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Abstract

In this paper, we propose a new numerical method for improving
the mass conservation properties of the level set method when the
interface is passively advected in a flow field. Our method uses La-
grangian marker particles to rebuild the level set in regions which are
under-resolved. This is often the case for flows undergoing stretch-
ing and tearing. The overall method maintains a smooth geometrical
description of the interface and the implementation simplicity charac-
teristic of the level set method. Our method compares favorably with
volume of fluid methods in the conservation of mass and purely La-
grangian schemes for interface resolution. The method is presented in
three spatial dimensions.
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1 Introduction

Level set methods have become widely used for capturing interface evolution
especially when the interface undergoes extreme topological changes, e.g.
merging or pinching off. The application of level set methods to a wide
variety of problems including fluid mechanics, combustion, computer vision,
and materials science is discussed in the recent review articles by Osher and
Fedkiw [20] and Sethian [34] as well as the recent books of Osher and Fedkiw
[21] and Sethian [33]. The great success of level set methods (and other
Eulerian methods) can be attributed to the role of curvature in numerical
regularization such that the proper vanishing viscosity solution is obtained.
This connection between curvature and the notion of entropy conditions
and shocks for hyperbolic conservation laws was explored by Sethian [29,
30]. Any Lagrangian scheme used to solve the same problem, including the
discretization of the interface by marker particles, can not readily achieve
a similar result since there is no a priori way to build regularization into
the method. Lagrangian particles faithfully follow the characteristics of the
flow, but must be deleted (usually “by hand”) if the characteristics in a
given region merge.

The ability to identify and delete merging characteristics is clearly seen
in a purely geometrically driven flow where a curve is advected normal to
itself at constant speed. Figure 1 shows an initial square interface described
by the φ = 0 isocontour of a level set function along with the associated
velocity field defined by ∇φ/|∇φ|. Note that the flow field has merging
characteristics on the diagonals of the square. Figure 2 shows an adequate
numerical solution computed using the level set method to correctly shrink
the box as time increases. On the other hand, a Lagrangian front tracking
model of the interface will not calculate the correct motion. We demonstrate
this by seeding passively advected particles interior to the zero isocontour of
the level set function as shown in figure 3. As the particle positions evolve
in time, they follow the characteristic velocities of the flow field as shown
in figure 4. Note how the particles incorrectly form long, slender filaments
on the diagonals of the square where characteristics merge and should be
deleted (as is correctly done by the level set method). Helmsen [13] and
others have used “de-looping” procedures in an attempt to remove these
incorrect particle tails. While these procedures are sometimes manageable
in two spatial dimensions, they become increasing intractable in three spatial
dimensions.

Almost from their inception, level set methods have been used to model
multiphase immiscible incompressible flows, see [41]. These methods are at-
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tractive because they admit a convenient description of topologically com-
plex interfaces and are quite simple to implement. Lagrangian style front
tracking schemes, e.g. Tryggvason et al. [44, 43] and marker particles
[12, 6, 25, 7, 26, 42], have also been used to model this class of problems.
In addition, a popular alternative Eulerian front capturing scheme, the vol-
ume of fluid (VOF) method [14, 24], is widely used. All of these methods
have had varying degrees of success correctly modeling flows with large vor-
tical components. In order to compare the fidelity of these schemes, Rider
and Kothe proposed a set of test problems [27, 28] which approximate flows
with large vortical components. In a comparison of various Lagrangian and
Eulerian methods for these flows, Rider and Kothe found that Lagrangian
tracking schemes maintain filamentary interface structures better than their
Eulerian counterparts. In the same study, it was noted that when fluid
filaments become too thin to be adequately resolved on the grid, level set
methods lose (or gain) mass while VOF methods form “blobby” filaments to
locally enforce mass conservation. Both of these errors decrease the accuracy
of the predicted interface location. Attempts to improve mass conservation
in level set methods have led to a variety of reinitialization methods, from
the original redistancing algorithm of Sussman et al. [41] to a more recent
method by Sussman and Fatemi [39, 40] which constrains the reinitializa-
tion scheme to approximately conserve area (volume). In addition, the use
of higher order ENO/WENO [15] approximations for the spatial derivatives
during the convection and reinitialization steps has been proposed.

Despite a lack of explicit enforcement of volume conservation, Lagrangian
schemes are quite successful in conserving mass since they preserve material
characteristics for all time as opposed to regularizing them out of existence
as may happen with Eulerian front capturing methods. For under-resolved
flows, Eulerian capturing methods can not accurately tell if characteristics
merge, separate, or are parallel. This indeterminacy can cause level set
methods to calculate the weak solution to the problem and delete character-
istics when they appear to be merging. Osher and Sethian [22] constructed
level set methods to deal with the case in which characteristics do merge as
seen in figure 2, i.e. to recognize the presence of shocks and delete merg-
ing characteristic information. Now we are faced with a difficult question
concerning the appropriateness of using level set schemes designed to merge
characteristics automatically when we lack knowledge about the character-
istic structure in under-resolved regions of the flow. Moreover, in the case
of fluid flows, we know a priori that there are no shocks present in the fluid
velocity field, and thus characteristic information in that field should never
be incorrectly deleted. This is the case for both incompressible and com-
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pressible flows. For compressible flows, only acoustic characteristic fields
form shocks, while the linearly degenerate fluid velocity does not.

