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INTRODUCTION  

Mobile devices such as phones and tablets are now 

ubiquitous and have become important tools in our daily 

lives. Our activities and behaviours are becoming 

increasingly coupled to these new devices with their ever 

improving sensor technologies. With current devices, 

mobility patterns and physical activity levels are particularly 

amenable to inference and analysis by leveraging the 

integration of GPS, accelerometers, and other sensors. 

Coupled with feedback through display screens, speakers, 

and vibration, mobile technology has reached a level of 

sophistication that it now presents as an attractive platform 

for assistive technology research and health-related 

applications. 

The electronic health movement has made great strides 

in improving access to health care information by using 

Internet technologies. An obvious next step in this 

progression is to leverage both Internet and mobile 

technologies and investigate mobile health, or mHealth, 

applications (Open mHealth, 2013) that move towards 

further personalization and assistive capabilities. In a more 

general sense, the quantified self movement (Quantified 

Self, 2013) aims to promote self-improvement through 

consistent data collection and analysis. The underlying 

philosophy of the quantified self movement is that 

consistent measurement of and reflection on important 

personal metrics leads to an almost instinctive improvement 

in behaviour. There are a growing number of quantified self 

tools for improving lifestyle or behavioural habits such as 

diet, exercise, and time management. Of particular interest 

to assistive technologists and rehabilitation scientists is 

measurement of a person's mobility, which is an important 

factor in assessing quality of life (Schenk et al., 2011). 

Several systems have been built in recent years that 

explored mobility sensing and reporting to varying degrees. 

UbiFIT (Consolvo et al., 2008) was designed to track 

physical activity (i.e. walking) and provide on-phone visual 

feedback with a simple intuitive display, although users 

wore a separate pedometer that communicated with the 

phone. FUNF, an open source sensing framework for 

Android (Pentland, Aharony, Pan, Sumter, & Gardner, 

2013), provided an extensible framework for capturing a 

wide variety of sensor data from a device and publishing it 

to a web service. HumansSense (Frank, 2013) is an open 

source data collection platform on Android, capable of 

logging sensor data and uploading to a web service. A proof 

of concept system for lifespace recording that utilized pre-

placed bluetooth beacons in the home and mobile phones 

has been demonstrated (Schenk et al., 2011). The open 

mHealth initiative (Open mHealth, 2013) recently proposed 

a standardized architecture for mHealth and reporting 

applications. Ohmage, the open mHealth sensing platform 

(Hicks et al., 2011), allows for data collection on a phone 

with the ability to upload data to a web service for 

summarizing and visualizing reports for users. The 

application has been used to track users' activity levels and 

has also been applied in other studies, e.g. monitoring stress 

levels in new mothers (Ohmage, 2013). 

Towards these ends, we investigated and designed the 

MobiSense system to track lifespace and monitor activity of 

both ambulating persons and wheelchair users using 

standard mobile phones (Dewancker, 2014). To fully report 

about a user's lifespace and activity, the system has three 

basic components: 1) outdoor mobility tracking; 2) indoor 

mobility and localization; and 3) activity level recognition. 

The focus was on techniques that perform well with 

available sensors and in real-world environments using 

standard mobile phones. 

The general goals of the MobiSense project are: 1) to 

collect mobility data in a simple to use manner; 2) to 

provide easily accessible summaries and analysis of daily 

behaviours; and 3) to enable further research and 

development by providing a sandbox environment for rapid 

prototyping and experimentation. The specific objectives of 

the research reported here are to leverage mobile data 

collection technology and centralized analysis to detail a 

wheelchair user's daily activity; thus, we developed a system 

based on Android phones, cloud computing and storage 

services, and custom web services. 

METHODS AND RESULTS 

The MobiSense system is capable of lifespace 

summaries relating to indoor and outdoor mobility as well 

as activity trends and behaviours. Indoor localization is done 

at roughly room level using the relative signal strengths of 

all nearby WiFi base stations.  Outdoor mobility summaries 

are captured by periodically recording GPS fixes. Activity 

classification uses a combination of accelerometer and GPS 

features, enabling differentiation between stationary, 

wheeling (in a wheelchair), walking, or vehicle motion. To 



capture the relevant sensor data, we extended an Android-

based open source logging application which records data 

streams locally on a mobile phone before uploading data to 

a custom web service to process and visualize results. The 

resulting summaries can be visualized either for each 

individual day or over a user-selected date range. A heat 

map visualization was used for display of outdoor lifespace 

to understand the geographic extent of a user's mobility. For 

indoor localizations and activity summaries, pie charts and 

temporal series display trends in a user's mobility. 

