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Abstract—In a previous paper we showed how the continual
reachability set can be numerically computed using efficient max-
imal reachability tools. The resulting set is in general arbitrarily
shaped and in practice possibly non-convex. Here, we present a
fixed-complexity piecewise ellipsoidal under-approximation of the
continual reachability set computed using ellipsoidal techniques.
This provides a simple approximation of an otherwise relatively
complicated set that can be used when a closed-form represen-
tation is needed. We demonstrate the results on a problem of
control of anesthesia.

I. INTRODUCTION

Mathematical guarantees of safety and performance are cru-
cial components of robust-by-design cyberphysical systems.
Reachability analysis has typically been used to provide safety
certificates (e.g. for collision avoidance or flight envelope
protection) for constrained dynamical systems despite bounded
control authority [1]–[5]. It has also been used to synthesize
bounded input policies that can steer the system to a given
target [6], [7]. Reachability analysis identifies the set of states
backward (forward) reachable by a constrained dynamical
system from a target (initial) set of states.

In many applications, however, the state constraints may be
temporarily relaxed in favor of improved performance. Moti-
vated by a problem of guaranteed performance and safety in
control of anesthesia, we introduced the continual reachability
set [8] which can be used to provide guarantees of performance
in reachability analysis. The continual reachability set is the
set of states that can reach the target at any given time within
the finite horizon. Initiating the system from this set provides
additional flexibility to a supervisory controller to choose a
policy that optimizes a trade-off between the desired time-
to-reach the target and the input effort (or other performance
indices) required to drive the state to that target.

It is well known [9] that the required optimal control laws
that keep the system within a given target set are generally
discontinuous or even bang-bang. In the anesthesia setting,
such optimal control laws (drug infusion rates) may not be
physiologically suitable for the current conditions of a patient
in the operating room. Less aggressive and more patient
oriented control policies may be warranted. In such scenarios,
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one may temporarily allow the relaxation of the target thera-
peutic bounds, and in return provide the anesthesiologist (or a
closed-loop controller) with additional degrees of freedom in
choosing a better suited drug infusion while simultaneously
ensuring that the target clinical effect is reached at a given
time in the future.

A variety of approaches to controlling depth of anesthesia
have been proposed [10]–[15] to improve patient recovery,
lessen anesthetic drug usage, and reduce time spent at drug
saturation levels. The continual reachability set provides a
guarantee of performance, in that for any initial state in the
set, the desired clinical effect can be reached at arbitrary times.
This may be particularly useful in scenarios in which one
wishes to minimize the total administered drug, or to achieve
a desired depth of anesthesia arbitrarily fast.

Building upon our previous work in formulating the con-
tinual reachability set, our main contribution in this paper
is to provide a technique that can be used to approximate
this geometrically complicated set when a simple closed-form
representation of fixed-complexity is needed. We then apply
this technique to our problem of control of anesthesia. We
note that while the approximation of the continual reachability
set is motivated by a highly specific problem in closed-loop
anesthesia delivery, our method is general, and may also be of
use in other engineering domains for which safety constraints
may be temporarily relaxed in favor of performance goals.

Section II formulates the problem of simplifying the repre-
sentation of the continual reachability set. Section III presents
a solution based on ellipsoids. Section IV demonstrates the
results on the anesthesia problem. Concluding remarks are
provided in Section V.

II. PROBLEM FORMULATION

Consider the discrete-time linear time-invariant system

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0, t ∈ Z+ (1)

with state space X := Rn, state vector x(t) ∈ X , and input
u(t) ∈ U where U is a compact convex subset of Rm. Denote
by U[0,t] the set of functions u(·) from [0, t] to U . With
an arbitrary finite time horizon τ ∈ Z+, τ > 0, for every
t ∈ [0, τ ], x0 ∈ X , and u(·) ∈ U[0,t], there exists a unique
trajectory ξx0,u(·) : [0, t]→ X that satisfies the initial condition
ξx0,u(·)(0) = x0 and the difference equation (1).