Keeping this in mind, we briefly turn our attention away from level set
methods. Eulerian VOF schemes have the accuracy problems noted above
and, in the attempt to maintain local mass conservation, “blobby” flot-
sam and jetsam can spuriously appear [17]. The reconstructed interface is
not smooth or even continuous, lowering the accuracy of the geometrical
information (normals and curvature) at the interface compromising the en-
tire solution. Several researchers have worked to improve the accuracy of
the VOF geometrical information using convolution, see e.g. [46] and [45].
Sussman and Puckett [37] combined the VOF and level set methods in or-
der to alleviate some of the geometrical problems of the VOF method. The
resulting scheme is completely Eulerian and does not incorporate any of the
front tracked characteristic information needed in under-resolved regions.
Instead, the VOF local mass constraint is still blindly applied. On the other
hand, front tracking schemes pose many difficulties in the reconstruction of
the interface especially in three spatial dimensions for pinching and merging
droplets [43]. The use of marker particles is an attractive idea since the
lack of connectivity makes implementation much easier than front tracking.
Unfortunately, one is left with a less than satisfactory description of the in-
terface geometry making accurate calculations with surface tension difficult.
In fact, even front tracking schemes need smoothing near the interface in
order to obtain smooth geometrical quantities [48]. Level sets have a sim-
plicity not matched by many of the above methods while still maintaining
nice geometric properties. However, they suffer from excessive mass loss
especially in under-resolved regions.

In this paper, we propose a new method which combines the best prop-
erties of an Eulerian level set method and a marker particle Lagrangian
scheme. Our method randomly places a set of marker particles near the
interface (defined by the zero level set) and allows them to passively advect
with the flow. In fluid flows, particles do not cross the interface except when
the interface capturing scheme fails to accurately identify the interface loca-
tion. If the marker particles initially seeded on one side of the interface are
detected on the opposite side, this indicates an error in the level set repre-
sentation of the interface. We fix these errors by locally rebuilding the level
set function using the characteristic information present in these escaped
marker particles. This allows the level set method to obtain a sub-grid scale
accuracy near the interface and works to counteract the detrimental mass
loss of the level set method in under-resolved regions. The particles play
no other role in the calculation and the smooth geometry of the interface
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is determined by the level set function alone. Also, since the marker par-
ticles are disconnected, the ease and simplicity of coding level set methods
is maintained by this “particle level set” method. Numerical results based
upon a series of two and three dimensional interface stretch tests proposed
and inspired by Rider and Kothe [27, 28] are performed to demonstrate that
the new particle level set technique compares favorably with VOF methods
with regards to mass conservation and with purely Lagrangian schemes with
regards to interface resolution.

Before proceeding, we remark that this new method was designed to
track material interfaces for both incompressible and compressible flows
where characteristics are not created or destroyed. In these instances, we
can use marker particles to accurately track characteristic information with-
out considering shocks and rarefactions where particles need to be created
and destroyed in a consistent fashion. The particle level set method has
not yet been extended to treat more complex flows such as those involving
geometry, e.g. motion normal to the interface or motion by mean curvature.
However, extending the particle level set method to treat the reinitialization
equation is straightforward since the exact solution dictates that both the
interface (zero level set) and the marker particles should sit still.
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Figure 1: Shrinking square. Initial interface location and velocity field.
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Figure 2: Shrinking square. Final interface location of the (correct) level set
solution.
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Figure 3: Shrinking square. Passively advected particles are initially seeded
inside the interface.
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Figure 4: Shrinking square. Final (incorrect) location of the passively ad-
vected marker particles.
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2 Numerical Method

2.1 Level Set Method

The underlying idea behind level set methods is to embed an interface Γ
in R3 which bounds an open region Ω ⊂ R3 as the zero level set of a
higher dimensional function φ(~x, t). The level set function has the following
properties,

φ(~x, t) > 0 for ~x ∈ Ω
φ(~x, t) ≤ 0 for ~x 6∈ Ω,

where we include φ = 0 with the negative φ values so that it is not a
special case. The interface lies between φ > 0 and φ = 0, but can of
course be identified as φ = 0. Note that φ is a scalar function in R3 which
greatly reduces the complexity of describing the interface, especially when
undergoing topological changes such as pinching and merging.

The motion of the interface is determined by a velocity field, ~u, which
can depend on a variety of things including position, time, geometry of the
interface, or be given externally for instance as the material velocity in a
fluid flow simulation. In most of the examples below, the velocity field is
externally given, and the evolution equation for the level set function is given
by

φt + ~u · ∇φ = 0. (1)

This equation only needs to be solved locally near the interface, e.g. see
[1, 23].

It is convenient to make φ equal to the signed distance to the interface
so that |∇φ| = 1. This ensures that the level set is a smoothly varying func-
tion well suited for high order accurate numerical methods. Unfortunately,
as noted in [41], the level set function can quickly cease to be a signed dis-
tance function especially for flows undergoing extreme topological changes.
Reinitialization algorithms maintain the signed distance property by solving
to steady state (as fictitious time τ →∞) the equation

φτ + sgn(φ0)(|∇φ| − 1) = 0 (2)

where sgn(φ0) is a one-dimensional smeared out signum function approxi-
mated numerically in [41] as

sgn(φ0) =
φ0√

φ2
0 + (∆x)2

.
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Efficient ways to solve equation 2 to steady state via fast marching methods
are discussed in [31, 32]. Again, equation 2 only needs to be solved locally
near the interface. We use a fifth order accurate Hamilton-Jacobi WENO
scheme [15] to calculate the spatial derivatives in both equations 1 and 2.

Geometrical quantities can be calculated from the level set function,
including the unit normal,

~N =
∇φ

|∇φ| , (3)

and the curvature,

κ = ∇ ·
( ∇φ

|∇φ|
)

. (4)

The spatial derivatives in equations 3 and 4 can be calculated using standard
second order accurate central differencing when the denominators are non-
zero. Otherwise, one sided differencing is used.

