
Games of Two Identical Vehicles

Ian Mitchell

July 2001

Stanford University

Department of Aeronautics and Astronautics Report

SUDAAR #740

The goal of this document is to flesh out and adapt the results of Merz in [1] to the three
dimensional aircraft collision example. In both cases, the differential game scenario features
two identical vehicles in a game of cat and mouse. The cat (called the pursuer below) is
considered to capture the mouse (called the evader) if the cat ever gets within a certain
distance—called the capture radius—of the mouse. Both vehicles are treated with kinematic
models in which they have the same fixed forward velocity, but may choose their angular
velocities within some range. The whole game is played in a three dimensional state space
consisting of the relative position of the two vehicles in the plane and their relative heading.

We wish to compute points lying on the boundary of the reachable set, which is the boundary
between those states from which the pursuer can cause a collision and those states from
which the evader can escape. These points can then be used to test the accuracy of numerical
Hamilton-Jacobi viscosity solutions of the same problem. For most of these points we can
find explicit, analytic solutions; for a few we will need to use the numerical solution of an
implicit pair of trigonometric equations. Note that the analysis below applies only when
the two vehicles have identical models (speed and turn rates).

The notation from [1] is adopted, see table 1 and figure 1. The games we investigate use
very generic dynamics for their vehicles; they would apply equally well as kinematic models
for cars or aircraft:

d

dt





x

y

θ



 =





−σ1y + sin θ

−1 + σ1x + cos θ

−σ1 + σ2



 . (1)

We will sometimes refer to the system state vector as z ∈ R
3

z =
[

x y θ
]T

. (2)

In section 1 we examine the version of the game corresponding to Merz’s “game of two
identical cars”, in which the pursuer is fixed at the origin and facing along the positive y

axis. In section 2 we examine the dual problem, in which the evader is fixed at the origin

1



v = 1

y

x

v = 1

σ1

σ2

β

φ0

θ

Figure 1: Coordinate system

and facing along the positive y axis—this game corresponds to what we have called the
“aircraft collision avoidance” problem [3].

In both cases the inputs of both vehicles are restricted to the range ±1. Merz recognizes
that the absolute speed of the vehicles and the size of the capture circle do not matter,
only their ratio β (Merz actually uses the minimum turn radius, but for the range of inputs
available this turn radius is equal to the speed of the vehicles).

The next two sections detail the algorithms necessary to compute points on the barrier.
Readers whose primary interest lies in validating a numerical Hamilton-Jacobi solver will
want to skip directly to sections 3 and 4, which respectively describe the related Hamilton-
Jacobi problem and the publicly available Matlab routines we have written to implement
the results of sections 1 and 2 and thereby validate our own Hamilton-Jacobi solver.

1 Recreating the Game of Two Identical Cars

In this section we basically focus on reproducing Figure 7 from [1, p. 336], which studied
the game with the pursuer at the origin. Many equations are exactly the same, except that
we attempt to fill in algorithmic and algebraic steps to make the construction clear. We
do not attempt explain why this construction produces the unsafe set—for those details,
consult the original paper.

2



variable meaning

x relative position, perpendicular to flight direction of fixed aircraft
y relative position, parallel to flight direction of fixed aircraft
θ relative heading (−π ≤ θ < π)
σ1 input of fixed aircraft (|σ1| ≤ 1)
σ2 input of other aircraft (|σ2| ≤ 1)
β ratio of capture radius to turn radius
φ0 an angle measured counter-clockwise from the positive y-axis

Table 1: Variable definitions

1.1 The Optimal Trajectories

Merz claims that terminal conditions for all trajectories of interest can be written as





x(0)
y(0)
θ(0)



 =





β sinφ0

β cos φ0

2φ0



 , (3)

for some φ0. He further claims that trajectories leading from points on the boundary of
the reachable set to these terminal conditions are made up of segments along which the
inputs are fixed. Because the inputs are fixed, it is possible to find analytic equations for
the trajectories in terms of their end conditions (x0, y0 and θ0), the inputs (σ1 and σ2), and
backwards time (τ = −t and terminal conditions become initial conditions):

Trajectory type 1: For inputs σ1 = −σ2 = ±1





x(τ)
y(τ)
θ(τ)



 =





x0 cos τ + σ1 [1 − cos τ + y0 sin τ + cos θ − cos(θ0 + σ1τ)]
y0 cos τ + sin τ − σ1 [x0 sin τ + sin θ − sin(θ0 + σ1τ)]

θ0 + 2σ1τ



 . (4)

Trajectory type 2: For inputs σ1 = σ2 = ±1





x(τ)
y(τ)
θ(τ)



 =





x0 cos τ + σ1 [1 − cos τ + y0 sin τ + cos(θ0 + σ1τ) − cos θ0]
y0 cos τ + sin τ − σ1 [x0 sin τ + sin(θ0 + σ1τ) − sin θ0]

θ0



 . (5)

Trajectory type 3: For inputs σ1 = 0 and σ2 = ±1





x(τ)
y(τ)
θ(τ)



 =





x0 − σ2(cos θ − cos θ0)
y0 + τ + σ2(sin θ − sin θ0)

θ0 − σ2τ



 . (6)

3



−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

2

2.5

x

y
Slice at −150°

−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

2

2.5

x

y

Slice at −90°

crossover point
left barrier
right barrier
capture circle

Figure 2: Barrier slices showing left and right barriers, the crossover point and the capture
circle (for β = 0.5)