For a nonempty state constraint set K ⊆ X we examine the
following backward constructs:

Definition 1 (Maximal Reachability Set). The maximal reach-
ability set at time t ∈ [0, τ ] is the set of initial states for which



there exists an input u(·) such that the trajectories emanating
from those states reach K exactly at time t:

Reach]t(K) :=
{
x0 ∈ X | ∃u(·) ∈ U[0,t], ξx0,u(·)(t) ∈ K

}
.

Definition 2 (Continual Reachability Set). The continual
reachability set defined over the time horizon [0, τ ] is the set
of initial states in K for which, for any given time t ∈ [0, τ ],
there exists a u(·) such that the trajectories emanating from
those states reach K at t:
Reachγ[0,τ ](K) :=

{
x0 ∈ X | ∀t ∈ [0, τ ], ∃u(·) ∈ U[0,t],

ξx0,u(·)(t) ∈ K
}
.

In [8] we showed that

Reachγ[0,τ ](K) =
⋂

t∈[0,τ ]

Reach]t(K). (2)

Thus, when K and U are (or can be reasonably under-
approximated by) compact nonempty ellipsoids, ellipsoidal
techniques [16] implemented in the Ellipsoidal Toolbox (ET)
[17] can be used to compute a compact approximation of
Reachγ[0,τ ](K).

Definition 3 (Ellipsoid). An ellipsoid in Rn is defined as

E(q,Q) :=
{
x ∈ Rn | 〈(x− q), Q−1(x− q)〉 ≤ 1

}
(3)

with center q ∈ Rn and shape matrix Rn×n 3 Q = QT � 0.

Let K↓ε := E(xτ , Xτ ) ⊂ X be a nonempty ellipsoidal
under-approximation of K and assume U = E(p, P ) ⊂ Rm.
With L := {l ∈ Rn | 〈l, l〉 = 1}, the following holds:

Reachγ[0,τ ](K) ⊇ Reachγ[0,τ ](K↓ε)

=
⋂

t∈[0,τ ]

( ⋃
`τ∈L

E(x∗(t), X−` (t))

)
,

(4)

where x∗(t) and X−` (t) are the center vector and the shape
matrix of the internal approximating ellipsoid at time t that
is tangent to Reach]t(K↓ε) in the direction `(t). For a fixed
`(τ) = `τ ∈ L, the direction `(t) is obtained from the
adjoint equation `(t+1) = (AT)−1`(t). The center x∗(t) (with
x∗(τ) = xτ ) and the shape matrix X−` (t) (with X−` (τ) = Xτ )
are determined from recurrence relations described in [18].

In practice, only a finite number of directions can be used
for maximal reachability set computations. Let J be a finite
subset of L. We also showed in [8] that

Reachγ[0,τ ](K) ⊇ Reachγ[0,τ ](K↓ε)

⊇
⋂

t∈[0,τ ]

( ⋃
`τ∈J

E(x∗(t), X−` (t))

)
,

(5)

implying that the continual reachability set is correctly under-
approximated. A direct consequence of (5) is that

Reachγ[0,τ ](K) ⊇ Reachγ[0,τ ](K↓ε) ⊇{
x ∈ X

∣∣∣ max
t∈[0,τ ]

min
`τ∈J

〈
(x− x∗(t)),

(X−` (t))−1(x− x∗(t))
〉
≤ 1

}
. (6)

Notice that while the ellipsoidal-based representation in
(4) is convex (for a linear system with convex con-
straints the continual reachability set is also convex [8]),
the under-approximation in (5) may not be: The union⋃
`τ∈J E(x∗(t), X−` (t)) at any t ∈ [0, τ ] is an arbitrarily

shaped, possibly non-convex set, and so is the intersection
of these sets over all t.

Moreover, while from a numerical standpoint it is easy to
determine whether a given point in the state space belongs
to Reachγ[0,τ ](K) by evaluating (6) at that point, there are
instances where having a simple closed-form representation of
(5) (or equivalently (6)) is desirable. One such instance is when
finding the (generalized) gradient at the boundary points of
Reachγ[0,τ ](K) or its under-approximation, which might prove
helpful for synthesis of the continual reachability control laws.