2.2 Massless Marker Particles

Two sets of massless marker particles are placed near the interface with one
set, the positive particles, in the φ > 0 region and the other set, the negative
particles, in the φ ≤ 0 region. It is unnecessary to place particles far from the
interface since the sign of the level set function easily identifies these regions.
This greatly reduces the number of particles needed in a given simulation.
Traditional marker particle schemes [12, 26] place particles throughout the
domain, although Amsden [2] proposed a method that only requires particles
near the free surface. More recently, Chen et al. [7] introduced the surface
marker method which also uses only surface particles.

The particles are advected with the evolution equation

d~xp

dt
= ~u(~xp) (5)

where ~xp is the position of the particle and ~u(~xp) is its velocity. The particle
velocities are trilinearly interpolated from the velocities on the underlying
grid. This trilinear interpolation limits the particle evolution to second or-
der accuracy. While it is not difficult to implement higher order accurate
interpolation schemes (with the appropriate limiters), we have found trilin-
ear interpolation to be sufficient and prefer it for efficiency considerations
(i.e. it is fast). We use the grid velocity at time n, although the velocity at
time n+1 could be used as well. A third order accurate TVD Runge-Kutta
method, see [16] and [35], is used to evolve the particle positions forward in
time.
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The particles are used to both track characteristic information and to
reconstruct the interface in regions where the level set method has failed to
accurately preserve mass. For the purpose of interface reconstruction, we
allow our particles to overlap as illustrated in the bottom of figure 5. This
allows us to reconstruct the interface exactly in the limit as the number of
particles approaches infinity. Non-overlapping spheres will not reconstruct
the interface as the number of particles approaches infinity. For example,
the top of figure 5 shows how three equally sized non-overlapping circles
leave large spaces when used to represent a straight line interface, while the
bottom of the figure shows that six equally sized overlapping circles more
readily resolve the line. Since the particles do not represent finite amounts
of mass, allowing them to overlap does not create any inconsistencies in
the method. The particles are used to track characteristic information, and
allowing overlap merely means that some of the characteristic information
is represented in duplicate by more than one particle. Since the particles
are allowed to overlap at the end of the time step as well, carrying around
duplicate characteristic information does not hinder our scheme in any way.

For the purpose of interface reconstruction, a sphere of radius rp is cen-
tered at each particle location, ~xp. The radius of each particle is bounded
by minimum and maximum values based upon the grid spacing. Maximum
and minimum radii which appear to work well are

rmin = .1min(∆x,∆y, ∆z) (6)
rmax = .5min(∆x,∆y, ∆z). (7)

This allows multiscale particle resolution of the interface. This particular
choice of bounds on the particle radii (from 10% to 50% of a grid cell)
was the first we tried, and further experimentation might give improved
results. However, as shown in the examples section, these bounds already
give surprisingly good results.

We use an array based implementation to store the particle information,
since connectivity information is not required. This simplifies the integration
of the particle evolution equation 5. Depending on the frequency of particle
insertions and deletions, certain performance optimizations of the particle
array storage can be made. For example, one can use an oversized particle
array which supports additional insertions without resizing as well as a list
of the indices of valid particles so that constant repacking of the array can
be avoided.
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Three Non-Overlapping Circles

Six Overlapping Circles

Figure 5: The top picture shows how three equally sized non-overlapping
circles leave large spaces when attempting to represent a straight line in-
terface, while the bottom picture shows how six equally sized overlapping
circles more readily resolve the line.
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2.3 Particle Level Set Method

2.3.1 Initialization of Particles

Initially particles of both sign are placed in cells that have at least one corner
within 3 max(∆x,∆y, ∆z) of the interface, i.e. for a given cell, we check
whether |φ| < 3 max(∆x,∆y, ∆z) at any of the eight corners. The number
of particles of each type (positive or negative) per cell is set to a default of
64 particles (16 in 2D, or 4 in 1D, i.e. 4 particles per spatial dimension),
although this number is user definable. While there are a number of particle
placement strategies that could be used to accurately sample the cell, e.g. see
[10] for a discussion of ”jitter”, we simply randomly position each particle in
the cell. This basic technique worked surprisingly well as can be seen in the
examples section. However, more sophisticated sampling techniques might
improve the numerical results. An example of this initial particle seeding is
shown in figure 11.

After the initial seeding, the particles are attracted to the correct side of
the interface (i.e. positive particles to the φ > 0 side and negative particles
to the φ ≤ 0 side) into a band between a distance of bmin = rmin (the
minimum particle radius) and bmax = 3 max(∆x,∆y, ∆z) of the interface.
The original uniform seeding of the particles generates a random distribution
of particles in the direction tangent to the interface. In order to obtain a
random distribution of the particles in the direction normal to the interface,
we chose an isocontour φgoal ∈ (±bmin,±bmax) using a uniform random
distribution. Then we carry out an attraction step with the aim of placing
the particle on the φ = φgoal level set contour.

The particles are attracted to the appropriate isocontours taking advan-
tage of geometrical information contained within the level set function φ.
Near the interface, the normal vectors give the direction to the nearest point
on the interface. To attract a particle at ~xp with a current interpolated level
set value of φ(~xp) to a different φ = φgoal level set contour along the shortest
possible path, one calculates

~xnew = ~xp + λ(φgoal − φ(~xp)) ~N(~xp), (8)

with λ = 1. For under-resolved regions or regions where the quality of
the geometric information contained within the level set function has been
degraded, equation 8 may not put the particle on the desired contour or even
in the appropriate band. To overcome these difficulties, several iterations of
the above scheme may be needed. If equation 8 places a particle outside the
computational domain, λ is successively halved until the particle stays within
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the domain. Then, if equation 8 (with this new λ) puts the particle in the
appropriate band, i.e. (±bmin,±bmax), we accept the new particle position
even though it may not be on the φ = φgoal contour. Otherwise, we halve λ
once more, determine the new particle position and repeat the process with
λ again initially set to 1 and ~xp set to this newly calculated position. Using
λ/2 should move the particle closer to the interface where the geometric
information should be more accurate. If, after a set maximum number of
iterations (e.g. we use 15), the particle is still not within the desired band,
it is deleted. Figure 12 shows Zalesak’s disk after particle attraction step
has been completed.

