around the e1 axis. To do that,replae the matrix A in (4.4) by A0 = GAGT ;where G = 2664os � 0 � sin �0 1 0sin � 0 os � 3775 ;and � = �=4. Figure 4.7 shows the growth of the projetive reahable set X (�) for thisversion of the linear rotation example. Comparing it with �gure 4.2 we an see how muhgreater the overapproximation beomes when none of the projetions apture the system'sdynamis. We are still investigating tehniques for identifying appropriate projetions for
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Figure 4.8: One avenue toward projetive underapproximations: a square overapproximat-ing the unit irle in z spae beomes a lover leaf underapproximating the same irle inx spae.more general systems.The idea of subspae projetions works well when we are trying to overapproximate reah-able sets, beause inverting these projetions bak up into the full dimensional spae gen-erates a prism overapproximating the true reahable set. There are problems in whih wewish to underapproximate a set; for example, in airraft envelope protetion (setions 3.3and 6.2), safety requires that we stay within the ight envelope. If we are going to approx-imate that envelope we need an underapproximation, sine an overapproximation wouldinorretly mark as safe some states outside the true envelope. Safe ight envelopes are justone example of ontrolled invariant sets, and to ompute these sets we need underapproxi-mations of the true reahable set.The projetion sheme outlined above annot diretly ompute underapproximations, sinethe bak projeted prisms are unbounded in the projetion's unmodeled dimensions; thus,those prisms ould never represent underapproximations of the true reahable set. Weare instead investigating a oordinate inversion that ould turn overapproximations intounderapproximations. Consider underapproximating a irle entered at the origin in R2by a pair of one dimensional projetions (intervals of R). Map x 2 R2 to z 2 R2 throughthe transformation zi = xikxk22 : (4.15)



4.3. DISCUSSION 85While the irle stays a irle, this transformation ould be applied to more general shapesby transformation of their impliit surfae funtion representation, provided that the oor-dinate origin did not lie on the boundary of the shape (we ould shift the origin if it did).System dynamis an likewise be mapped through this nonlinear transformation, so thatreahability ould be alulated in the transformed oordinates. Now build a projetiveoverapproximation of the irle in z spae, using projetions onto the oordinate axes. Theleft side of �gure 4.8 shows the slabs that are the inverse projetions of the two overapprox-imating intervals. The intersetion of these two slabs is a square overapproximating theirle. The key observation is that we an invert (4.15) bak into the original oordinateframe, and in the proess the overapproximation in z spae beomes an underapproximationin x spae|the square that was an intersetion of slabs beomes a lover leaf made froma union of irles. The right side of �gure 4.8 shows this underapproximation of the irle.The gray points on the left side map to the gray points on the right, and lie in the regionof eah state spae that would be onsidered unsafe in an envelope protetion problem. Ifthe irle represents the true safe ight envelope, notie that the projetive safe region (nogray points) on the left is an underapproximation of the true safe region.Projetive shemes based on Hamilton-Jaobi-Isaas equations are a powerful way to takleBellman's \urse of dimensionality" and alulate approximations to reahable sets forsystems larger than dimension two or three. In this hapter we have presented the basi ideasbehind projetive approximation algorithms. We ontinue to work on the many remainingtheoretial and implementation details.
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Chapter 5
Reahable Sets for Hybrid Systems
In a hybrid system, the interation between ontinuous and disrete behaviors plays animportant role in the evolution of the system's state. In the small time sale limit, thereare few marosopi systems whih ould not be modeled entirely by ontinuous di�erentialequations; however, we frequently do not want to invest the e�ort to do so. The evolution ofmany systems' states our on di�erent timesales|some states swith between equilibriaquikly while others hange muh more gradually.As an example, onsider an autonomous robot approahing a wall. One the obstale isdeteted, the robot's miroontroller may deide to turn left after only a few milliseonds,but the response time of the motors whih move the robot will be hundreds of times longer.It would be overkill to model the ontinuous dynamis of the transistors within the miro-ontroller; on the other hand, modeling the robot's position disretely as either \free" or\ollided" would make path planning diÆult. Consequently, we would like to model therobot's ommand state as disrete (either \move straight" or \turn left") but its planarloation and heading as ontinuous variables. The result is a hybrid system.In previous hapters we have demonstrated how reahable sets an be used for safety veri�-ation and the synthesis of safe ontrollers for purely ontinuous systems. It should ome asno surprise that reahable sets an be put to the same uses in hybrid systems. In addition,beause the behavior of these systems an be quite omplex, we frequently would like tosummarize it in a qualitative disrete form. A reahable set analysis an divide the statespae into subsets whih failitate suh a summary.87



88 CHAPTER 5. REACHABLE SETS FOR HYBRID SYSTEMSIn this hapter we show how an algorithm for ontinuous reahable sets an be extendedto the hybrid domain. The next hapter demonstrates the hybrid reahable set algorithmon several examples. The presentation in this hapter is very informal, although work isunder way on bringing these results up to the level of rigor demonstrated in hapter 2. Ourfous here is on reahable set determination, but there are many other aspets to the �eldof hybrid systems. We refer the interested reader to the speial issue [7℄ or the workshopproeedings [136, 26, 82, 140, 72, 5, 6, 3, 8, 65℄.5.1 Related WorkHybrid systems are learly widespread throughout engineering|any system subjet to om-puter ontrol and interating with the external world ould be lassi�ed as hybrid. Theinterest in reating a formal framework for suh systems has brought together researhersin both the traditional ontrol engineering ommunity and the omputer siene veri�a-tion ommunity. In a quest for methods to prove that hybrid systems operate orretly,the latter ommunity has generated a number of tools for examining the reahable sets ofhybrid systems.The lassi�ation of hybrid systems is usually based on the types of ontinuous evolutionallowed, and to a lesser extent the types of events that an generate disrete transitions.The simplest hybrid systems are the timed automata, whih basially add ontinuous timervariables to a �nite automata model. In linear hybrid automata the ontinuous variablesmay evolve aording to polyhedral di�erential inlusions, whih translates into allowingtimers of di�erent rates. The next step up in omplexity allows for linear dynamis in thetraditional ontrols sense; typially _x = Ax + Ba for some matries A and B and someinput a, but sometimes inluding a onstant term and/or a seond, adversarial input. Themost general models allow for fully nonlinear dynamis, in some ases with one or even twoadversarial input signals.For all but ertain restritive lasses of hybrid systems, �nding the reahable set exatly isformally undeidable (for example, see [127℄). As a result, all available tools use approxima-tion methods of various types. The algorithm disussed below was motivated by the workof [94, 11℄ for reahability omputation and ontroller synthesis on timed automata, and