Problem 1. Formulate a simple, closed-form representation
of the continual reachability set based on the inclusion in (5).

III. PIECEWISE ELLIPSOIDAL REPRESENTATION

We address Problem 1 using a fixed-complexity piecewise
ellipsoidal approach. A piecewise ellipsoidal set is the union
of a finite number of ellipsoids.

Lemma 1.⋃
`τ∈J

( ⋂
t∈[0,τ ]

E(x∗(t), X−` (t))

)

⊆
⋂

t∈[0,τ ]

( ⋃
`τ∈J

E(x∗(t), X−` (t))

)
⊆ Reachγ[0,τ ](K↓ε).

Proof: x ∈
⋃
`τ∈J

(⋂
t∈[0,τ ] E(x∗(t), X−` (t))

)
⇐⇒

(∃`τ ∈ J )(∀t ∈ [0, τ ])x ∈ E(x∗(t), X−` (t)) =⇒
(∀t ∈ [0, τ ])(∃`τ ∈ J )x ∈ E(x∗(t), X−` (t)) ⇐⇒ x ∈⋂
t∈[0,τ ]

(⋃
`τ∈J E(x∗(t), X−` (t))

)
.

Lemma 1 asserts that the intersection of many arbitrarily-
shaped, possibly non-convex sets (each formed by the union
of |J | ellipsoids) which is hard to compute can be under-
approximated by the union of |J | arbitrarily-shaped convex
sets (each formed by the intersection of many ellipsoids)
which, as we shall see, is easy to approximate.

Consider the term
⋂
t∈[0,τ ] E(x∗(t), X−` (t)) in Lemma 1.

While the intersection of any two or more ellipsoids in general
is not an ellipsoid, this intersection can be under-approximated
by a maximum volume inscribed ellipsoid [19] (a readily avail-
able feature in ET): With τ time steps, for a given direction
`τ ∈ J and assuming int

(⋂
t∈[0,τ ] E(x∗(t), X−` (t))

)
6= ∅,

the following semidefinite program [19] is solved.

minimize
Y`τ∈Rn×n,y`τ∈Rn,λi∈R

log detY −1`τ
(7a)

subject to λi > 0 (7b) 1− λi 0 (y`τ − x∗(i))T

0 λiI Y`τ
y`τ − x∗(i) Y`τ X−` (i)

 � 0, (7c)

i = 0, . . . , τ.



The resulting ellipsoid E(y`τ , Y
T
`τ
Y`τ ) is the maximum volume

inscribed ellipsoid corresponding to `τ .

Proposition 1.⋃
`τ∈J

E(y`τ , Y
T
`τY`τ ) ⊆ Reachγ[0,τ ](K↓ε). (8)

Proof: E(y`τ , Y
T
`τ
Y`τ ) ⊆

⋂
t∈[0,τ ] E(x∗(t), X−` (t))

for every `τ ∈ J . Thus,
⋃
`τ∈J E(y`τ , Y

T
`τ
Y`τ ) ⊆⋃

`τ∈J
(⋂

t∈[0,τ ] E(x∗(t), X−` (t))
)
. Therefore, by Lemma 1,⋃

`τ∈J E(y`τ , Y
T
`τ
Y`τ ) ⊆ Reachγ[0,τ ](K↓ε).

Remark 1. The left-hand-side in (8) is a piecewise ellipsoidal
approximation of the continual reachability set. As a result,
instead of one arbitrarily-shaped set in (5) (formed by taking
the intersection of union of ellipsoids), we now have an under-
approximation of the continual reachability set expressed in
terms of |J | =

∣∣{E(y`τ , Y
T
`τ
Y`τ )

}
`τ∈J

∣∣ ellipsoids.