Finally, each particle radius is set according to

rp =





rmax if spφ(~xp) > rmax

spφ(~xp) if rmin ≤ spφ(~xp) ≤ rmax

rmin if spφ(~xp) < rmin,
(9)

where sp is the sign of the particle (+1 for positive particles and -1 for
negative particles). This equation adjusts the particle size such that the
boundary of the particle is tangent to the interface whenever possible, i.e.
while adhering to the possibly stricter restriction that the always positive
particle radius is bounded by rmin and rmax.

2.3.2 Time Integration

The marker particles and the level set function are separately integrated
forward in time with a third order accurate TVD Runge-Kutta method, see
[16] and [35]. Separate temporal integration allows for the possibility of using
a different ordinary differential equation solver for the particle evolution.

2.3.3 Error Correction of the Level Set Function

Identification of Error: After each complete Runge-Kutta cycle, the
particles are used to locate possible errors in the level set function due to
the non-physical deletion of (incorrectly perceived) merging characteristics.
Particles that are on the wrong side of the interface by more than their ra-
dius, as determined by the locally interpolated φ(~xp), are considered to have
escaped. These escaped particles indicate that characteristics have probably
been incorrectly merged through regularization i.e. the level set method has
computed a weak solution. Since these weak solutions are only first order
accurate, one can typically use a relatively low order accurate method for
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both the particle evolution and the particle correction algorithms, i.e. rela-
tively lower order accurate as compared to the fifth order accurate WENO
method used for the evolution of the level set function. Using any informa-
tion from the particles greatly improves the quality of the computed results,
since the particles provide us with characteristic information that was dis-
carded entirely by the level set function. Moreover, lower order accurate
methods are relatively more efficient to implement decreasing the computa-
tional overhead involved in augmenting the level set calculations with the
proposed particle methods.

In smooth well resolved regions of the flow where the level set method is
highly accurate, the particles do not drift a non-trivial distance across the
interface allowing us to maintain a high order accurate level set solution.
That is, a particle is not defined as escaped when some portion of its sphere
crosses the interface. Otherwise, escaped particles would appear all the time
due to various types of numerical errors (even roundoff error). If we allow
infinitesimal errors to force particle repairing of the level set function, we
would need high order accuracy for the particle evolution and correction
methods. Instead, we define a particle as escaped only when it crosses the
interface by more than its radius. Since the particle radius is O(4x), error
identification only occurs when the particle solution and the level set solution
differ to first order accuracy. With at least second order accurate evolution
methods for the particles and the level set function, one would not expect to
see any error identification in well resolved regions of the flow. However, in
under-resolved regions of the flow where the level set method generates a first
order accurate weak solution, the second order accurate particle evolution
will identify errors in the level set representation of the interface that need
to be repaired. While one can change the escape condition for the particles
to be any (non-zero) multiple of the particle’s radius, we have found that
the current choice produces good numerical results. So far, we have not
experimented with other choices, and conceivably they might lead to even
better numerical results.

Quantification of Error: The spheres associated with each particle can
be thought of as locally defined level set functions. We represent the sphere
centered at each particle using a level set function

φp(~x) = sp(rp − |~x− ~xp|) (10)

where sp is the sign of the particle, i.e ±1. The zero level set of φp cor-
responds to the boundary of the particle sphere. These level sets are only
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defined locally on the eight corners of the cell containing the particle. The
local values of φp are the particle predictions of the values of the level set
function on the corners of the cell. Any variation of φ from φp indicates
possible errors in the level set solution.

Reduction of Error: We use the escaped positive particles to rebuild the
φ > 0 region and the escaped negative particles to rebuild the φ ≤ 0 region.
For example, take the φ > 0 region and an escaped positive particle. Using
equation 10, the φp values of the eight grid points on the boundary of the
cell containing the particle are calculated. Each φp is compared to the local
value of φ and the maximum of these two values is taken as φ+. This is done
for all escaped positive particles creating a reduced error representation of
the φ > 0 region. That is, given a level set φ and a set of escaped positive
particles E+, we initialize φ+ with φ and then calculate

φ+ = max
∀p∈E+

(φp, φ
+). (11)

Similarly, to calculate a reduced error representation of the φ ≤ 0 region,
we initialize φ− with φ and then calculate

φ− = min
∀p∈E−

(φp, φ
−). (12)

φ+ and φ− will not agree due to the errors in both the particle and level set
methods as well as interpolation errors, etc. We merge φ+ and φ− back into
a single level set by setting φ equal to the value of φ+ or φ− which is least
in magnitude at each grid point,

φ =

{
φ+ if |φ+| ≤ |φ−|
φ− if |φ+| > |φ−|. (13)

The minimum magnitude is used to reconstruct the interface (instead of, for
example, taking an average), since it gives priority to values that are closer
to the interface.

Note that if the particle locations (from the particle evolution equation)
are calculated to second order accuracy and the O(4x) escape condition
is used, this error reduction step only occurs in regions of the flow where
the level set method has computed a weak solution and deleted character-
istics entirely. Therefore, the accuracy requirements of the error reduction
step can be rather low while still producing markedly improved numerical
results as shown in the examples section. While higher order accurate error
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reduction methods might produce better results, there is a trade off in loss
of efficiency especially when dealing with a large number of particles.