1.2 Determining the Boundary

Merz finds points on the boundary by integrating backward in time to those points from
terminal points on the capture cylinder given by (3). The methods compute a slice of the
barrier for fixed relative angle θ = θ2

1 with the restriction −π ≤ θ2 ≤ 0; if necessary, the
half of the barrier with 0 < θ2 < π can be determined by symmetry. It turns out that the
slice of the reachable set at any θ2 is bounded. This boundary consists of three curves: the
first is some half of the capture circle, and the other two are smooth curves which start at
the two ends of the half circle and meet at a sharp “crossover” point. We will call these
latter two curves the left and right barriers—based on whether they lie to the left or right
of a ray from the origin to the crossover point—and trajectories which lead from points
on these barriers to the capture cylinder will be called left and right trajectories. Figure 2
shows two example barrier slices, labelling the left and right barriers. We will see later that
trajectories which lead from the left barrier may sometimes appear to bear right and vice
versa; however, we will label trajectories according to which barrier they touch and not
according to the individual trajectory’s apparent direction.

The difference between left and right will turn out to be the choice of the evader’s input σ2

1the motivation for choosing the index 2 for the parameter θ2 will become clearer in the next section

4



throughout the trajectories; σ2 = +1 will lead to left trajectories and barriers and σ2 = −1
will lead to right trajectories and barriers. For this reason, the left barrier will be referred
to as the positive barrier and quantities associated with it given the “+” superscript, while
the right will be the negative and given the “−” superscript. To avoid confusion, it is
important to remember that the “left” and “right” refer to the position of the barrier, and
not to the direction that the evader is turning; in fact, σ2 = +1 means that the evader is
turning right, but it generates the left barrier.

The two barriers are not in general feasible trajectories of the system, but are made up of
the initial conditions for trajectories which terminate on the capture cylinder. But in some
cases (for θ2 near zero) portions of the left barrier will turn out to be feasible trajectories.

In the discussion that follows, we have two slight differences with the notation in [1]. We
use τ±

2
instead of τ± and we have introduced the parameter θ2 to avoid confusion between

the state space variable θ and the parameter specifying which slice of the barrier we are
computing—θ2 is substituted for the latter.

1.3 The Crossover Point

The first step in computing points on the boundary at fixed θ2 is to determine the crossover
point where the barriers meet for that θ2. This point is the end of two different backward
time trajectories using σ2 = ±1. Depending on the value of θ2, these two trajectories may
or may not lead to the same backwards time initial condition on the capture cylinder, but
even if they do lead to the same initial condition they take distinct paths. There are four
types of optimal trajectories leading from the capture cylinder to the crossover point, two
associated with the left barrier (L1 and L2) and two with the right (R1 and R2):

Crossover Trajectory L1: This left trajectory starts (in backward time) at the point
given by (3) with φ+

0
= 0 and consists of two segments, during both of which σ2 = +1.

The first segment is of type 3 and follows (6) for τ ∈ [0, τ+

1
]. The second segment is

of type 1 and follows (4) for τ ∈ [τ+

1
, τ+

2
].

Crossover Trajectory R1: This right trajectory is the negative version of L1. It starts
at the point given by (3) with φ−

0
= 0 and consists of two segments, during both of

which σ2 = −1. The first segment is of type 3 and follows (6) for τ ∈ [0, τ−

1
]. The

second segment is of type 1 and follows (4) for τ ∈ [τ−

1
, τ−

2
].

Crossover Trajectory L2: This left trajectory also starts at the point given by (3) with
φ+

0
= 0 and consists of two segments, during both of which σ2 = +1. The first segment

is the same as the first segment of L1. The second segment, however, is of type 2, and
follows (5) for τ ∈ [τ+

1
, τ+

2
].

Crossover Trajectory R2: This right trajectory is unlike any of the previous trajectories.
It starts at the point given by (3) but with φ−

0
> 0, and consists of only a single

segment of type 1, which follows (4) for τ ∈ [0, τ−

2
] (during which σ2 = −1).

5



0

1

2

012

−150

−100

−50

0

50

100

150

x

Slice at −150°

y

θ

0

1

2

012

−150

−100

−50

0

50

100

150

x

Slice at −90°

y

θ

barrier         
left trajectory 
right trajectory

Figure 3: Barrier slices showing left and right crossover trajectories (for β = 0.5)

Figure 3 shows the left and right crossover trajectories for two sample barrier slices. In the
left subplot, crossover trajectories L1 and R1 both start at the circle symbol, and finish at
the crossover point labelled by a star. The box symbol on each trajectory shows where the
trajectory switches segments. The right trajectory has a gap due to the periodic θ boundary
conditions. The right subplot shows a slice where trajectories L2 and R2 occur. Note that
the second segment of L2 lies on the barrier, and that R2 has only a single segment which
starts with θ−(0) > 0. Several slices of the capture cylinder are shown to demonstrate that
all trajectories start from it at some value of θ. For slices of the barrier at other values of
θ2, other combinations of L1, L2, R1, and R2 may occur.

For all these types of crossover trajectories, in order to find the barrier crossover point we
construct trajectories





x+(τ)
y+(τ)
θ+(τ)



 and





x−(τ)
y−(τ)
θ−(τ)



 , (7)

from the appropriate combination of (4), (5) and/or (6). The trajectories will be functions
of the unknowns τ+

2
, τ−

2
, τ+

1
and either τ−

1
or φ−

0
(a total of four unknowns). For crossover

to occur at θ = θ2, we know
θ+(τ+

2
) = θ2 = θ−(τ−

2
). (8)

The crossover point is where these two trajectories meet

x+(τ+

2
) = x−(τ−

2
),

y+(τ+

2
) = y−(τ−

2
).