A. Maximum k-Connected Ellipsoidal Representation

To further simplify the above representation, we introduce
a technique that maximally spans the volume of the set⋃
`τ∈J E(y`τ , Y

T
`τ
Y`τ ) subject to using at most k ≤ |J | of

its subset ellipsoids. Note that we still require an under-
approximation since an over-approximation of the above union
(or any of its subsets) does not necessarily guarantee the under-
approximation of the continual reachability set.

For a given k ∈ N, we seek I ⊆ J such that |I| ≤ k
and

∣∣⋃
`τ∈I E(y`τ , Y

T
`τ
Y`τ )

∣∣ is maximized, or equivalently,
dH
(⋃

`τ∈I E(y`τ , Y
T
`τ
Y`τ ),

⋃
`τ∈J E(y`τ , Y

T
`τ
Y`τ )

)
with dH

denoting the Hausdorff distance, is minimized. In addition,
we also require that the subset I is chosen such that

∀Ĩ ⊂ I, Ĩ 6= ∅, ∃Î ⊂ I, Ĩ ∩ Î = ∅, ∃˜̀
τ ∈ Ĩ,

∃ˆ̀
τ ∈ Î, E(yˆ̀

τ
, Y T

ˆ̀
τ
Yˆ̀
τ
) ∩ E(y˜̀

τ
, Y T

˜̀
τ
Y˜̀
τ
) 6= ∅.

(9)

This condition ensures that the resulting piecewise ellipsoidal
set is a connected set. Doing so provides a trajectory with the
possibility of traversing anywhere within the set when needed.

We refer to this problem as the Maximum k-Connected El-
lipsoidal Representation (kCER) of the continual reachability
set. As it turns out, kCER is a variation of the maximum cov-
erage problem [20]. For simplicity, let {E(y`τ , Y

T
`τ
Y`τ )}`τ∈J

be denoted by an indexed family of sets {Ei}|J |i=1. We for-
mulate kCER as a binary integer program while tackling the
connectedness requirement (9) via a graph-theoretic approach:

maximize
z1,...,z|J |

|J |∑
i=1

(ci − di) zi (10a)

subject to ci = vol(Ei) (10b)

di =

|J |∑
j=1

vol(Ei ∩ Ej)
vol(Ei)

(10c)

|J |∑
i=1

zi ≤ k (10d)

|J |∑
i=1

|J |∑
j=1

zi(γ
(k−1)
ij − 1)zj = 0 (10e)

zi ∈ {0, 1}, i = 1, . . . , |J |. (10f)

Here, vol(Ei) is the volume of the i-th ellipsoid which can be
obtained from the determinant of its shape matrix. In addition,
vol(Ei ∩ Ej) is assumed to be directly proportional to the
volume of the maximum volume inscribed ellipsoid in the
intersection of Ei and Ej . Moreover, vol(Ei ∩ Ej) = 0 if
Ei ∩Ej = ∅ and vol(Ei ∩Ej) = vol(Ei) if Ei ⊆ Ej . Notice that
vol(Ei) ∝ |Ei|. Therefore, the optimizer selects those ellipsoids
(by setting their corresponding binary variable to 1) that have
the largest cardinality, while favoring those that are least
“covered” by their neighboring ellipsoids; (10a), (10b), and
(10c). The constraint (10d) ensures that the cardinality of the
set I (i.e. the number of chosen ellipsoids) is at most k. The
equality constraint (10e), which ensures that the connectedness
requirement (9) is satisfied, as well as the constant γ(k−1)ij are
related to properties of the graph representation of {Ei}|J |i=1.
This is discussed next.