5.2. A REACHABLE SET ALGORITHM FOR HYBRID SYSTEMS 89that of [141℄ for ontroller synthesis on linear hybrid automata. Early tools for analyzingreahable sets inlude Uppaal [89℄ and Kronos [142℄ for timed automata and HyTeh [69, 70℄for linear hybrid automata.For more general hybrid automata, the most ompliated part of the hybrid reahableset determination is the ontinuous reahable sets; onsequently, newer tools for hybridsystems have developed around related ontinuous reahable set solvers. An overview ofthe most mature implementations|those being used by people other than their authors|isgiven in [130℄. In addition to Uppaal and HyTeh, the paper disusses d/dt [10, 47℄, andChekMate [41, 131℄, whih both use polyhedral representations. Other implementationsinlude [25℄, whih studies pieewise aÆne systems, modi�ations of the HyTeh methodsin [71℄ and [119℄, and the VeriSHIFT tool [28℄, whih uses ellipsoidal representations. Thesealgorithms are all of the overapproximative, forward reahable set variety. Some an beused for general nonlinear dynamis by employing nonlinear optimization in the ontinuousreahable set omputation.So far, no tools have emerged for omputing hybrid reahable sets using onvergent on-tinuous reahable set methods, but researh has been undertaken. This thesis desribes aproedure that uses the time-dependent Hamilton-Jaobi-Isaas formulation and level setmethods. Theoretial and experimental work has also extended onepts from viabilitytheory to hybrid systems [15, 16℄.Finally, Lyapunov theory has inspired some algorithms for linear or pieewise (swithed)linear hybrid systems, inluding [67, 66, 32, 80℄. To our knowledge, these have not yet beenimplemented in generally available tools.5.2 A Reahable Set Algorithm for Hybrid SystemsA hybrid reahable set algorithm was developed in [135, 93, 138, 92℄, and we briey desribethe algorithm in this setion for bakground purposes (with a few notational modi�ationsfor onsisteny with the rest of the thesis). A key omponent of the algorithm is thereah-avoid operator. Setion 5.3 desribes the aurate numerial implementation of thereah-avoid operator, whih onstitutes the novel ontribution of this thesis to the hybridalgorithm.



90 CHAPTER 5. REACHABLE SETS FOR HYBRID SYSTEMS5.2.1 Hybrid AutomataA hybrid automaton H is de�ned asH , ((Q � X); (A � B); (�A � �B); f; Æ; Inv) (5.1)where� Q is a �nite set of disrete modes,� X = Rn is the ontinuous state spae,� A � Rna is the set of ontinuous inputs for player I,� B � Rnb is the set of ontinuous inputs for player II,� �A is the �nite set of disrete inputs for player I,� �B is the �nite set of disrete inputs for player II,� f : Q � X �A� B ! Rn de�nes the ow of ontinuous trajetories,� Æ : Q � X � �A � �B ! 2Q�X is the disrete transition funtion, whih enodesboth the guard onditions that enable disrete transitions as well as any resets of theontinuous state that take plae upon a disrete transition,� Inv � Q � X is the invariant assoiated to eah disrete state.In order to distinguish between ontinuous and disrete, we use the term mode to refer toa disrete state and swith or transition to refer to a disrete hange of state. We applyAssumption 1 to our ontinuous input signals a(�) and b(�) and Assumption 2 to the ow�eld f(q; �; �; �) in eah mode q 2 Q .Our target set G0 � Q �X may now inlude a (possibly di�erent) subset of the state spaefor eah disrete mode. In general, its level set funtion representation g : Q � X ! R willlikewise depend on mode as well:G0 = f(q; x) 2 Q � Xjg(q; x) � 0g:



5.2. A REACHABLE SET ALGORITHM FOR HYBRID SYSTEMS 91We apply Assumption 3 to G0 and g(�; �). Like the purely ontinuous ase, player I will tryto keep the state away from G0, while player II will drive the state toward G0. In all of ourexamples G0 is the set of unsafe states, so we an onsider player I to be the ontrol andplayer II the disturbane.Our de�nition of hybrid automata (5.1) is very general. It allows for nonlinear ontinu-ous dynamis, two adversarial inputs whih an a�et both the ontinuous and disreteevolution of the system, invariant and guard onditions whose intersetion has an interior|disrete swithes may be enabled without being fored|and general nonlinear resets of theontinuous state after a disrete transition. While Assumption 2 yields deterministi ontin-uous evolution of the state within a partiular mode, the general nature of Æ and Inv allowfor nondeterministi transitions and resets. Our de�nition also allows for some ill-posedhybrid automata [91℄. Informally, a hybrid automaton is bloking if there exist states fromwhih no further evolution is possible; for example, a trajetory whih is outside a mode'sinvariant but for whih no disrete transition is enabled. A hybrid automaton is Zeno� ifit allows for trajetories ontaining an in�nite number of disrete swithes in a �nite time.We will restrit ourselves to non-bloking and non-Zeno hybrid automata. Chapter 6 givessome examples of hybrid automata, although by no means do they over the broad range ofbehaviors possible under (5.1) for whih the algorithm outlined in setion 5.2.2 will work.Beause of the nondeterminism allowed by (5.1), trajetories of H an be somewhat trikyto de�ne. Lukily, however, the results presented here require us to study only trajetorieswithin a single disrete mode. For some �xed q 2 Q , let a trajetory be denoted by�f (s; q; x; t; a(�); b(�)) : [t; 0℄! X;where for all s 2 [t; 0℄,dds�f (s; q; x; t; a(�); b(�)) = f(q; �f (s; q; x; t; a(�); b(�)); a(s); b(s)) almost everywhere;�f (t; q; x; t; a(�); b(�)) = x;(q; �f (s; q; x; t; a(�); b(�))) 2 Inv :The �nal ondition ensures that the trajetory is not fored out of the urrent mode qduring the time span of interest.�Named after the Greek philosopher Zeno of Elea, famous for posing the paradox of Ahilles and thetortoise [91℄.
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Figure 5.1: Hybrid reahable set algorithm's de�nitions for a single disrete mode. Foriteration i, PreB(Wi) = S1 [S2, PreA(Wi) = S3 and RA(PreB(Wi);PreA(Wi)) = S1 [S2 [S4. In words, states in S1 are in the known unsafe set G0, states in S2 an be fored to makea disrete transition into an unsafe state in another mode, states in S3 an hoose to makea disrete transition into a safe state in another mode, and states in S4 an reah S1 [ S2without going through S3.5.2.2 The Algorithm
De�ne three operators:PreA(K) , f(q; x) 2 Q � Xj9�a 2 �A; 8�b 2 �B; Æ(q; x; �a; �a) � Kg \ K;PreB(K) , f(q; x) 2 Q � Xj8�a 2 �A; 9�b 2 �B; Æ(q; x; �a; �b) \K 6= ;g [ K;RA(G; E) , f(q; x) 2 Q � Xj8a(�) 2 A(t); 9b(�) 2 B(t);9t � 0suh that (q; �f (0; q; x; a(�); b(�))) 2 G (5.2)and 8s 2 [t; 0℄; (q; �f (s; q; x; a(�); b(�))) 2 Inv nEg;where K � Q � X, G � X, and E � X. The set RA(G; E) desribes those states from whihthere exists a b(�) 2 B(t) suh that the state trajetory �f (�; q; x; t; a(�); b(�)) an be driveninto the reah set G while not entering the avoid set E for all a(�) 2 A(t). We all RA(�; �)the reah-avoid operator. These de�nitions are illustrated in �gure 5.1.With these de�nitions in plae, the following algorithm omputes the hybrid bakward



5.3. IMPLEMENTING THE REACH-AVOID OPERATOR 93reahable set for a non-bloking, non-Zeno hybrid automaton. Initialize withW+1 = ;;W0 = G{0 ;i = 0:Then perform the loopwhile(Wi 6=Wi+1)Wi�1 =Wi nRA(PreB(Wi);PreA(Wi));i = i� 1:If the algorithm terminates after a �nite number of steps, then the �xed point W� is thelargest set of states for whih player I (a(�); �a(�)) an guarantee that the state of the hybridsystem remains outside G0 despite the ation of player II (b(�); �b(�)). In order to implementthis algorithm, PreA(�), PreB(�), and RA(�; �) need to be omputed. The alulation ofPreA(�) and PreB(�) requires inversion of the transition relation Æ subjet to the existentialand universal quanti�ers; at present this proedure is performed by hand in our examples,sine they all involve relatively simple disrete transition logi. The omputation of RA(�; �)requires an algorithm for determining the set of initial onditions from whih trajetoriesan reah one set avoiding a seond set along the way.
5.3 Implementing the Reah-Avoid Operator
Although (5.2) de�ned the reah-avoid operator over the entire set of disrete modes, inpratie it is omputed one mode at a time. In the remainder of this setion, we fous ona single mode q 2 Q , but we omit this parameter from the equations in order to simplifythem; for example, we use f(�; �; �) to refer to the ow �eld f(q; �; �; �) for mode q. Wealso generially refer to the parameters of the reah-avoid operator as G and E rather thanPreB(�) and PreA(�).



94 CHAPTER 5. REACHABLE SETS FOR HYBRID SYSTEMS5.3.1 Previous Reah-Avoid FormulationsThe �rst Hamilton-Jaobi-Isaas based formulation for the reah-avoid operator [135, 138℄featured two separate level set funtions, one for the reah set �G and one for the avoid set�E . The funtions were evolved aording to the oupled terminal value HJI PDEs�Dt�G(x; t) = 8<:HG(x;Dx�G(x; t)); for fx 2 Xj�G(x; t) > 0g;min [0;HG(x;Dx�G(x; t))℄ ; for fx 2 Xj�G(x; t) � 0g;�Dt�E(x; t) = 8<:HE(x;Dx�E(x; t)); for fx 2 Xj�E (x; t) > 0g;min [0;HE(x;Dx�E(x; t))℄ ; for fx 2 Xj�E (x; t) � 0g; (5.3)
where �G(x; 0) and �E(x; 0) were level set representations of the input sets G and E ofRA(G; E) andHG(x; p) = 8<:0; for fx 2 Xj�E (x; t) � 0g;maxa2Aminb2B pT f(x; a; b); otherwise;HE(x; p) = 8<:0; for fx 2 Xj�G(x; t) � 0g;mina2Amaxb2B pT f(x; a; b); otherwise: (5.4)
Note that in the evolution of the avoid set, player I is trying to drive the state into Eand player II is trying to keep it out; therefore, the role of the inputs in the maximizationand minimization in HE is swapped from the role they play in HG (and in our ontinuousreahable set formulation's Hamiltonian (2.8)). From (5.3) and (5.4) we an see that theevolution of �G or �E is frozen when the state is either in the reah or in the avoid setalready. The value of the reah-avoid operator in this formulation is given byRA(G; E) = nx 2 X ��� limt!1�G(x; t) � 0o :While this formulation may work to determine the reah and avoid sets in theory, itspratial implementation is ompliated by the multiple ase struture of (5.3) and (5.4).Beause the right hand side of (5.3) ould be drastially di�erent for two states arbitrarilylose together, the funtions �G and �E ould develop disontinuities. In the presene of