System Architecture 

MobiSense builds on the HumanSense project (Frank, 

2013) and couples it with a new web service in the spirit of 

Ohmage (Hicks et al., 2011) and the open mHealth 

architecture (Open mHealth, 2013). The system uses a 

standard Android Nexus 4 phone with no hardware 

modifications; the web client can be viewed from any 

browser on any platform. The centralized processing and 

storage of the data streams lives on a single Amazon EC2 

instance running Ubuntu Linux. The Tornado web server is 

used to handle data uploads and requests for lifespace 

summaries.  

Phone Application and Sensor Logging 

The MobiSense phone application is a modification of 

HumanSense, which logs many of the sensors supported by 

Android. For our lifespace measurements, MobiSense only 

stores WiFi, GPS, and accelerometer readings. The data are 

stored as binary files compressed with gzip on the phone's 

SD card. The WiFi, GPS, and accelerometer sensors are 

polled every 10, 60, 0.05 seconds, respectively. For indoor 

localization and WiFi logging, MobiSense stores the 

number of WiFi access points observable, their signal 

strengths, and network and device identifiers (i.e. SSID and 

BSSID or MAC address). For outdoor localization and GPS 

logging, MobiSense stores only the longitude and latitude of 

each GPS fix. For activity monitoring, MobiSense uses the 

GPS data and the magnitude of the tri-axis acceleration 

adjusted for gravity, the same univariate signal used in 

(Hicks et al., 2011). 

A basic user interface for the phone was designed to 

provide hooks into the most important actions associated 

with the application. A central button starts the logging 

service. When pressed, the application begins recording 

sensor streams and storing the data locally on the device. To 

stop the service, the user presses the same button again and 

another service uploads the recorded files. Below the start 

button, an area of the interface is used for creating an indoor 

location model. The plus (+) button is used to name new 

rooms for training. Another button starts recording WiFi 

observations for training data on the currently selected 

room. It records observations every 800 ms and stores the 

training data for upload to the web service. A user can train 

the indoor model by lingering and moving within a 

particular room for a minute or two. Once the system is 

trained with each room of interest, no user input is needed 

other than charging the phone each night and physically 

carrying it throughout the day. 

Since the application is expected to collect data over the 

course of a full day, an important consideration is the 

amount of data that the sensor logging produces. For an 18 

hour recording period with full accelerometer, WiFi, and 

GPS logging, roughly 15 MB of compressed (50 MB 

uncompressed) sensor data is typically collected. The 

compressed files are uploaded to the web service only when 

the phone has a WiFi Internet connection. Once the data has 

been processed, its summarization format is quite compact, 

with each day producing only about 100 KB. Another 

important consideration for any mobile application is battery 

usage. With little screen use and no calls made or received, 

MobiSense was able to run on a single battery charge on a 

Nexus 4 phone for 22 hours.  

Data Processing: Feature Selection and Classification 

A probabilistic classifier scheme was used for indoor 

localization at the room level. Introduced in (Breiman, 

2001) and shown to be useful for WiFi localization in 

(Balaguer, Erinc, & Carpin, 2012), random forests are 

ensemble learners that use a collection of decision trees to 

classify test observations. Here, observations are the relative 

signal strengths of WiFi access points visible to the mobile 

device. For activity recognition, we fuse features derived 

from non-overlapping windows of accelerometry data, as 

proposed in (Frank, Mannor, Pineau, & Precup, 2012; Hicks 

et al., 2011), with an average speed estimate derived from 

the sequence of GPS fixes.  We consider the mean and 

Fourier series coefficients of the accelerometry time series 

combined with the GPS speed estimate to learn a single 

decision tree, similar to (Hicks et al., 2011), capable of 

distinguishing between stationary, walking, wheeling, and 

vehicle motion. 

To evaluate the indoor localization, we collected 5 

datasets in a variety of indoor environments including 3 

homes, 1 apartment and 1 office environment. To further 

test the robustness of the classifier five simulated datasets, 

that are modified versions of the originals, were created, 

where each observation vector had 20% of its access point 

observations set as if the access point was turned off (to 

simulate conditions with many fewer visible access points).  

Across all datasets, the random forests had an average 

classification accuracy of 91% (Dewancker, 2014). To test 

our activity classifier, training and test data was collected 

with the phone in four configurations. The user either 

walked or used a wheelchair and either had the phone 

placed in their front pocket or backpack. Across all classes 

on the test data the minimum accuracy for activity 

classification was 95% (Dewancker, 2014). 

Data Visualization 

A visualization component is present in many lifespace 

and actigraphy applications and is key to guiding data 



interpretation (Fitbit Inc., 2013; Hicks et al., 2011; Schenk 

et al., 2011). MobiSense provides user feedback and 

summarization visualizations through a custom web client. 

Many of the visualizations are styled after the lifespace 

visualizations presented in (Schenk et al., 2011). First a user 

specifies the date range to be summarized. A slide bar with 

two adjustable ends allows for selection over the range of 

dates that the user collected data. The user also has the 

option of visualizing each individual day over that range 

(Daily), or an aggregate summarization (Total). Once a 

range has been selected the site generates requests for the 

three summary streams from the MobiSense server.  