1) Description of Constraint (10e): We begin with a few
basic definitions: A graph G is an ordered pair (V ,E )
consisting of a set of vertices V := {v1, . . . , vn} and a
set of edges E ⊆ {(vi, vj) | vi, vj ∈ V } such that each
edge of G joins an unordered (not necessarily distinct) pair
of its vertices. A graph is undirected if the edges have no
orientation; (vi, vj) ∈ E ⇔ (vj , vi) ∈ E . A loop (or, self-
loop) is an edge between a vertex and itself. A path is a
subgraph (Ṽ , Ẽ ) such that for Ṽ := {v1, v2, . . . , vk} we have
Ẽ := {(v1, v2), (v2, v3), . . . , (vk−1, vk)}. A walk of length k
in G is an alternating sequence v1e1v2e2 . . . ek−1vk of vertices
and edges such that ei := (vi, vi+1) for all i < k. The order
|G| of a graph G is the number of its vertices |V |. A graph G is
connected if any two of its vertices are joined by a path in G.
A maximal connected subgraph of G is called a connected
component of G. Two vertices vi, vj ∈ V are adjacent
if (vi, vj) ∈ E . The adjacency matrix AG :=

[
a
(1)
ij

]
n×n,

n = |V |, of G is defined by

a
(1)
ij :=

{
1 if (vi, vj) ∈ E

0 o.w.
(11)

Lemma 2 ([21]). The matrix (AG)k =
[
a
(k)
ij

]
n×n contains

the number a(k)ij of walks of length k from vi to vj in G.

Lemma 3. The matrix polynomial

ψk(AG) :=

k∑
σ=1

(AG)σ =
[
ã
(k)
ij

]
n×n (12)

contains the number ã(k)ij of walks of length l = (
∨k
σ=1 σ)

from vi to vj in G.

Proof: The proof is by a simple induction on k. For
k = 1, ψ1(AG) = AG is the adjacency matrix. The results
follows from the definition of AG since there are a(1)ij walks
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Fig. 1. A piecewise ellipsoidal set (left) and its corresponding graph (right).
Each vertex vi of the graph corresponds to an ellipsoid Ei in the piecewise
ellipsoidal set (where the sets are arbitrarily labeled). An edge between
adjacent vertices indicates a nonempty intersection between their respective
ellipsoids.

of length one from vi to vj iff there exists a(1)ij edges between
them. Suppose ψk−1(AG) contains the number ã

(k−1)
ij of

walks of length (
∨k−1
σ=1 σ) from vi to vj . Then, ψk(AG) =

(AG)k + ψk−1(AG) contains (by Lemma 2 and the induction
hypothesis) the number a(k)ij +ã

(k−1)
ij = ã

(k)
ij of walks of length

l =
(
k ∨ (

∨k−1
σ=1 σ)

)
= (
∨k
σ=1 σ) from vi to vj .

Lemma 3 asserts that, from any vertex vi in G, the vertex
vj is ã(k)ij -times reachable (meaning there exists ã(k)ij distinct
paths from vi to vj) in at most k steps.

Define a Boolean matrix for AG as

Γ(AG) :=
[
γ
(1)
ij

]
n×n (13)

such that γ(1)ij = 0 if a(1)ij = 0 and γ(1)ij = 1 if a(1)ij 6= 0. Then a
non-zero entry of Γ(ψk(AG)), denoted by γ(k)ij , indicates that
in G, the vertex vj is reachable from vi in at most k steps.

To address the connectedness requirement (9) in kCER, we
treat each ellipsoid Ei as a vertex of an undirected graph
whose edges represent nonempty intersections between these
sets. (Note that determining if any two ellipsoids intersect is a
simple convex optimization problem [19].) For example, Fig. 1
shows a piecewise ellipsoidal set and its corresponding graph
representation. Self-loops are employed to accommodate the
case in which no two ellipsoids intersect, resulting in a graph
that consists of isolated vertices.

Let the piecewise ellipsoidal set Epw := {Ei}Ni=1 be
represented by an undirected graph G = (V ,E ) such that
vi ∈ V corresponds to Ei ∈ Epw and (vi, vj) ∈ E if
and only if Ei ∩ Ej 6= ∅. Let (vi, vi) ∈ E , ∀vi ∈ V . Let
AG ∈ RN×N be the adjacency matrix of G. Consider a binary
vector z = [z1 · · · zN ]T ∈ {0, 1}N associated with the set of
vertices V . We say that a vertex vi ∈ V is selected if and only
if its corresponding binary variable is enabled, i.e. zi = 1. A
subgraph G̃ = (Ṽ , Ẽ ) ⊆ G is selected if and only if zi = 1
for all vi ∈ Ṽ and zi = 0 for all vi ∈ V \Ṽ .