5.3. IMPLEMENTING THE REACH-AVOID OPERATOR 95disontinuities, numerial level set methods and, in fat, the basi visosity solution theoryof Hamilton-Jaobi equations breaks down.
To avoid these disontinuities, a seond formulation was developed in [102℄ based on theHJI PDEs Dt�G(x; t) +HG(x;Dx�G(x; t)) = 0;Dt�E(x; t) +HE(x;Dx�E(x; t)) = 0; (5.5)where �G(x; 0) is a level set funtion for G, �E(x; 0) is a level set funtion for E , andHG(x; p) = maxa2A minb2B pT f(x; a; b);HE(x; p) = mina2Amaxb2B pT f(x; a; b): (5.6)Letting �minG (x; t) = mins2[t;0℄�G(x; s);�minE (x; t) = mins2[t;0℄�E(x; s); (5.7)we put an additional onstraint on the solutions �G and �E of (5.5)�G(x; t) � ��minE (x; t);�E(x; t) � ��minG (x; t): (5.8)The value of the reah-avoid operator isRA(G; E) = nx 2 X ��� limt!1�minG (x; t) � 0o :We assumed that the purely ontinuous reahable set ould be desribed by (remember that� = �t) G(�) = fx 2 Xj�min(x; t) � 0g;



96 CHAPTER 5. REACHABLE SETS FOR HYBRID SYSTEMSwhere Dt�(x; t) +H(x;Dx�(x; t)) = 0;H(x; p) = maxa2A minb2B pT f(x; a; b);�min(x; t) = mins2[t;0℄�(x; s): (5.9)Under this assumption, it is possible to show that the two formulations (5.3){(5.4) and (5.5){(5.8) generate equivalent reah-avoid sets. Unfortunately, (5.9) fails to orretly omputethe ontinuous bakwards reahable set in some ases with nononvex target sets and/orHamiltonians.5.3.2 The Current Reah-Avoid FormulationOur urrent reah-avoid implementation makes use of the provably orret HJI formulationgiven in setion 2.1.3 for the ontinuous bakwards reahable set. The evolution equationfor the level set representation of the reah set �G isDt�G(x; t) + min[0;H(x;Dx�G(x; t))℄ = 0; (5.10)where the Hamiltonian is H(x; p) = maxa2A minb2B pTf(x; a; b): (5.11)The level set funtion for the avoid set is not evolved�E(x) , �E(x; 0); (5.12)but the evolution of the reah set is onstrained by�G(x; t) � ��E(x): (5.13)This formulation (5.10){(5.13) turns out to be equivalent to a variational inequality [19℄, andfrom that theory we an show that �G(x; t) is bounded and ontinuous if �E(x) is boundedand ontinuous. This formulation is onsiderably simpler than the previous two, in part



5.3. IMPLEMENTING THE REACH-AVOID OPERATOR 97beause there is no attempt to evolve the avoid set. Setion 5.3.3 presents a simplistiargument that avoid set evolution is unneessary. We are working on a more robust generalproof that this formulation implements the reah-avoid operator.In pratial terms, we onstrut �G(x; 0) and �E(x) using the union, intersetion and om-plement set operations (2.15) for level set funtions. We solve (5.10) using the level setmethods desribed in setion 2.2.2. The onstraint (5.13) is enfored at eah grid node ateah timestep, a proess frequently alled masking the level set [125℄.5.3.3 No Evolution for the Avoid SetIn this setion we argue that it is unneessary to evolve the avoid set as part of the reah-avoid alulation; only the initial avoid set E(0) , E is needed for masking purposes. Theonern is that if E(�) is not propagated, points in the state spae may be swallowed byG(�) when E(�) should have reahed them �rst and thus made them unavailable to G(�).We show that if a point is part of E(�), then it is either part of E(0) or may never be partof G(�). The weakness in this argument is the assumption that there exist unique normalsfor the boundaries of G(�) and E(�); beause these boundaries need not be smooth, uniquenormals need not exist. We are urrently working on a more general proof.Start by assuming that we propagate both E(�) and G(�). Consider a point x 2 �G(�) \�E(�) suh that �E(�) reahed x at the same time or before �G(�). Remember that G(�)is open and E(�) is losed. Let nE and nG be the outward pointing normals at x to E(�)and G(�) respetively. Sine the two sets are touhing at x, nG = �nE.We are onerned that if E(�) were not omputed, then G(�) would be able to swallow x.If x =2 E(0) then by the onstrution of E(�)x 2 E(�) =) 9a 8b; nE � f(x; a; b) � 0: (5.14)Furthermore, for some x̂ =2 G(0), we know thatx̂ 2 G(�) =) 8a 9b; nG � f(x̂; a; b) < 0: (5.15)



98 CHAPTER 5. REACHABLE SETS FOR HYBRID SYSTEMSWhat would happen if E(�) were not omputed? Sine we know x 2 E(�), by (5.14)9a 8b; nE � f(x; a; b) � 0;9a 8b; (�nG) � f(x; a; b) � 0;9a 8b; nG � f(x; a; b) � 0;9a 8b; :(nG � f(x; a; b) < 0);9a :(9b; nG � f(x; a; b) < 0);:(8a 9b; nG � f(x; a; b) < 0);whih by the ontrapositive of (5.15):(8a 9b; nG � f(x; a; b) < 0) =) x =2 G(�):Therefore, x annot be swallowed by G(�) even if E(�) were not omputed to at as a mask.For points x 2 E(�)n�E(�), onsider the same proedure using E(�1) and G(�2) where timest1 � t2 are hosen so that x 2 �G(�2) \ �E(�1).Note that for x 2 E(0), none of this analysis applies; onsequently, E(0) must still be usedas a mask to halt the growth of G(�). Using suh a �xed mask is muh less of a onernnumerially, however.