(9)

The combination of (8) and (9) gives us four nonlinear equations for the four unknowns.
After solving for τ±

2
, the crossover point can be extracted from either side of (9).

6



The next four subsections detail the construction of the trajectories in (7) for each of the
four cases L1, L2, R1 and R2. With that information, section 1.3.5 explains concretely how
to determine the crossover point.

1.3.1 Crossover Trajectory L1

First, find the left trajectory’s location after the first τ+

1
time units from initial conditions

(φ0 = 0), σ2 = +1, and (6) (we start with θ+(τ+

1
) because it is needed for the other two

coordinates’ equations)

θ+(τ+

1
) = 2φ0 − σ2τ

+

1

= −τ+

1

(10)

x+(τ+

1
) = β sin φ0 − σ2(cos θ+(τ+

1
) − cos 2φ0)

= − cos(−τ+

1
) + 1

= − cos τ+

1
+ 1

(11)

y+(τ+

1
) = β cos φ0 + τ+

1
+ σ2(sin θ+(τ+

1
) − sin 2φ0)

= β + τ+

1
+ sin(−τ+

1
)

= β + τ+

1
− sin τ+

1

(12)

For the subsequent τ+

2
− τ−

1
time units, the left trajectory follows (4) with σ2 = −σ1 = +1

θ+(τ+

2
) = θ+(τ+

1
) + 2σ1(τ

+

2
− τ+

1
),

= τ+

1
− 2τ+

2
.

(13)

x+(τ+

2
) = x+(τ+

1
) cos(τ+

2
− τ+

1
) + σ1[1 − cos(τ+

2
− τ+

1
) + cos θ+(τ+

2
)

+ y+(τ+

1
) sin(τ+

2
− τ+

1
) − cos(θ+(τ+

1
) + σ1(τ

+

2
− τ+

1
))],

= (1 − cos τ+

1
) cos(τ+

2
− τ+

1
) − [1 − cos(τ+

2
− τ+

1
) + cos(τ+

1
− 2τ+

2
)

− (β + τ+

1
− sin(τ+

1
)) sin(τ+

2
− τ+

1
) − cos(−τ+

2
)],

= −1 + 2 cos(τ+

2
− τ+

1
) − cos(2τ+

2
− τ+

1
) − (β + τ+

1
) sin(τ+

2
− τ+

1
)

+ cos τ+

2
− cos τ+

1
cos(τ+

2
− τ+

1
) − sin τ+

1
sin(τ+

2
− τ+

1
),

= −1 + 2 cos(τ+

2
− τ+

1
) − cos(2τ+

2
− τ+

1
) − (β + τ+

1
) sin(τ+

2
− τ+

1
).

(14)

y+(τ+

2
) = y+(τ+

1
) cos(τ+

2
− τ+

1
) + sin(τ+

2
− τ+

1
)

− σ1[cos θ+(τ+

2
) + x+(τ+

1
) sin(τ+

2
− τ+

1
) − sin(θ+(τ+

1
) + σ1(τ

+

2
− τ+

1
))],

= (β + τ+

1
− sin(τ+

1
)) cos(τ+

2
− τ+

1
) + sin(τ+

2
− τ+

1
)

+ [cos(τ+

1
− 2τ+

2
) + (1 − cos τ+

1
) sin(τ+

2
− τ+

1
) − sin(−τ+

2
)],

= 2 sin(τ+

2
− τ+

1
) − sin(2τ+

2
− τ+

1
) + (β + τ+

1
) cos(τ+

2
− τ+

1
)

+ sin τ+

2
− sin τ+

1
cos(τ+

2
− τ+

1
) − cos τ+

1
cos(τ+

2
− τ+

1
),

= 2 sin(τ+

2
− τ+

1
) − sin(2τ+

2
− τ+

1
) + (β + τ+

1
) cos(τ+

2
− τ+

1
).

(15)

7



The last simplification in both the x+ and y+ sequences is possible because of the trigono-
metric identities

cos τ1 cos(τ2 − τ1) + sin τ1 sin(τ2 − τ1) = cos τ2,

sin τ1 cos(τ2 − τ1) + cos τ1 cos(τ2 − τ1) = sin τ2.

From (8) and (13) we find
τ+

1
= θ2 + 2τ+

2
. (16)

This equation can be used to remove the unknown τ+

1
from the equations (14) and (15)

x+(τ+

2
) = −1 + 2 cos(τ+

2
− θ2 − 2τ+

2
) − cos(2τ+

2
− θ2 + 2τ+

2
)

− (β + θ2 + 2τ+

2
) sin(τ+

2
− θ − 2τ+

2
)

= −1 + 2 cos(θ2 + τ+

2
) − cos θ2 + (β + θ2 + 2τ+

2
) sin(θ2 + τ+

2
)

(17)

y+(τ+

2
) = 2 sin(τ+

2
− θ2 − 2τ+

2
) − sin(2τ+

2
− θ2 − 2τ+

2
)

+ (β + θ2 + 2τ+

2
) cos(τ+

2
− θ2 − 2τ+

2
)

= −2 sin(θ2 + τ+

2
) + sin θ2 + (β + θ2 + 2τ+

2
) cos(θ2 + τ+

2
)

(18)

1.3.2 Crossover Trajectory R1

Following a similar procedure for the right trajectory (with σ2 = −σ1 = −1) we find

θ−(τ−

1
) = 2φ0 − σ2τ

−

1
,

= τ−

1
.