Proposition 2 (Connectedness Condition). Suppose that, for
a given k ≤ N , a subgraph G̃ ⊆ G is to be selected such that
|G̃| = k. Then, 〈

z,
(
Γ(ψk−1(AG))− 1

)
z
〉

= 0 (14a)

or equivalently,

N∑
i=1

N∑
j=1

zi(γ
(k−1)
ij − 1)zj = 0 (14b)

if and only if G̃ is connected.1 Furthermore, this equality holds
for every selected subgraph of G̃, with order less than k, that
is connected.

Proof: (⇒): Assume (14) holds for G̃ ⊆ G. |G̃| = k means
exactly k number of zi’s are 1. Take any two vertices vi and
vj . Suppose vi and vj are selected. Thus, zi = 1 and zj = 1.
Therefore, (14) can only hold when γ(k−1)ij = 1, meaning that
vi and vj are joined by a path of length at most k− 1 edges.

(⇐): (By contrapositive.) Assume (14) does not hold for
some selected Ĝ ⊆ G, |Ĝ| = k. Since Ĝ is “selected”,
zi = 1 for every vertex vi in Ĝ (and zi = 0 otherwise). Thus∑
i

∑
j zi(γ

(k−1)
ij − 1)zj 6= 0 implies γ(k−1)ij 6= 1 for some vi

and vj in Ĝ. Hence, Ĝ must be disconnected (since there exist
vi and vj for which no path of length up to k − 1 steps joins
them).

For the last part of the proposition: (By contradiction.) Sup-
pose (14) holds for some selected connected subgraph G̃ ⊆ G,
|G̃| = k. Assume there exists a selected connected subgraph
Ĝ ⊆ G̃, |Ĝ| ≤ k, for which

∑
i

∑
j zi(γ

(k−1)
ij − 1)zj 6= 0.

This implies there exists vertices vi and vj in Ĝ such that
γ
(k−1)
ij = 0. But vi and vj are also vertices of G̃ for which we

know γ
(k−1)
ij = 1.

Corollary 1. If k is greater than the order of every connected
component of G, then (14) does not hold for any selected
subgraph of G with order k.

Proof: Let M be the order of the largest connected
component of G. Select any Ĝ ⊆ G such that |Ĝ| = k. If
k > M then Ĝ must have nonempty intersection with at least
two connected components of G. Denote these intersections
as Ĝ′ and Ĝ′′. For each vi in Ĝ′ and every vj in Ĝ′′ we have
γ
(k−1)
ij = 0 resulting in zi(γ

(k−1)
ij − 1)zj 6= 0. Therefore,∑

i

∑
j zi(γ

(k−1)
ij − 1)zj 6= 0.

Corollary 2. Let Gc be a complete graph—a graph with the
property that any two of its vertices are adjacent. Then, for
all k ≤ |Gc|, any selected subgraph of Gc satisfies (14).

Proof: For every vi and vj in Gc, γ(k−1)ij = 1 for all k ≤
|Gc|. Thus, every subgraph of Gc is connected and therefore,
by Proposition 2, every selected subgraph satisfies (14).

Example 1. Consider the example shown in Fig. 1. Suppose
that, of the four ellipsoids, three are to be selected (k = 3)
such that the connectedness requirement (9) holds for the
selected subset. From the graph representation of the piecewise

1In (14a), the term 1 is an N ×N matrix with 1 in all its entries.



ellipsoidal set we have

Γ(ψk−1(AG)) = Γ
(
AG + (AG)2

)
= Γ

1 0 0 1
0 1 0 1
0 0 1 0
1 1 0 1

+

2 1 0 2
1 2 0 2
0 0 1 0
2 2 0 3

 =

1 1 0 1
1 1 0 1
0 0 1 0
1 1 0 1

.
Thus, via Proposition 2, the only possible connected subgraph
with order 3 that can be selected consists of the vertex set
{v1, v2, v4} corresponding to {E1, E2, E4}.