Chapter 6
Examples of Hybrid ReahableSets
The �rst setion analyzes the safety regions of some simple ollision avoidane protoolsfor two ooperating vehiles. The primary purpose of the three mode senario is a stepby step demonstration of the hybrid reahable set algorithm and the reah-avoid operator.The seven mode senario is a little more realisti, and also shows how the results of areahability analysis an be used to reate a disrete abstration of the hybrid system. Theseond setion looks at a landing airraft example involving disrete deisions on how to setthe aps.6.1 Multimode Collision AvoidaneFree ight is a onept under onsideration as a way of inreasing the eÆieny and reduingthe ight path ongestion for airraft ruising at high altitudes [120℄. At the present time,pilots are usually instruted by air traÆ ontrol (ATC) to follow prede�ned \highways inthe sky", and therefore follow a rooked route to their destination [104℄. Under free ight,pilots would be allowed to hoose their ruising altitude ight paths almost arbitrarily inorder to maximize fuel eÆieny or minimize ight time. Of ourse, suh freedom in airrafttrajetories would make it diÆult for ATC to intervene and resolve the potential ollisionshould two ight paths interset. 99



100 CHAPTER 6. EXAMPLES OF HYBRID REACHABLE SETSWith new tehnologies allowing airraft to determine eah other's loation and speed [117,76, 81, 57℄, it beomes possible for the vehiles involved to resolve the onit independently.Even in this situation, however, it is neessary to de�ne a lear onit resolution proedurein advane|given the slow response time of a ommerial passenger airraft, it is importantto avoid the ase where both vehiles turn one way and maintain the onit, realize theirmistake, then both turn the other way and maintain the onit again, all while approahingone another at more than one thousand miles per hour.If we are to de�ne ollision avoidane protools, we must identify and desribe the situationsunder whih they an be applied safely; reahable sets an be used to perform both tasks.The examples below investigate two simple protools with the tools developed in hapters 2and 5. The desription of both senarios is taken from [138℄, and they were both analyzedin [137℄; the three mode version also appeared in [102℄.6.1.1 The ModelSine we are again studying a ollision avoidane problem, we use relative oordinates withdynamis (3.1) and a irular unsafe set entered at the planar origin representing a ollision.While the dynamis may seem simplisti, the resulting trajetories are intuitively easy tounderstand. In [58℄, a ontroller that an trak the inertial trajetories generated by (3.1)was derived for an aurate nonlinear model of the lateral ight dynamis of a ommerialpassenger jet.In the senarios below the two vehiles are ooperating, so we assume that their ontinuousbehavior is known and onstant, and that their mode swithes are synhronized. Removingthese assumptions (apart from the deterministi dynamis) would inrease the omplexityof the omputation and visualization, but would not hange the analysis proedure.The airraft will always be ying in one of two modes:� Straight ight: both airraft are ying at onstant linear veloities and zero angularveloities. The dynamis are_z = ddt 2664xryr r3775 = 2664�va + vb os rva sin r0 3775 = fs(z); (6.1)
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segment 1 (straight) segment 3 (straight)segment 2 (curved)

PSfrag replaements
q1 q2 q3� � = �=!_z = fs(z) _z = fs(z)_z = f(z)

�xryr� := ��yrxr � �xryr� := ��yrxr �

Figure 6.1: Hybrid automaton for the three mode protool.where va and vb are �xed (although not neessarily equal).� Curved ight: both airraft are ying at onstant linear veloities and a onstant,equal angular veloity. The dynamis are_z = ddt 2664xryr r3775 = 2664�va + vb os r + !yrva sin r � !xr0 3775 = f(z); (6.2)where va, vb and ! are �xed.Note that in both modes the relative heading of the airraft is �xed by the initial onditions,sine _ r = 0. Consequently, we an perform the analyses in two dimensions (xr and yr)with �xed  r.The protools we examine onsist of a sequene of straight and urved ight segments, andtherefore the system has no ontinuous inputs. Instead, we will look at a single disreteinput � whih initiates the protool by ausing the �rst mode swith. Subsequent modeswithes are timed, and the two airraft are assumed to swith modes synhronously. Usinga hybrid reahable set analysis, we an identify the set of states where no ollision willour, the set of states where the ollision avoidane protool an safely be initiated, theset of states where initiating the protool will ause a ollision, and the set of states wherea ollision is inevitable whether that partiular protool is invoked or not.6.1.2 Three Mode SenarioWith this simple senario we illustrate the hybrid reahable set algorithm. The protool isoutlined in �gure 6.1 and demonstrated in �gure 6.2, where the ontinuous dynamis fs(z)
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segment 3segment 2segment 1