(19)

x−(τ−

1
) = β sin φ0 − σ2(cos θ−(τ−

1
) − cos 2φ0),

= cos(τ−

1
) − 1.

(20)

y−(τ−

1
) = β cos φ0 + τ−

1
+ σ2(sin θ−(τ−

1
) − sin 2φ0),

= β + τ−

1
− sin(τ−

1
).

(21)

and

θ−(τ−

2
) = θ−(τ−

1
) + 2σ1(τ

−

2
− τ−

1
),

= −τ−

1
+ 2τ−

2
.

(22)

x−(τ−

2
) = x−(τ−

1
) cos(τ−

2
− τ−

1
) + σ1[1 − cos(τ−

2
− τ−

1
) + cos θ−(τ−

2
)

+ y−(τ−

1
) sin(τ−

2
− τ−

1
) − cos(θ−(τ−

1
) + σ1(τ

−

2
− τ−

1
))],

= 1 − 2 cos(τ−

2
− τ−

1
) + cos(2τ−

2
− τ−

1
) + (β + τ−

1
) sin(τ−

2
− τ−

1
)

− cos τ−

2
+ cos τ−

1
cos(τ−

2
− τ−

1
) − sin τ−

1
sin(τ−

2
− τ−

1
),

= 1 − 2 cos(τ−

2
− τ−

1
) + cos(2τ−

2
− τ−

1
) + (β + τ−

1
) sin(τ−

2
− τ−

1
).

(23)

y−(τ−

2
) = y−(τ−

1
) cos(τ−

2
− τ−

1
) + sin(τ−

2
− τ−

1
)

− σ1[sin θ−(τ−

2
) + x−(τ−

1
) sin(τ−

2
− τ−

1
) − sin(θ−(τ−

1
) + σ1(τ

−

2
− τ−

1
))],

= 2 sin(τ−

2
− τ−

1
) − sin(2τ−

2
− τ−

1
) + (β + τ−

1
) cos(τ−

2
− τ−

1
)

+ sin τ−

2
− sin τ−

1
cos(τ−

2
− τ−

1
) − cos τ−

1
sin(τ−

2
− τ−

1
),

= 2 sin(τ−

2
− τ−

1
) − sin(2τ−

2
− τ−

1
) + (β + τ−

1
) cos(τ−

2
− τ−

1
).

(24)

8



Again, the last three terms in the penultimate lines of (23) and (24) happen to cancel by
trigonometric identities. Now use (8) and (22) to find

τ−

1
= 2τ−

2
− θ2, (25)

and use this to eliminate τ−

1
from (23) and (24)

x−(τ−

2
) = 1 − 2 cos(τ−

2
− 2τ−

2
+ θ2) + cos(2τ−

2
− 2τ−

2
+ θ2)

+ (β + 2τ−

2
− θ2) sin(τ−

2
− 2τ−

2
+ θ2),

= 1 − 2 cos(θ2 − τ−

2
) + cos θ2 + (β + 2τ−

2
− θ2) sin(θ2 − τ−

2
).

(26)

y−(τ−

2
) = 2 sin(τ−

2
− 2τ−

2
+ θ2) − sin(2τ−

2
− 2τ−

2
+ θ2)

+ (β + 2τ−

2
− θ2) cos(τ−

2
− 2τ−

2
+ θ2),

= 2 sin(θ2 − τ−

2
) − sin θ2 + (β + 2τ−

2
− θ2) cos(θ2 − τ−

2
).

(27)

In regard to (26) and (27), there is one final detail. Remember that θ2 ∈ [0,−π]. Looking
at trajectories generated by (4) and (6) with σ2 = −σ1 = −1, however, we see that θ−(τ)
is increasing as τ increases. The periodicity of the θ coordinate is automatically handled
whenever it appears inside a trigonometric function, but while constructing (26) and (27)
we have in places substituted θ2 for a value of τ > 0. In those places we have to manually
take account of the range of θ2 and periodicity by substituting 2π + θ2 to get

x−(τ−

2
) = 1 − 2 cos(θ2 − τ−

2
) + cos θ2 + (β + 2τ−

2
− 2π − θ2) sin(θ2 − τ−

2
). (28)

y−(τ−

2
) = 2 sin(θ2 − τ−

2
) − sin θ2 + (β + 2τ−

2
− 2π − θ2) cos(θ2 − τ−

2
). (29)

1.3.3 Crossover Trajectory L2

The optimal segments of this left trajectory still follow (6) for τ ∈ [0, τ+

1
], but then switch

to (5) for τ ∈ [τ+

1
, τ+

2
]. Therefore, we can use (10), (11) and (12) for the initial segment to

τ+

1
. Then from (5)

θ+(τ+

2
) = θ+(τ+

1
) = −τ+

1
(30)

and from (8)
τ+

1
= −θ2. (31)

9



Given this equation and (5) the crossover point for this trajectory is

x+(τ+

2
) = x+(τ+

1
) cos(τ+

2
− τ+

1
) + σ1[1 − cos(τ+

2
− τ+

1
)

+ y+(τ+

1
) sin(τ+

2
− τ+

1
) + cos(θ+(τ+

1
) + σ1(τ

+

2
− τ+

1
)) − cos θ+(τ+

1
)],

= (1 − cos τ+

1
) cos(τ+

2
− τ+

1
) + 1 − cos(τ+

2
− τ+

1
)

+ (β + τ+

1
− sin τ+

1
) sin(τ+

2
− τ+

1
) + cos(θ2 + τ+

2
− τ+

1
) − cos θ2,

= 1 − cos θ2[1 + cos(τ+

2
+ θ2)]

+ (β − θ2 + sin θ2) sin(τ+

2
+ θ2) + cos(τ+

2
+ 2θ2),

= 1 − cos θ2 + (β − θ2) sin(τ+

2
+ θ2).