Finally, we note that a simple alternative to the method pre-
sented above would be to fix k directions in J in Lemma 1 and
then proceed with computing the maximum volume inscribed
ellipsoids corresponding to those directions. However, such a
technique (without adequate measures) cannot guarantee that
the resulting piecewise ellipsoidal under-approximation 1) is
nonempty, 2) is the largest subset among all possible subsets
with at most k ellipsoids, and 3) is connected.

IV. APPLICATION: CONTROL OF ANESTHESIA

Over the past few years, an interdisciplinary team of re-
searchers at the University of British Columbia has been
developing a closed-loop drug delivery system for anesthesia.
A bolus-based system has been developed and experimentally
validated [22] based on data from more than 80 patients via
clinical trials. The long-term goal of this work is to obtain
regulatory certificates to fully close the loop, guaranteeing
both safety and performance. The viability kernel [9] and the
continual reachability set can provide such guarantees.

In [8] we showed that the continual reachability set, as a
key step towards closing the loop, can be used to guarantee
performance in the control of anesthesia, in that for any
initial state in the set, the target clinical effect can be reached
at arbitrary times. To compute this set, Laguerre-based LTI
models developed previously in [22] describing a patient’s
dynamic response to rocuronium were used. The state and
the input constraint sets K ⊂ R7 and U ⊂ R that represent
respectively the desired clinical effect and the actuator bounds
(hard bounds on the drug infusion rate), are approximated by
compact non-degenerate ellipsoids. To compute the continual
reachability set Reachγ[0,τ ](K↓ε), we first computed the max-
imal reachability sets of the system (with a sampling time
of 20s) at every time step in 14 random initial directions for
τ = 90 time steps. The green/light subset in Fig. 2 shows a
projection of a numerically computed under-approximation of
the continual reachability set based on (5) and (6). In the z-
space shown in the figure, the first state z1 represents the drug
pseudo-occupancy (which is a metric related to the patient’s
plasma concentration of the anesthetic [22]) minus its setpoint
value of 0.9 units, and z2 is a Laguerre state transformed from
the original coordinate space (cf. [8] for more details).

Based on the computed maximal reachability sets above, we
apply Lemma 1 to obtain a piecewise ellipsoidal representation
of the continual reachability set (also shown in Fig. 2).
For every initial direction `τ ∈ J , the maximum volume
inscribed ellipsoid contained in

⋂
t∈[0,τ ] E(x∗(t), X−` (t)) is
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Fig. 2. The z1–z2 projection of K↓ε (blue/dark) and Reachγ
[0,τ ]

(K↓ε)
(green/light) computed for patient #80 undergoing a 30min surgery (τ = 90
with sampling time Ts = 20s). The boundary of a piecewise ellipsoidal
representation (red) of Reachγ

[0,τ ]
(K↓ε) is also shown.
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Fig. 3. z1–z2 projection of Reachγ
[0,τ ]

(K↓ε) (green/light) and the boundary
of its maximum 3-connected piecewise ellipsoidal representation (red).

computed using (7). The union of maximum volume inscribed
ellipsoids that are nonempty under-approximates the continual
reachability set. The resulting piecewise ellipsoidal set consists
of 8 distinct (but not necessarily disjoint) nonempty ellipsoids.

To further simplify the representation of Reachγ[0,τ ](K↓ε),
we employ the results of Section III-A and compute a max-
imum k-connected piecewise ellipsoidal representation with
k = 3. To solve the integer program (10) one may use the
TOMLAB /CPLEX optimization package [23]. Fig. 3 shows
the projection of the simplified representation.