PSfrag replaements  rFigure 6.2: Example airraft trajetories in the three mode protool.variable meaningxr relative position in ight diretion of �xed airraftyr relative position perpendiular to ight diretion of �xed airraftz state vetor (z = �xr yr�T ) r onstant relative heading ( r = 120Æ)! angular veloity of both airraft in segment 2 (! = 1)va speed of �xed airraft (va = 3)vb speed of seond airraft (vb = 4)d minimum safe separation distane (d = 5)Table 6.1: Parameters for the three mode protool.and f(z) are given by (6.1) and (6.2) respetively. The �rst mode transition is aused bythe disrete input �, while the seond is timed and ours when the airraft have ompleteda half irle (in this ase, at � = �). Both planes perform an (unrealisti) instantaneous 90Ælokwise turn at both mode swithes, shown by the reset relations on top of the transitionarrows in �gure 6.1. The ombination of resets and mode q2 result in the airraft returningto their original ight diretion in the �nal mode.The iterations of the hybrid reahable set algorithm are shown in �gure 6.3, using theparameters in table 6.1. The �xed airraft is the one lying at the origin of the relativeoordinate system. Reah sets are shown in dark grey and avoid sets in light grey. Theinitial onditions are just the ollision set in eah mode. Only the analysis of segment oneinludes an avoid set, beause only q1 has a outward ontrolled transition to introdue anavoid set. That avoid set is related to the omplement of the reah set of q2 (the subsequentmode for the outward transition) in the previous iteration. The outward transition for q2is timed, so it merely adds to the initial reah set for this mode (as demonstrated by the
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segment 2Figure 6.3: Iterations of the hybrid reahable set analysis for the three mode protool (reahsets in dark grey, avoid sets in light grey).di�erene between the reah sets for iterations one and two of segment two). Beause thetransition out of q2 is timed, the reah set shown is a projetion onto the state spae plane ofthe true three dimensional reah set (the third dimension is an unmodeled timer). There isno outward transition for q3, so the analysis for segment three is just a standard ontinuousreahable set for the straight ight dynamis.After three iterations, the algorithm reahes the �xed point shown in the �nal row of�gure 6.3. The subplot in the lower left orner summarizes the information we an deduefrom this analysis whether the ollision avoidane protool should be invoked. If the urrentstate of the system lies in a dark region of this subplot, a ollision will our regardless ofwhether the protool is invoked or not. In the white regions, a ollision will our if theprotool is invoked, but the airraft an safely ontinue to y straight without a ollision.In the light grey regions, the protool an be safely invoked.
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� = �=2!� = �=4!
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� = ts
_z = fs(z)

_z = fs(z)_z = fs(z)
_z = fs(z)_z = f(z)

_z = f(z) _z = f(z)
Figure 6.5: Hybrid automaton for the seven mode protool.

Notie the white region on the right side of this subplot. In this region invoking the protoolwill ause a ollision, but ontinued straight ight will lead the system up and to the left intothe light grey noth. The protool an now be initiated, and must be initiated before thesystem ontinues into the ollision set if safety is to be maintained. Figure 6.4 demonstratesthat this noth of safety an be enlarged by inreasing the turn radius (reduing !) insegment two. If it is enlarged suÆiently, the unsafe region of in�nite extent (leading downand to the right from the ollision set) an be removed.
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Figure 6.6: Example airraft trajetories in the seven mode protool.variable meaningxr relative position in ight diretion of �xed airraftyr relative position perpendiular to ight diretion of �xed airraftz state vetor (z = �xr yr�T ) r onstant relative heading ( r = 120Æ)! angular veloity of both airraft in segments 2, 4 and 6ts length of time in segments 3 and 5va speed of �xed airraft (va = 3)vb speed of seond airraft (vb = 3)d minimum safe separation distane (d = 5)Table 6.2: Parameters for the seven mode protool.6.1.3 Seven Mode SenarioThe three mode protool featured instantaneous heading hanges before and after segmenttwo, in order for the airraft to return to their original heading at the end of the protool.The hybrid automaton in �gure 6.5 desribes a more realisti protool involving seven ightsegments, where the ontinuous dynamis fs(z) and f(z) are given by (6.1) and (6.2)respetively. The protool's ight path sequene is demonstrated in �gure 6.6, whih showsthat the airraft return to their original heading at the onlusion of the protool. Thereis no need to make instantaneous heading hanges, beause modes q2 and q6 eah involve a45Æ lokwise turn, whih is anelled by a 90Æ ounter lokwise turn in mode q4.We perform an analysis of the hybrid reahable set for this automaton, in the same manner
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Figure 6.7: Reahable set analysis for the seven mode protool, omparing three di�erentparameter hoies.as that performed in the previous setion and using the parameters in table 6.2. Observingthat the set of disrete transitions in �gure 6.5 forms a direted ayli graph, we run themode iteration bakwards through this graph and ahieve onvergene after one pass.� Alltransitions in the protool are timed exept the �rst, so the reah sets of modes q2 throughq7 are straightforward to alulate, but not partiularly enlightening to visualize.The real information from the analysis is the reah and avoid sets of mode q1, whih areshown in �gure 6.7 for three di�erent hoies of protool parameters ! and ts. The dashedlines are the boundary of the unsafe set if the protool is not invoked. By hoosing param-eters wisely, the unsafe set an be shrunk until it is only slightly larger than the originalollision set.Figure 6.8 shows how the information from the hybrid reahable set analysis an be used todivide the ontinuous state spae into subsets, and then to onstrut a disrete automatonon the subsets whih desribes the qualitative behavior of the full hybrid automaton. Thedisrete automaton has two types of transitions: those that an be taken by invoking thedisrete input �, and those that will our automatially after some time passes. For moststates, an appropriate ombination of these transitions will lead to safety. For example, ifthe system starts in set s1, then invoking � would be dangerous but waiting will lead to sets3. In set s3, waiting is dangerous but invoking � will lead to safety.�The same observation applies to the three mode example, but we ran the modes forward in �gure 6.3to demonstrate the general iterative algorithm.
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Figure 6.8: Abstrating the seven mode hybrid automaton into a disrete automaton.6.2 Flap Deetion in a Landing AirraftIn this setion we again examine a landing airraft, but this time we fous our attentionon the ap setting hoies available to the pilot. While ap extension and retration areontinuous operations at the lowest level (they are generally atuated by an eletri srewdrive in the wing), we hoose to model their setting as a disrete variable for two reasons.First, in modern ommerial airliners the hoie of ap deetions given to the pilot isdisrete, and is hosen either by pressing a button or moving a lever into one of several�xed settings; a low level automati ontroller handles the ontinuous atuation. Seond,the dynami e�et of deeting aps is generally assumed to be relatively minor, so webelieve that a quasi-stati analysis will not adversely a�et our fairly simple model. Theresults in this setion are taken from [100℄.We use the same ontinuous model as that desribed in setion 3.3.1, with the parametersmodi�ed to �t a DC9-30 landing at sea level. Instead of (3.7), we use lift and drag termsgiven by (measured in newtons)L(�; V ) = 68:6(hÆ + 4:2�)V 2;D(�; V ) = (2:81 + 3:09(hÆ + 4:2�)2)V 2;