(32)

y+(τ+

2
) = y+(τ+

1
) cos(τ+

2
− τ+

1
) + sin(τ+

2
− τ+

1
)

− σ1[x
+(τ+

1
) sin(τ+

2
− τ+

1
) + sin(θ+(τ+

1
) + σ1(τ

+

2
− τ+

1
)) − sin θ+(τ+

1
)],

= (β + τ+

1
− sin τ+

1
) cos(τ+

2
− τ+

1
) + sin(τ+

2
− τ+

1
)

− (1 − cos τ+

1
) sin(τ+

2
− τ+

1
) − sin(θ2 + τ+

2
− τ+

1
) + sin θ2,

= (β − θ2 + sin θ2) cos(τ+

2
+ θ2) + cos θ2 sin(τ+

2
+ θ2)

+ sin θ2 − sin(τ+

2
+ 2θ2),

= sin θ2 + (β − θ2) cos(τ+

2
+ θ2).

(33)

We have used the useful trigonometric identities

sin θ2 sin(τ + θ2) − cos θ2 cos(τ + θ2) = − cos(τ + 2θ2),

sin θ2 cos(τ + θ2) + cos θ2 sin(τ + θ2) = sin(τ + 2θ2),

in determining x− and y−.

1.3.4 Crossover Trajectory R2

For this right trajectory, the initial conditions are φ−

0
6= 0, and (4) is followed for τ ∈ [0, τ−

2
].

We start with (4)

θ−(τ−

2
) = 2φ−

0
+ 2σ1τ

−

2
,

= 2φ−

0
+ 2τ−

2
,

(34)

so that (8) gives us

φ−

0
=

θ2 − 2τ−

2

2
. (35)

10



Starting again at (4) we can determine the right trajectory’s position at crossover as

x−(τ−

2
) = β sin φ−

0
cos τ−

2
+ σ1[1 − cos τ−

2
+ β cos φ−

0
sin τ−

2

+ cos θ−(τ−

2
) − cos(2φ−

0
+ σ1τ

−

2
)],

= 1 − cos τ−

2
+ β sin(φ−

0
+ τ−

2
) − cos(2φ−

0
+ τ−

2
) + cos θ2,

= 1 − cos τ−

2
+ β sin 2π+θ2

2
− cos(θ2 − τ−

2
) + cos θ2.

(36)

y−(τ−

2
) = β cos φ−

0
cos τ−

2
+ sin τ−

2

− σ1[β sin φ−

0
sin τ−

2
+ sin θ−(τ−

2
) − sin(2φ−

0
+ σ1τ

−

2
)],

= sin τ−

2
+ β cos(φ−

0
+ τ−

2
) + sin(2φ−

0
+ τ−

2
) − sin θ2,

= sin τ−

2
+ β cos 2π+θ2

2
+ sin(θ2 − τ−

2
) − sin θ2.

(37)

We have used the useful trigonometric identities

β sinφ cos τ + β cos φ sin τ = β sin(φ + τ),

β cos φ cos τ − β sin φ sin τ = β cos(φ + τ),

in determining x− and y−. We have also added 2π when θ2 appears in a function which is
not 2π periodic.

1.3.5 Crossover Computation

Depending on the values of θ2 and β, either of L1 or L2 can meet either of R1 or R2 at
the crossover point. Merz does not mention how he determines which of the four possible
cases hold. We have adopted the trial and error approach—try a combination and see if its
associated parameters are physically appropriate:

τ+

1
≤ τ+

2
,

τ−

1
≥ 0,

φ−

0
≥ 0.

(38)

If not, try another combination.

For example, we generally start with the assumption that L1 and R1 meet at the crossover
point. Therefore, equate (17) with (28) and (18) with (29) to get two nonlinear equations
in the two unknowns τ+

2
and τ−

2
(θ2 is given). Solve them in some manner (we use Matlab’s

fsolve). Then use (16) and (25) to determine τ+

1
and τ−

1
respectively. If (38) holds, then

the assumption of L1 and R1 was correct; proceed to section 1.4 to find the rest of the
barrier for this θ2.

Otherwise, try the other combinations until one is found that satisfies (38) (in our experi-
ence, one is always found)

• For L1 with R2, equate (17) with (36) and (18) with (37) to solve for τ+

2
and τ−

2
.

Then (16) and (35) can be used to find τ+

1
and φ−

0
.

11



• For L2 with R1, equate (32) with (28) and (33) with (29) to solve for τ+

2
and τ−

2
.

Then (31) and (25) can be used to find τ+

1
and τ−

1
.

• For L2 with R2, equate (32) with (36) and (33) with (37) to solve for τ+

2
and τ−

2
.

Then (31) and (35) can be used to find τ+

1
and φ−

0
.

In all these cases, the crossover point is given by x+(τ+

2
) and y+(τ+

2
).

1.4 The Rest of the Barrier

Once the crossover point of the two barriers is found, the other points on the left and right
barriers may be extracted. The scheme for computing points on a barrier depends on the
type of trajectory that lead to the crossover point for that side of the barrier. We examine
the construction at a fixed θ = θ2 of each of the barrier types separately.