  The outdoor summary data is a stream of GPS fixes 

displayed using the Google Maps API (Google Inc., 2013) 

to generate a heat map distribution of logged GPS locations. 

Frequently logged locations produce larger, darker heat 

centers. In addition, trace lines can be added to connect 

consecutive fixes. This is a fairly standard map 

visualization, so we do not include a screenshot here.  

 

Figure 1:  Pie Charts Summarizing Distribution of 

Activities and Rooms  

The visualizations for the activity and indoor timelines 

are closely related in that they are summarizing 

classifications over the course of a day. Pie charts 

visualizing the distribution of time spent in each activity 

class for the activity summarization and each room for the 

indoor summarization are created for the user (Fig.1). Users 

can also mouse over the sections of the pie chart and see 

absolute minutes logged for each activity class or room. 

Here, as for the outdoor summary, the visualization stays the 

same whether the user requests individual day summaries or 

the total aggregation over the entire timeline. 

The pie chart works well for a quick summary of the 

user's time; however, temporal trends are also likely of 

interest to users for behaviour analysis. The time series 

visualizations are designed to show specifically when 

classifications occur during the day as a color-coded 

timeline (Schenk et al., 2011). Figure 2 presents an example 

summary for one of the authors on May 19, 2013. There are 

only three classes of interest for the activity summary, while 

the number of rooms for the indoor summary depends on 

the training model. In this example we can see the 

descriptive power of this visualization. The user begins the 

day in the bathroom and bedroom for about 50 minutes, then 

spends some time in the kitchen and living room before 

leaving the house at around noon. The user returns to the 

house at 1 pm and then leaves by vehicle at 2 pm, returning 

around 9 pm. 

 

Figure 2: Activity and Indoor Daily Timeline Summary 

The previous visualizations were used to plot single 

days; however, if the user requests a total aggregation over 

the dates of interest, a different summary is presented. The 

MobiSense server aggregates over each day in the range and 

sends a single sequence that represents the entire date range. 

The timeline is populated with predetermined intervals of 10 

minutes over the course of 24 hours, and each interval stores 

a probability distribution of the classes for that time over the 

date range. For example, if the user selects a range of 10 

days and for 3 of those 10 days the user was classified as 

being in their bathroom from 8:10 to 8:20, then for that 

interval being in the bathroom would be visualized with a 

probability of 0.3. The total 24 hour timeline is visualized as 

a stacked line chart, where each interval is a distribution of 

classifications that add up to 1 (Fig. 3). 

DISCUSSION AND CONCLUSION 

We proposed MobiSense as a research platform for 

lifespace summaries using mobile phones. The combination 

of simple timeline selection with rich visualizations could 

act as powerful explorative tools for researchers as well as 

users interested in their own patterns and behaviours. 

Extensions and improvements to the system are relatively 

straightforward to implement. A test instance of the system 

is currently hosted at http://mobisense.ca. Readers are 

invited to demo the site using login ID: 71b82dc2885abaca. 

Current Limitations 

When proposing an entire system, many areas for future 

improvements arise. In particular, the development of a 

more robust classification scheme to distinguish between 

walking and wheeling activity classes is needed. In practice 

this may be less important since many users would typically 

http://mobisense.ca/


either always walk or wheel. While the design of 

MobiSense was influenced by the system architecture of the 

open mHealth initiative, full adherence to the specification 

(once it becomes available) would be preferable to promote 

standards and collaboration. A serious aspect of any system 

is the concern about security and user privacy. Mobile 

health systems may potentially be storing sensitive and 

private user information and so great care must be taken to 

ensure that data is not compromised. Currently MobiSense 

does not have full security measures in place. 

 

Figure 3: Total Summary Timeline Visualization 

MobiSense and other systems are tools for exploring 

lifespace and behaviours. While passive summarization of 

information is an important step towards behavioural 

changes, future systems may also actively request 

information and make suggestions directly to users, 

incorporating assistive capabilities as an interactive agent. 

Ohmage (Hicks et al., 2011) and HumanSense (Frank, 2013) 

can query a user; however these requests are simple prompts 

for data or labeling. Extending the interactive abilities of 

MobiSense could, for example, enable the creation of very 

useful personalized reminders and alerts. Collaboration with 

other contextual systems would also be powerful; e.g. 

MobiSense could detect which room a user is in, as well as 

whether they are stationary or moving, and perhaps then 

displaying room-specific menus and commands. The 

introduction of Google Glass and other wearable systems 

presents another interesting future platform for data 

collection and visualization. With video recording and a 

small heads up display, interactions and data logging could 

potentially become much richer. We are beginning to see 

devices and systems that are more personalized and 

responsive than ever before. It is an exciting opportunity to 

apply some of these new systems to assistive technology 

and possibly improve quality of life and overall health.  
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