108 CHAPTER 6. EXAMPLES OF HYBRID REACHABLE SETSV (m/s)  (degrees) z (m)aps (Æ) hÆ min max min max min0u 0.2 78 82 -3 0 025d 0.8 61 82 -3 0 050d 1.2 58 82 -3 0 0Table 6.3: Lift parameter and safe ight envelope bounds for various ap settings.
25d

0u

50d 50t

25t

0t

Figure 6.9: Hybrid automaton for the multimode landing airraft (solid arrows are ontrolledswithes, dashed arrows are timed swithes).We onsider three di�erent ap settings denoted by Æ: lean wing Æ = 0u, partially deetedÆ = 25d, and fully deeted Æ = 50d. The letter \u" or \d" denotes whether the slats onthe front edge of the wing are deeted or not|slat deetion inreases the maximum angleof � possible without stalling the airraft, and so slats will always be deeted in any highlift (ap deeted) wing on�guration.The lift parameter hÆ and the safe ight envelopes for eah ap setting are summarized intable 6.3. We are not onsidering a TOGA maneuver in this analysis, so the airraft maynever limb ( � 0). Upon touhdown (z = 0), there is no tail strike restrition on �, but_z � �0:9144 m/s is required to avoid landing gear damage. The ontinuous inputs areT 2 [0 kN; 160 kN℄;� 2 [0Æ; 10Æ℄; (6.3)where we have plaed a tighter bound on � for passenger omfort.The hybrid automaton that we study is shown in �gure 6.9. Ideally, we would like tomodel just the three ap modes 0u, 25d and 50d, but onneting these modes together with



6.2. FLAP DEFLECTION IN A LANDING AIRCRAFT 109ontrollable swithes leads to a Zeno automaton|the model an swith modes in�nitelyfast, and hene an maintain safety by stopping the progression of ontinuous time in anin�nitely long swithing sequene [79, 78℄. To avoid this behavior we add timed delaymodes 0t, 25t and 50t. In the resulting automaton, the pilot an swith to a new apsetting instantaneously, but annot swith out of that setting for some �nite time period.The results of the hybrid reahable set analysis are shown in �gure 6.10. Note that weinlude some states z � 0 (below ground) in order to ensure that the envelope restritionat z = 0 is satis�ed. For these states we use dynamis _x = 0.The top row of the �gure shows the initial envelopes from table 6.3. The seond rowshows the maximally ontrollable subset of the envelope for eah mode individually, asdetermined by a ontinuous reahable set omputation. The lean wing on�guration 0ubeomes ompletely unontrollable (the remaining stub in the �gure lies in the dummystates below ground), while the remaining modes are partially ontrollable. The subset ofthe envelope that annot be ontrolled in these high lift / high drag on�gurations an bedivided into two omponents. For low speeds, the airraft will tend to stall. For values of znear zero and low ight path angles , the airraft annot pull up in time to avoid landinggear damage at touhdown.The third row shows the results for the hybrid reahable set omputation. Now both modes0u and 25d are almost ompletely ontrollable, sine they an swith instantaneously to thefully deeted mode 50d. However, no mode an ontrol the states z near zero and low ,beause no mode an pull up in time to avoid landing gear damage. The fourth row showsa slie through the reah and avoid sets for the hybrid analysis at a �xed height z = 3 m.In this ase, the reah set is light grey and the avoid set dark grey (the opposite of theonvention in this hapter's previous �gures).Sine it allows instantaneous ap deetions and hanges to ontinuous inputs T and �, thismodel is not very realisti; onsequently, we do not advoate that these results be applied toairraft autolander design in their urrent form. While we are in the proess of inreasingthe �delity of the model [23℄, we disuss these results here beause they demonstrate areahable set analysis proedure that we need not hange to inorporate a more realistiand omplex model.
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Chapter 7
Conlusions
We summarize the results of the previous hapters, make some observations regarding them,and then disuss some possible extensions of this researh.7.1 What Has Been AomplishedWe have presented an algorithm whih an numerially ompute the bakwards reahableset for a two player, ontinuous nonlinear di�erential game with a general target set. Thealgorithm is based on a formulation of reahability in terms of the visosity solution of aHamilton-Jaobi-Isaas PDE, and we have proven that the analyti solution of this equationis the exat bakwards reahable set. By adopting this two input HJI formulation, we anonservatively handle model unertainties as well as traditional ontrol inputs, and we andevelop very aurate approximations of the boundary of the reahable set for systems withomplex dynamis.Our implementation is based on level set methods, and its auray and onvergene havebeen demonstrated on a three dimensional pursuit-evasion example. This example alsoserved to illustrate the use of reahable sets in synthesizing ontrollers whih are guar-anteed to at safely. A seond example used a reahable set analysis to detet potentialinonsistenies in the protool followed by a pilot during an autolanding in a ommerialpassenger airraft, in the ase where the pilot must exeute a take-o� / go-around.111