We also note that there are a number of standard techniques that can
be applied to further increase efficiency, but most of these are merely imple-
mentation details that cloud the purpose of this paper. As an example, one
might worry that every particle needs to have a costly square root evaluated
at each of the eight corners of the cell containing it. However, we only need
to do this for escaped particles in under-resolved regions of the flow greatly
reducing the number of particles that need to be considered. Furthermore,
each grid node is only affected by the closest positive particle and the closest
negative particle. Thus, the particles can be sorted based on the square of
their distance, and after the closest particles are identified, only two square
roots per grid node are needed. That is, the number of square roots needed
is equal to two times the number of grid points in under-resolved regions of
the flow and is independent of the number of particles or escaped particles
used in the calculation.

2.3.4 Reinitialization

Since the particle level set method relies on φ being an approximate signed
distance function, we reinitialize the level set function using equation 2 af-
ter each combination of a Runge-Kutta cycle and an error correction step.
Unfortunately, reinitialization may cause the zero level set to move, which is
not desirable, so we use the particle level set method to correct these errors
as well. During the reinitialization step, we do not want the particles to
follow the characteristics present in equation 2 which flow away from the
interface. Instead, we keep the particles stationary corresponding to the
desired velocity of the zero level set. We then use the particles to identify
and correct any errors produced by the reinitialization scheme.

After reinitialization of the level set function, including the identification
and reduction of errors using particles, we adjust the radii of the particles
according to the current φ(~xp) value as described by equation 9. This ra-
dius adjustment allows a larger difference between the particle and level
set solutions before one assumes that characteristics have been incorrectly
deleted. In smooth regions, particles can slowly shrink to the minimum al-
lowable radius before crossing over the interface indicating errors. However,
in under-resolved regions, particles will jump (possibly relatively far) across
the interface in a single time step as the level set method computes a weak
solution deleting a large region of characteristic information.

In summary, the order of operations is: evolve both the particles and
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the level set function forward in time, correct errors in the level set function
using particles, apply reinitialization, again correct errors in the level set
function using particles, and finally adjust the particle radii.

2.3.5 Particle Reseeding

In flows with interface stretching and tearing, regions which lack a suffi-
cient number of particles will form. This problem has also been observed in
particle only methods which seed particles everywhere in the computational
domain [11]. In order to accurately resolve the interface for all time, we will
need to periodically readapt the particle distribution to the deformed inter-
face. This idea of adding and deleting particles has been addressed by many
authors, see for example [18]. We not only add and delete particles in cells
near the interface, but also delete particles that have drifted too far from
the interface to provide any useful information, e.g. positive particles with
φ(~xp) > bmax and negative particles with φ(~xp) < −bmax. The reseeding
algorithm should not alter the position of the particles near the interface as
they are accurately tracking the evolution of the interface and can provide
useful information should they escape in the future. In addition, escaped
particles should not be deleted as they indicate that characteristic infor-
mation too small to be represented with the current grid has been deleted
by the level set method. Even if escaped particles are not currently con-
tributing to the level set function because there are not enough of them in a
given region, they may agglomerate and contribute in the future. Moreover,
recent work [5] has shown that under-resolved information can be adapted
into a two phase mixture model until it reaches a critical mass where it can
be reabsorbed and properly represented by the interface tracking scheme.

Reseeding is carried out by first identifying all the non-escaped particles
in each cell. Then the local value of the level set function is used to decide if
a given cell is near the interface, e.g. within three grid cells. If a cell is not
near the interface, all the non-escaped particles are deleted. Otherwise, if a
cell near the interface currently has less particles than the previously defined
maximum (e.g. 64 in 3D), particles are added to the cell and attracted to
the interface.

If there are too many non-escaped particles in a given cell, we create
a heap data structure which holds the desired number of particles. Each
non-escaped particle in the cell is inserted into the heap based upon the
difference between the locally interpolated φ(~xp) value and its radius, i.e.
spφ(~xp) − rp, since we want to keep the particles that are closest to the
interface. The heap is a computationally and memory efficient way to store
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a priority queue. The particle with the largest spφ(~xp) − rp is placed on
top. Once the heap is full and properly sorted, we consider the remaining
particles one at a time. For each remaining particle, its spφ(~xp)−rp value is
compared with the corresponding value of the particle atop the heap. If the
current particle under consideration has a smaller value than the particle
atop the heap, we delete the particle on top of the heap and replace it with
the current particle. A down heap sort is then performed placing the next
candidate for removal atop the heap. On the other hand, if the current
particle’s spφ(~xp)−rp value is larger than that of the particle atop the heap,
we simply delete it.

The reseeding operation is problem dependent. Viable reseeding strate-
gies include reseeding at fixed time intervals or according to some measure
of interface stretching/compression, e.g. arc length in 2D or surface area in
3D. When reseeding based upon a change in surface area, level set methods
allow easy estimation of this quantity. The surface area of the interface is
given by ∫

δ(φ)|∇φ|d~x,

where δ(φ) is a numerically smeared out delta function which to first order
accuracy can be approximated as

δ(φ) =





0 φ < −ε
1
2ε + 1

2ε cos(πφ
ε ) −ε ≤ φ ≤ ε

0 ε < φ,

where ε = 1.5∆x is the bandwidth of the numerical smearing.
We note that excessive reseeding to calculate under-resolved regions is

not recommended since the inserted particles have to be attracted to the
interface using the current geometry defined by the level set function. If
the interface geometry is poorly resolved, reseeding may not improve the
resolution at the interface. In fact, it may be damaged.