In practice, the representation shown in Fig. 3 provides a
set of restrictions that can be straightforwardly implemented,
e.g., in conjunction with an MPC-based controller. To ensure
safety of the system, the controller is forced to choose an
infusion policy that generates a viable trajectory, satisfying
the target clinical effect at all times. However, such a policy
may not be physiologically suitable for the patient. There are
instances in which, depending on the current physiological
status of the patient, the anesthesiologist (or the closed-loop
controller) may allow the patient to temporarily leave the target
in exchange for additional flexibility in selecting a better-
suited (e.g. less aggressive, mildly varying) infusion rate or
satisfying other secondary clinical objectives, while ensuring
that the patient returns to the target at a prescribed time.
The continual reachability set and its associated control laws
provide such flexibility. This flexibility stems from the fact



that, by definition, the viability control laws are a subset of the
continual reachability control laws. This will allow the closed-
loop system to choose an infusion rate that is physiologically
more optimized to meet the operating conditions and the
patient’s ability to handle the anesthetic drug, while simul-
taneously ensuring that the target clinical effect is reached at
a desired time. Such flexible, patient-oriented design has the
benefit of tailoring the performance of the system towards the
patient’s needs during the surgery.

Suppose that the controller/anesthesiologist decides to use a
continual reachability control policy, causing the trajectory to
temporarily leave the target clinical effect. To guarantee that
the trajectory remains in the target once it returns (and there-
fore guarantee safety), the viability kernel itself can be used as
the target set in the computation of the continual reachability
set. In that case, Reachγ[0,τ ](V iab[0,τ ](K)) = V iab[0,τ ](K)

due to the fact that for T ⊂ X , Reachγ[0,τ ](T ) ⊆ T . Therefore,
Reachγ[0,τ ](V iab[0,τ ](K)) ⊆ V iab[0,τ ](K). On the other hand,

∀x ∈ V iab[0,τ ](K), ∃u(·) s.t. ∀t, x(t) ∈ V iab[0,τ ](K)

=⇒ ∀x ∈ V iab[0,τ ](K), x ∈ Reachγ[0,τ ](V iab[0,τ ](K))

=⇒ Reachγ[0,τ ](V iab[0,τ ](K)) ⊇ V iab[0,τ ](K).

Thus every state that belongs to the continual reachability
set also belongs to the viability kernel, while the viability con-
trol laws are still a subset of the continual reachability control
laws. In such a scenario, initiating the system using a continual
reachability control law allows a temporary relaxation of the
state constraint (in favor of a more clinically relevant infusion
rate) while ensuring that the patient returns to the new target
V iab[0,τ ](K) at a prescribed time. Once the trajectory returns
to V iab[0,τ ](K), the controller will then have the option to
apply viability control laws that keep the patient within K.
Such mixed scheme has the potential to guarantee not only
the performance but also the safety of the closed-loop system.

V. CONCLUSIONS

The continual reachability set can facilitate a physiolog-
ically more relevant control of anesthesia. The added flex-
ibility in choosing the drug infusion policy provides the
anesthesiologist (or the supervisory controller) with additional
degrees of freedom to prioritize the patient’s needs and the
performance of the drug delivery system while still ensuring
that the desired clinical effect can be reached at a prescribed
time. Motivated by this problem of guaranteed performance
in closed-loop control of anesthesia, we presented an under-
approximation technique that can be used to compute a simple,
fixed-complexity piecewise ellipsoidal representation of the
continual reachability set. The proposed closed-form repre-
sentation paves the way towards, for instance, the synthesis
of the continual reachability control laws. Future work also
includes practical integration of a safety- and performance-
based controller in the closed-loop system. In addition, as
what appears to be a straight forward extension of our current
results, we also plan to account for the effect of disturbance
and uncertainty in the formulation of the continual reachability

set and its piecewise ellipsoidal representation. Finally, with
an appropriate control synthesis technique in place, it may
be interesting to quantify a close estimate of the amount of
excursion of a trajectory from the target set based on its initial
state and the synthesized continual reachability control laws.
(A conservative upper-bound has been provided in [8].)
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