112 CHAPTER 7. CONCLUSIONSThe primary shortoming of the HJI formulation is that its ost sales exponentially with thedimension of the system. We desribed how the idea of projetive overapproximations an�t into the two input HJI formulation of reahable sets. Beause these projetions oupylower dimensional subspaes, they are muh less ostly to ompute. The dimensions missingfrom a partiular subspae are treated as disturbane inputs to the evolution dynamis forthat projetion, whih ensures that the projetion is an overapproximation of the truereahable set. Beause the reahable set is the unsafe set, overapproximations an be usedto onservatively verify safety.After presenting a previously developed algorithm for omputing hybrid reahable sets,we informally desribed how the ontinuous reahable set method ould be adapted toompute the reah-avoid operator from the hybrid algorithm. The result is a onstrainedHJI PDE whih an be added to a level set implementation without any diÆulty. Thehybrid algorithm was illustrated with several simple airraft ollision avoidane protools.The �nal example was a multimode airraft autolanding system, where the disrete modesrepresented di�erent wing ap settings.In onlusion, we have demonstrated that aurate omputation of bakwards reahablesets is possible for nonlinear ontinuous and hybrid systems of low dimension. Extensionto higher dimensions will be hallenging, but may be possible.7.2 Suggestions for Further ResearhAs with so muh researh, the at of putting these results to paper has made lear just howmany diretions are available for further work.A user friendly implementation: The present implementation is still an alpha version;while the author an introdue a new model to the system in just a few hours, anybodyelse would fae a signi�ant struggle to do likewise. Now that the tehnial details ofthe implementation are stabilizing, we hope to improve its user interfae to the pointthat others an perform reahable set analyses.



7.2. SUGGESTIONS FOR FURTHER RESEARCH 113Guaranteed overapproximation: Beause it uses an impliit surfae representation, thetime dependent HJI algorithm presented in setions 2.1.3 and 2.2 an determine theboundary of the reahable set muh more aurately than the approahes based on vi-ability theory from setion 2.3.1. On the other hand, those approahes an guaranteean overapproximation of the true reahable set, whih the time dependent HJI formu-lation annot. We are investigating whether the two approahes ould be used in atwo step proess: the viability method to develop a oarse but guaranteed overapprox-imation and the HJI formulation to �nd a representation of the overapproximationwith subgrid auray.Higher auray: While our approah an resolve the loation of the reahable set'sboundary with subgrid auray in smooth regions, any approah based on Eule-rian grids will inevitably fail to resolve features of the reahable set in regions wherethe boundary displays high urvature. This behavior is a known and serious problemfor other appliations of level sets, inluding the modeling of uid interfaes whereit manifests itself as a failure to onserve volume. The partile level set method [49℄ombines trajetory based and Hamilton-Jaobi approahes to interfae traking, andthereby does a muh better job at onserving volume. While its urrent form appliesonly to purely advetive ows (no inputs allowed), we are working on ways to adaptit to the reahable set problem to improve our auray further.Forwards reahable sets: As desribed in setion 2.3, Hamilton-Jaobi and viabilitybased algorithms are suitable for bakwards reahable sets and trajetory based ap-proahes are appropriate for forwards reahable sets. For the weakly stable and weaklyunstable examples studied in this thesis, either type of reahable set an be used forsafety veri�ation. However, for strongly stable systems|suh as digital iruits|the bakwards formulation is strongly unstable and hene numerial approximationsmay beome wildly inaurate. With these types of systems in mind, we are lookingat what kinds of restritions on dynamis might make HJ formulations of forwardsreahable sets possible, and how the partile level set method might be applied.Safe ontroller synthesis: The algorithm outlined in setion 3.1.5 is just a prototype ofhow an impliit surfae representation of the reahable set might be used to �lterpotentially unsafe ontrollers so as to guarantee safety, and further investigation isplanned.



114 CHAPTER 7. CONCLUSIONSMinimum time to reah funtion: We have formulated reahable set determination asa time-dependent HJI PDE in order to take advantage of high resolution level setmethods. Representing the reahable set using the minimum time to reah funtion,whih is the solution to the stati HJI PDE, might make the synthesis of safe on-trollers more stable numerially. In most ases we annot apply level set methodsto approximate the minimum time to reah funtion, sine they assume a ontinuoussolution. Instead, it may be possible to apply the losely related high resolution meth-ods for onservation laws (whih may have disontinuous solutions) to get aurateapproximate solutions to the stati HJI PDE.Probabilisti models: Treating noise as the input of player II is onservative, but maybe overly so. There are lose ties between seond order Hamilton-Jaobi equations,stohasti di�erential equations [107℄, and Markov proesses [55℄. We intend to explorehow these ties ould be exploited to handle reahable set analysis for probabilistimodels.Projetive overapproximation: We have just begun to study projetive tehniques. Asmentioned in hapter 4, we would like to prove or disprove Conjeture 9, determinefor what types of dynamis we an get reasonable overapproximations of the reahableset, and �gure out how to hoose the projetions wisely.The hybrid algorithm: The present hybrid reahable set algorithm (from setion 5.2)depends on the reah-avoid operator ahieving a �xed point in eah mode, and annotompute �nite time reahable sets. With the ontinuous reahable set algorithmompleted, we are now ready to update the hybrid algorithm to handle �nite horizonreahable sets and to eluidate the onnetions between boundary onditions andfored disrete swithes (as separate from swithes that are hosen by player I orplayer II).Appliation to autonomous vehiles: Hybrid systems would appear to be exellentmodels for mobile robots. We believe our analysis tehniques will prove useful notonly for safety veri�ation and ontrol synthesis, but also for high level behavioralprogramming in the style of [37℄ or [33℄.Abstration: Abstration is a powerful tool for analyzing large, hierarhially onstrutedsystems. While it has been used extensively on disrete systems, only reently have the



7.2. SUGGESTIONS FOR FURTHER RESEARCH 115onepts been extended to ontinuous and hybrid systems [2, 112, 113, 133℄, and thenjust for restritive lasses of dynamis. The abstration shown in setion 6.1.3 wasonstruted in an ad ho manner, but we would like to investigate how our reahabilitytehniques might allow onstrution of abstrations for systems with general dynamis,if only approximately.We are, of ourse, very interested in takling new systems of all types, and look forward toextending our tehniques to over as wide a variety of examples as possible.
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