1.4.1 Barrier Type L1

Points on this type of barrier are the ends of backwards time trajectories. There are
two subsets of points on this barrier, which we will call L1.1 and L1.2; the procedure
for producing points in each subset is different.

Let L1.1 be the subset closer to the capture circle. Each point in L1.1 is the end of a
different single segment backwards time trajectory. To construct one of these trajectories

1. Choose ζ ∈ [θ2

2
, 0] and let η = 2ζ−θ2

2
. These equations come from the θ portion of (4)

with θ0 = 2ζ and σ2 = −σ1 = +1.

2. Use (4) to solve for x(η) and y(η), where x0 and y0 are given by (3) with φ0 = ζ, and
σ2 = −σ1 = +1.

The point in L1.1 is given by
[

x(η) y(η) θ2

]T
.

L1.2 is the subset of the barrier closer to the crossover point. Each point in L1.2 is the end
of a different two segment backwards time trajectory. To construct one of these trajectories

1. Choose η1 ∈ [0, τ+

1
] and use (6) to solve for x(η1), y(η1) and θ(η1), where x0, y0 and

θ0 are given by (3) with φ0 = 0, and σ2 = +1.

2. Let η2 = η1−θ2

2
. This equation comes from the θ portion of (4) with θ0 = θ(η1) and

σ2 = −σ1 = +1.

3. Use (4) to solve for x(η2) and y(η2) with x0 = x(η1), y0 = y(η1) and σ2 = −σ1 = +1.

The point in L1.2 is given by
[

x(η2) y(η2) θ2

]T
.

To construct an approximation of the whole barrier, we solve for a large number of points
in each subset L1.1 and L1.2. Figure 4 shows overhead and oblique views of some of the

12



−0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

1.5

2

2.5

Slice at −150°

x

y

0

1

2

012

−150

−100

−50

0

x

Slice at −150°

y

θ

Figure 4: Two views of the trajectories whose endpoints form a slice of the left barrier (for
β = 0.5)

trajectories which end on a barrier of type L1 for a particular value of θ2. Subset L1.1 are
the leftmost solid lines on the overhead view; in the oblique view these trajectories start
from a variety of different initial conditions (based on the choice of ζ) on the side of the

capture cylinder. Subset L1.2 trajectories all start from the point
[

0 β 0
]T

and share an
initial segment; the choice of η1 determines when they branch from this segment.

1.4.2 Barrier Type R1

This barrier is the negative version of L1—it has two subsets R1.1 and R1.2, and each point
in these subsets is the end point of a different backwards time trajectory.

For R1.1

1. Choose ζ ∈ [0, 2π+θ2

2
] and let η = 2π+θ2−2ζ

2
(from (4) with σ2 = −σ1 = −1). The 2π

handles the periodic boundary conditions on θ.

2. Use (4) to solve for x(η) and y(η), where x0 and y0 are given by (3) with φ0 = ζ, and
σ2 = −σ1 = −1.

The point in R1.1 is given by
[

x(η) y(η) θ2

]T
.

For R1.2

13



1. Choose η1 ∈ [0, τ−

1
] and use (6) to solve for x(η1), y(η1) and θ(η1), where x0, y0 and

θ0 are given by (3) with φ0 = 0, and σ2 = −1.

2. Let η2 = η1+2π+θ2

2
(from (4) with σ2 = −σ1 = −1).

3. Use (4) to solve for x(η2) and y(η2) with x0 = x(η1), y0 = y(η1) and σ2 = −σ1 = −1.

The point in L1.2 is given by
[

x(η2) y(η2) θ2

]T
.

1.4.3 Barrier Type L2

This barrier type includes three subsets L2.1, L2.2 and L2.3. The first two are constructed
in exactly the same fashion as subsets L1.1 and L1.2 (respectively) from section 1.4.1. The
subset L2.3—which lies closer to the crossover point than L2.2—consists of a single type 2
trajectory constructed by

1. Compute x(τ+

1
) and y(τ+

1
) from (6) with x0 and y0 from (3) (with φ0 = 0) and

σ2 = +1 (it is also possible to compute θ(τ+

1
), but it will turn out to be θ2).

2. Compute x(τ) and y(τ) from (5) for τ ∈ [τ+

1
, τ+

2
] with x0 = x(τ+

1
), y0 = y(τ+

1
), and

σ2 = σ1 = +1.

L2.3 is this segment of trajectory x(τ) and y(τ) for τ ∈ [τ+

1
, τ+

2
].

1.4.4 Barrier Type R2

The single subset R2.1 of this barrier is constructed in the same manner as R1.1 from
section 1.4.2, except for a restricted range ζ ∈ [φ−

0
, 2π+θ2

2
].

1.5 Results

Figure 5 shows cross sections of the barrier for β = 0.5 with the pursuer at the origin.
On the left is an x − y view superimposing the sections, while on the right the sections
are shown at their appropriate θ values in three dimensions. Sections are shown at θ2 =
−180◦,−150◦,−120◦,−90◦,−60◦, −30◦ and 0◦. The θ2 = 0◦ section is difficult to see on
the left because it is precisely the capture circle. The crossover point for each section is
marked with a star.

The sections at θ2 = −180◦ and θ2 = −150◦ consist of barriers L1 and R1, while the
remaining sections are made up of barriers L2 and R2. For this particular choice of β, L2
and R1 never appear together, while L1 and R2 occur together only for θ2 ∈ [−143◦,−123◦]
and so none of the chosen sections are of this type.