In order to demonstrate the need and feasibility of the reseeding algo-
rithm, we consider the converse to the problem addressed in figures 1 and 2.
Here we use the velocity field ~u = − ~N as opposed to the ~u = + ~N velocity
field used in those figures. This velocity field is shown in figure 6 along with
the level set initial data. In this example, the level set function experiences
a rarefaction at the corners as a single point expands into a quarter circle
as shown in figure 7. Figure 8 shows an initial seeding of passively advected
interior particles while figure 9 shows the final location of these particles.
Note that they have spread out appreciably in the corners. Figure 10 shows

18



the same result after one application of the reseeding algorithm. Note that
the interface is now significantly more accurately resolved by the particles.
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Figure 6: Expanding square. Initial interface location and velocity field.
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Figure 7: Expanding square. Final interface location of the level set solution.
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Figure 8: Expanding square. Passively advected particles are initially seeded
inside the interface.
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Figure 9: Expanding square. Final location the passively advected marker
particles.
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Figure 10: Expanding square. Location of interior particles after one appli-
cation of the reseeding algorithm.
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3 Examples

3.1 Rigid Body Rotation of Zalesak’s Disk

Consider the rigid body rotation of Zalesak’s disk in a constant vorticity
velocity field [47]. The initial data is a slotted circle centered at (50,75)
with a radius of 15, a width of 5, and a slot length of 25. The constant
vorticity velocity field is given by

u = (π/314)(50− y),
v = (π/314)(x− 50),

so that the disk completes one revolution every 628 time units.
Figure 11 illustrates the initial seeding of particles on both sides of the

interface while figure 12 depicts the particle locations after the attraction
step has been applied to attract them to the appropriate bands on the correct
side of the interface. Blue dots indicate the location of negative particles
and red dots indicate the location of positive particles. A 100×100 grid cell
computational mesh is shown in the figures illustrating that the slot is only
5 grid cells across.

Figure 13 illustrates the high quality particle level set solution obtained
after one full rotation. Figures 15 and 16 compare the evolution of a level
set only method (red) and our particle level set method (blue) after one and
two revolutions, respectively. The exact solution (green) is also plotted for
the sake of comparison. As expected, the level set only method applies an
excessive amount of regularization in the sharp corners.

Figure 14 illustrates the need for both positive and negative particles.
Here, we plot the level set solution, the particle level set solution and theory
along with both the positive and negative particles. The errors in the level
set solution are emphasized by plotting escaped positive particles in light
red and the escaped negative particles in light blue. This illustrates how the
positive particles correct the errors at the two corners at the top of the slot
while the negative particles correct the errors at the two corners near the
bottom of the slot.

Tables 1 and 2 compare the area loss (or gain) of the level set method and
the particle level set method on three different grids. The area is calculated
using a second order accurate unbiased level set contouring algorithm [4]. In
addition, we calculate the accuracy of the interface location using the first
order accurate error measure introduced in [39],

1
L

∫
|H(φexpected)−H(φcomputed)|dxdy, (14)
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Grid Cells Area % Area Loss L1 Error Order
exact 582.2 - - -

50 0 100% 4.03 N/A
One 100 613.0 -5.3% .61 2.7
Revolution 200 579.1 .54% .08 2.9

50 0 100% 4.03 N/A
Two 100 634.7 -9.0% .89 2.2
Revolutions 200 577.4 .82% .11 3.0

Table 1: Zalesak’s disk. Level set method.

Grid Cells Area % Area Loss L1 Error Order
exact 582.2 - - -

50 495.7 14.9% .59 N/A
One 100 580.4 .31% .07 3.1
Revolution 200 581.0 .20% .02 1.5

50 487.6 16.2% .62 N/A
Two 100 578.0 .72% .09 2.8
Revolutions 200 580.0 .38% .03 1.4

Table 2: Zalesak’s disk. Particle level set method.

where L is the length of the expected interface. This integral is numerically
calculated as in [39]:

• partition the domain into many tiny pieces (1000× 1000),

• interpolate φcomputed onto the newly partitioned domain and calculate
φexpected for the domain,

• numerically integrate equation 14, where H(φ) is the indicator function
for φ ≤ 0, i.e. H(φ) = 1 if φ ≤ 0 and H(φ) = 0 otherwise.

On the coarsest grid (50× 50 grid cells), the level set only solution vanishes
before one revolution is completed while the particle level set method still
maintains 83.8% of the area even after two rotations.

3.2 Single Vortex

While Zalesak’s disk is a good indicator of diffusion errors in an interface
capturing method, it does not test the ability of an Eulerian scheme to
accurately resolve thin filaments on the scale of the mesh which can occur
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in stretching and tearing flows. A flow which exhibits interface stretching
is the “vortex-in-a-box” problem introduced by Bell, Colella and Glaz [3].
Figure 17 shows the non-constant vorticity velocity field centered in the box
with the largest velocity located half way to the walls of the domain. The
velocity field is defined by the stream function

Ψ =
1
π

sin2(πx) sin2(πy).

A unit computational domain is used with a circle of radius .15 placed at
(.5,.75). The resulting velocity field stretches out the circle into a very long,
thin fluid element which progressively wraps itself towards the center of the
box.

Figure 18 illustrates the behavior of the particles in the vortex flow field
at t = 1 using a 64× 64 grid cell domain. The positive particles are shown
in red while the negative particles are shown in blue. Even at this relatively
early time, there has been a substantial amount of stretching of the interface,
and the particle bands which were initially three grid cells deep have been
stretched out and compressed. Both the particle level set solution and a
high resolution front tracked solution are plotted in the figure, although it
is difficult to ascertain which is which as they are almost directly on top of
each other. The role of the particles in helping to maintain the interface
can be seen in figure 19 which depicts the level set solution along with light
blue negative particles that have escaped from the level set solution. Note
that these escaped particles exist at both the head and the tail where the
curvature is large.

The ability of the particle level set method to maintain thin, elongated
filaments is shown in both figure 20 at t = 3 and figure 21 at t = 5. Both
figures were computed using 128× 128 grid cells. The interface depicted in
figure 20 is at the same position as figure 13a in [28] and figures 4a,b,c,d in
[27] for the sake of comparison. Both figures show the level set solution (red),
the particle level set solution (blue) and the high resolution front tracked
solution (green). The particle level set method clearly outperforms the level
set method. Only near the head and the tail of the interface where it is about
one grid cell wide does the particle level set method fail to compete with
the high resolution front tracked solution. Also note that while the particle
level set method does not exactly conserve area, unlike VOF methods, it
exhibits less “blobby” structure than VOF methods, see figure 4d in [27].
In under-resolved regions, the particles will not be close enough together
to accurately represent the interface and thin filament structures will break
apart. However, the particles still track the interface motion with second
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Grid Cells Area % Area Loss L1 Error Order
exact .0707 - - -

64 0 100.0% .075 N/A
128 .0425 39.8% .031 1.3
256 .0634 10.3% .008 2.0

Table 3: One period of vortex flow. Level set method.

Grid Cells Area % Area Loss L1 Error Order
exact .0707 - - -

64 .0694 1.81% .003 N/A
128 .0702 .71% .001 1.1
256 .0704 .35% 5.09E-4 1.4

Table 4: One period of vortex flow. Particle level set method.

order accuracy, and thus the resulting pieces are in accurate locations. In
contrast, the interface reconstruction procedure used in VOF methods forces
mass in neighboring cells to be artificially attracted to each other, i.e. mass
in under-resolved regions is inaccurately moved around during the interface
reconstruction step resulting in larger blobs with first order accurate errors
in their location.

For the purposes of error analysis, the velocity field is time reversed by
multiplying by cos(πt/T ) where T is the time at which the flow returns to its
initial state, see LeVeque [19]. The reversal period used in the error analysis
of the vortex problem is T = 8 producing a maximal stretching similar to
the interface in figure 20. As can be seen from the error tables 3 and 4
as well as figures 22 and 23, the ability of the particle level set method to
model interfaces undergoing substantial stretching is quite good. The L1

errors reported here compare favorably with those reported by Rider and
Kothe in [28] using a VOF PLIC method.

3.3 Deformation Field

An even more difficult test case is the entrainment of a circular body in a
deformation field defined by 16 vortices as introduced by Smolarkiewicz [36].
The periodic velocity field is given by the stream function

Ψ =
1
4π

sin(4π(x + .5)) cos(4π(y + .5)). (15)
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Grid Points Area % Area Loss L1 Error Order
exact .0707 - - -

64 .0569 19.5% .045 N/A
128 .0585 17.2% .016 1.5
256 .0622 12.0% .009 .8

Table 5: One period of deformation flow. Level set method.

Grid Points Area % Area Loss L1 Error Order
exact .0707 - - -

64 .0696 1.59% .002 N/A
128 .0705 .03% .001 1.1
256 .0705 .03% 4.4E-4 1.4

Table 6: One period of deformation flow. Particle level set method.

Periodicity is enforced and the interface crosses the top boundary of the
domain to reappear on the bottom as shown in figure 24 at t = 1 using
a time reversed flow field with a period of T = 2. The figure shows the
level set solution (red), the particle level set solution (blue) and the high
resolution front tracked solution (green) using a 128× 128 grid. Note that
the width of some of the filamentary regions are on the order of a grid
cell and would be very difficult to resolve without the information provided
by the particles. One can increase the particle resolution of the interface
using several techniques. More particles can be added at the beginning of
the simulation by increasing the particles’ initial bandwidth or the number
of particles per cell. In addition, one could periodically apply reseeding
techniques, although caution should be used when reseeding the interface
shown in figure 24 as the geometry is poorly defined in the under-resolved
regions.

As can be seen from the error tables 5 and 6 as well as figures 25 and 26,
the ability of the particle level set method to model interfaces undergoing
substantial stretching is quite good.

3.4 Rigid Body Rotation of Zalesak’s Sphere

In analogy with the two dimensional Zalesak disk problem, we use a slotted
sphere to examine the diffusion properties of the particle level set method
in three spatial dimensions. The sphere has radius 15 in a 100× 100× 100
domain. The slot is 5 grid cells wide and 12.5 grid cells deep on a 100 ×
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100 × 100 grid cell domain. The sphere is initially placed at (50, 75, 50)
and undergoes a rigid body rotation in the z = 50 plane about the point
(50, 50, 50). The constant vorticity velocity field is given by

u(x, y, z) = (π/314)(50− y),
v(x, y, z) = (π/314)(x− 50),
w(x, y, z) = 0,

so that the sphere completes one revolution every 628 time units.
The presence of an extra dimension allows for more opportunities to ex-

amine an interface capturing scheme for excessive amounts of regularization.
Figures 27 and 28 show the level set solution and the particle level set solu-
tion, respectively, at approximately equally spaced time intervals from t = 0
to t = 628. Note that the final frame at t = 628 should be identical to the
initial data at t = 0. The particle level set method is able to maintain the
sharp features of the notch unlike the level set method.

In order to illustrate the volume preservation properties of our scheme,
we estimate the volume of the interior region using a first order accurate
approximation to the integral

∫
H(φ)d~x (16)

where H is a numerically smeared out Heaviside function given by

H(φ) =





0 φ < −ε
1
2 + φ

2ε + 1
2π sin

(
πφ
ε

)
−ε ≤ φ ≤ ε

1 ε < φ

(17)

with ε = 1.54x the bandwidth of the numerical smearing. It is interesting
to note that the level set solution loses only 2.1% of its total volume while
the particle level set solution has lost 2.3%. The level set method has both
inward and outward dissipation errors in convex and concave regions, re-
spectively, leading to fortuitous cancellation and a misleading appearance of
accuracy when considering volume preservation alone. Similar statements
hold for VOF calculations that preserve volume almost exactly, but locate
the volume incorrectly, e.g. flotsam and jetsam.