On the upper two cross sections’ barriers, the straight portions between circle and triangle
are L1.1 and R1.1 on left and right respectively. The curved portions between triangle
and star are L1.2 and R1.2 respectively. On the remaining sections, R2.1 is the entire

14



−1 0 1 2
−0.5

0

0.5

1

1.5

2

2.5

3

x

y

−1
0

1
2

0123

−150

−100

−50

0

x
y

θ

−180° 

−150° 

−120° 

−90° 

−60° 

−30° 

Figure 5: Cross sections of the barrier for β = 0.5 and the pursuer at the origin (left subplot
is a recreation of figure 7 from [1])

right barrier (between circle and star). L2.1 lies between circle and triangle, L2.2 between
triangle and square, and L2.3 between square and star.

2 Adaptation to Aircraft Collision Avoidance

For the two vehicle game described in [2, 3], the evader (control) lies at the origin and
is surrounded by the capture circle. In the relative coordinate system dynamics (1), the
input σ1 is attached not to the pursuer, but to the vehicle at the origin (and conversely
for σ2); consequently, to compute results for the aircraft game we must swap the inputs.
Unfortunately, while this change of inputs does not modify the absolute motions of the game
players, it causes subtle but important changes in the mapping of those motions into the
relative coordinate system. The result produces slightly different equations for the optimal
trajectories and thus a slightly different unsafe set.

This section analyzes the changes which must be made to the equations from the previous
section in order to place the evader at the origin instead of the pursuer. During our analysis
we swap the inputs—now the evader uses input σ1 and the pursuer σ2—but do not make
the other changes necessary to convert fully to the example presented in [2] (except for
figure 7 at the end of section 2.5; we explain the other necessary changes in the figure’s
accompanying text).

15



2.1 Optimal Trajectories

The same terminal conditions apply, but now the coordinate system is relative to the evader
at the origin. Therefore, (3) changes to





x(0)
y(0)
θ(0)



 =





−β sin φ0

−β cos φ0

2φ0



 , (39)

The inputs were symmetric for trajectories of types 1 and 2, so (4) and (5) continue to
apply. The asymmetrical inputs for trajectories of type 3, however, require a change to its
governing equations. In our modified problem, the pursuer still chooses not to turn, but is
now using σ2 as its input. Therefore we have σ1 = ±1, σ2 = 0 and instead of (6)





x(τ)
y(τ)
θ(τ)



 =





x0 cos τ − τ sin θ + σ1[1 − cos τ + y0 sin τ ]
y0 cos τ − τ cos θ + sin τ − σ1x0 sin τ

θ0 + σ1τ



 , (40)

which were determined with some help from Matlab’s dsolve and the observation that
σ2

1 = 1.

2.2 Determining the Boundary

The left barrier first described in section 1.2 is generated by trajectories in which the evader’s
input is positive and quantities associated with it are given the “+” superscript, while the
right barrier comes from trajectories in which the evader’s input is negative and are given
the “−” superscript. We will keep these designations, but must make note of the fact that
in the new game the evader’s input is σ1, and so the superscripts will agree with the value
of σ1 and not that of σ2.

2.3 The Crossover Points

The general procedure is the same as that in section 1.3. Once again there are two types
of left trajectories L1 and L2 leading to crossover, and two types of right trajectories R1
and R2. It turns out that L1 with the evader at the origin has a structure very similar
to L1 with the pursuer at the origin from section 1.3.1, while evader R1 looks like pursuer
R1 from section 1.3.2. On the other hand, evader L2 turns out to be like pursuer R2
from section 1.3.4 and evader R2 like pursuer L2 from section 1.3.3. These are, however,
structural similarities; in most cases the details of the equations are quite different.

16



2.3.1 Crossover Trajectory L1

We use (40) to replace (10), (11) and (12) (remembering that now σ1 = +1 on the left)

θ+(τ+

1
) = 2φ0 + σ1τ

+

1

= τ+

1

(41)

x+(τ+

1
) = −β sin φ0 cos τ+

1
− τ+

1
sin θ+(τ+

1
) + σ1[1 − β cos φ0 sin τ+

1
− cos τ+

1
],

= −τ+

1
sin τ+

1
+ 1 − β sin τ+

1
− cos τ+

1
,

= 1 − cos τ+

1
− (β + τ+

1
) sin τ+

1
.

(42)

y+(τ+

1
) = −β cos φ0 cos τ+

1
− τ+

1
cos θ+(τ+

1
) + sin τ+

1
+ σ1β sinφ0 sin τ+

1
,

= −β cos τ+

1
− τ+

1
cos τ+

1
+ sin τ+

1
,

= sin τ+

1
− (β + τ+

1
) cos τ+

1
.

(43)

Then use (4) with (41) to get a replacement for (13)

θ+(τ+

2
) = θ+(τ+

1
) + 2σ1(τ

+

2
− τ+

1
),

= 2τ+

2
− τ+

1
.