3.5 Three Dimensional Deformation Field

LeVeque [19] proposed a three dimensional incompressible flow field which
combines a deformation in the x-y plane with one in the x-z plane. The
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velocity field is given by

u(x, y, z) = 2 sin2(πx) sin(2πy) sin(2πz),
v(x, y, z) = − sin(2πx) sin2(πy) sin(2πz),
w(x, y, z) = − sin(2πx) sin(2πy) sin2(πz)

and the flow field is modulated in time with a period of T = 3. A sphere
of radius .15 is placed within a unit computational domain at (.35, .35, .35).
A 100 × 100 × 100 grid cell domain was used. This allows the sphere to
be entrained by two rotating vortices which initially scoop out opposite
sides of the sphere and then compress them causing the sphere to pancake.
The top and bottom edges of the pancake are then caught up again in their
appropriate vortices causing the surface to become very stretched out. Parts
of the interface thin out to about a grid cell and both methods have difficulty
resolving this thin interface. Of course, we could use a variety of techniques
to increase the initial particle density or to reseed along the way, but the
particle level set method recovers rather nicely and loses very little volume
even without increasing the particle count. On the other hand, the level set
method fails severely for this example.

Figures 29 and 30 show the level set solution and the particle level set
solution, respectively, at t = 0, 104s, 204s, 304s, 404s, 504s, 604s,
704s, 904s, 1104s, 1304s and 1504s where 4s = 628/150. Note that
the final frame at t = 1504s should be identical to the initial data at t = 0.
In addition, frame 1304s should be identical to frame 204s, frame 1104s
should be identical to frame 404s, and frame 904s should be identical to
frame 604s. The maximum stretching occurs at t = 754s where the level
set solution has lost 49% of the initial volume and the particle level set
solution has gained 1.9%. After completing a full cycle, at t = 1504s, the
level set solution has lost 80% of the initial volume while the particle level
set solution has only lost 2.6%.
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Figure 11: Initial placement of particles on both sides of the interface.
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Figure 12: Particle positions after the initial attraction step.

30



30 35 40 45 50 55 60 65 70
55

60

65

70

75

80

85

90

95

x

y

Figure 13: Particle level set solution after one revolution.
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Figure 14: Comparison of the level set solution, particle level set solution and
theory after one revolution. The light red particles and light blue particles
have escaped from the level set solution.
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Figure 15: Comparison of the level set solution (red), particle level set so-
lution (blue) and theory (green) after one revolution.
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Figure 16: Comparison of the level set solution (red), particle level set so-
lution (blue) and theory (green) after two revolutions.
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Figure 17: Initial data and velocity field for the vortex flow.
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Figure 18: Comparison of the particle level set solution and a high resolution
front tracked solution for the vortex flow at t = 1.
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Figure 19: Comparison of the level set solution, particle level set solution
and a high resolution front tracked solution for the vortex flow at t = 1.
The light blue particles have escaped from the level set solution.
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Figure 20: The level set solution (red), particle level set solution (blue) and
a high resolution front tracked solution (green) for the vortex flow at t = 3.
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Figure 21: The level set solution (red), particle level set solution (blue) and
a high resolution front tracked solution (green) for the vortex flow at t = 5.
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Figure 22: Level set solution. The exact solution (black) in comparison
to grids of size 256 × 256 (blue), 128 × 128 (red) and 64 × 64 (green -
disappeared).
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Figure 23: Particle level set solution. The exact solution (black) in compar-
ison to grids of size 256× 256 (blue), 128× 128 (red) and 64× 64 (green).
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Figure 24: Comparison of the level set solution (red), particle level set so-
lution (blue) and a high resolution front tracked solution (green) for the
deformation flow at t = 1.
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Figure 25: Level set solution. The exact solution (black) in comparison to
grids of size 256× 256 (blue), 128× 128 (red) and 64× 64 (green).
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Figure 26: Particle level set solution. The exact solution (black) in compar-
ison to grids of size 256× 256 (blue), 128× 128 (red) and 64× 64 (green).
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Figure 27: Zalesak’s sphere. Level set solution.
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Figure 28: Zalesak’s sphere. Particle level set solution.
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Figure 29: Deformation test case. Level set solution.
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Figure 30: Deformation test case. Particle level set solution.
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4 Conclusion

We proposed a new numerical method which merges the best aspects of
Eulerian front capturing schemes and Lagrangian front tracking methods
for improved mass conservation in a fluid flow. Level set methods are used
to smoothly capture the interface, but suffer an excessive amount of mass
loss in under-resolved regions of the flow. This prevents the resolution of
thin interfacial filaments and regions of high curvature. To counteract this
problem, characteristic information is provided by massless marker particles.
Escaped massless marker particles are used to correct mass loss in the level
set function. The method otherwise maintains the nice geometric properties
of level set methods along with the ease and simplicity of implementation. As
seen in the examples, the particle level set method compares favorably with
volume of fluid methods in the conservation of mass and purely Lagrangian
schemes for interface resolution.

While we add particles in a band near the interface, other strategies could
be adopted. For example, it is obvious that particles are only needed in re-
gions of high curvature and this optimization would speed up the method sig-
nificantly. Concerning speed, it is interesting to point out how this method
compares to adaptive meshing, for example as in [38]. A significant advan-
tage of particle methods is that they allow one to avoid the small time step
restriction dictated by the small cells produced by adaptively meshing. Also,
the data structures are simpler than for cell based adaptive meshing, and
the particle method can be applied more locally than patch based adaptive
meshing.

Recently, we have combined this new particle level set method with an
existing fluid code in order to study its behavior in more complicated situ-
ations including pinching and merging [8]. An example calculation showing
water being poured into a cylindrical glass is shown in figure 31.
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Figure 31: Pouring water into a cylindrical glass using the particle level set
method.
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