(44)

and then with (8) to get a replacement for (16)

τ+

1
= 2τ+

2
− θ2. (45)

Now start again with (4) and using (42), (43) and (45) get replacements for (17) and (18)

x+(τ+

2
) = x+(τ+

1
) cos(τ+

2
− τ+

1
) + σ1[1 − cos(τ+

2
− τ+

1
) + cos θ+(τ+

2
)

+ y+(τ+

1
) sin(τ+

2
− τ+

1
) − cos(θ+(τ+

1
) + σ1(τ

+

2
− τ+

1
))],

= [1 − cos τ+

1
− (β + τ+

1
) sin τ+

1
] cos(τ+

2
− τ+

1
) + 1 − cos(τ+

2
− τ+

1
) + cos θ2

+ [sin τ+

1
− (β + τ+

1
) cos τ+

1
] sin(τ+

2
− τ+

1
) − cos(τ+

1
+ τ+

2
− τ+

1
),

= 1 − 2 cos τ+

2
− (β + τ+

1
) sin τ+

2
+ cos θ2,

= 1 − 2 cos τ+

2
− (β + 2τ+

2
− 2π − θ2) sin τ+

2
+ cos θ2.

(46)

y+(τ+

2
) = y+(τ+

1
) cos(τ+

2
− τ+

1
) + sin(τ+

2
− τ+

1
)

− σ1[sin θ+(τ+

2
) + x+(τ+

1
) sin(τ+

2
− τ+

1
) − sin(θ+(τ+

1
) + σ1(τ

+

2
− τ+

1
))],

= [sin τ+

1
− (β + τ+

1
) cos τ+

1
] cos(τ+

2
− τ+

1
) + sin(τ+

2
− τ+

1
) − sin θ2

− [1 − cos τ+

1
− (β + τ+

1
) sin τ+

1
] sin(τ+

2
− τ+

1
) + sin(τ+

1
+ τ+

2
− τ+

1
),

= 2 sin τ+

2
− (β + τ+

1
) cos τ+

2
− sin θ2,

= 2 sin τ+

2
− (β + 2τ+

2
− 2π − θ2) cos τ+

2
− sin θ2.

(47)

Because of the switch in the meanings of the inputs, it is now on the left trajectories that
we must take account of the periodicity of θ when we substitute it for a time variable. We
have therefore replaced θ2 where it appears in a nonperiodic fashion with 2π + θ2.

17



2.3.2 Crossover Trajectory R1

Using (40) we can replace (19), (20) and (21) with (remembering that σ1 = −1)

θ−(τ−

1
) = 2φ0 + σ1τ

−

1
,

= −τ−

1
.

(48)

x−(τ−

1
) = −β sin φ0 cos τ−

1
− τ−

1
sin θ−(τ−

1
) + σ1[1 − β cos φ0 sin τ−

1
− cos τ−

1
],

= −τ−

1
sin(−τ−

1
) − 1 + β sin τ−

1
+ cos τ−

1
,

= −1 + cos τ−

1
+ (β + τ−

1
) sin τ−

1
.

(49)

y−(τ−

1
) = −β cos φ0 cos τ−

1
− τ−

1
cos θ−(τ−

1
) + sin τ−

1
+ σ1β sinφ0 sin τ−

1
,

= −β cos τ−

1
− τ−

1
cos(−τ−

1
) + sin τ−

1
,

= sin τ−

1
− (β + τ−

1
) cos τ−

1
.

(50)

Then use (4), (48) and (8) to replace (22) and (25)

θ−(τ−

2
) = θ−(τ−

1
) + 2σ1(τ

−

2
− τ−

1
),

= τ−

1
− 2τ−

2
.

(51)

τ−

1
= 2τ−

2
+ θ2. (52)

With (4), (49), (50) and (52) we can replace (28) and (29)

x−(τ−

2
) = x−(τ−

1
) cos(τ−

2
− τ−

1
) + σ1[1 − cos(τ−

2
− τ−

1
) + cos θ−(τ−

2
)

− cos(θ−(τ−

1
) + σ1(τ

−

2
− τ−

1
)) + y−(τ−

1
) sin(τ−

2
− τ−

1
)],

= [−1 + cos τ−

1
+ (β + τ−

1
) sin τ−

1
] cos(τ−

2
− τ−

1
) − 1

+ cos(τ−

2
− τ−

1
) − cos θ2 + cos(−τ−

1
− τ−

2
+ τ−

1
)

− [sin τ−

1
− (β + τ−

1
) cos τ−

1
] sin(τ−

2
− τ−

1
),

= 2cos τ−

2
− 1 + (β + τ−

1
) sin τ−

2
− cos θ2,

= 2cos τ−

2
− 1 + (β + 2τ−

2
+ θ2) sin τ−

2
− cos θ2.

(53)

y−(τ−

2
) = y−(τ−

1
) cos(τ−

2
− τ−

1
) + sin(τ−

2
− τ−

1
)

− σ1[sin θ−(τ−

2
) + x−(τ−

1
) sin(τ−

2
− τ−

1
) − sin(θ−(τ−

1
) + σ1(τ

−

2
− τ−

1
))],

= [sin τ−

1
− (β + τ−

1
) cos τ−

1
] cos(τ−

2
− τ−

1
) + sin(τ−

2
− τ−

1
) + sin θ2

+ [−1 + cos τ−

1
+ (β + τ−

1
) sin τ−

1
] sin(τ−

2
− τ−

1
) − sin(−τ−

1
− τ−

2
+ τ−

1
),

= 2 sin τ−

2
− (β + τ−

1
) cos τ−

2
+ sin θ2,

= 2 sin τ−

2
− (β + 2τ−

2
+ θ2) cos τ−

2
+ sin θ2.

(54)

2.3.3 Crossover Trajectory L2

Now it is trajectory L2 which consists of a single segment. The initial conditions become
φ+

0
6= 0 and (4) is followed for the entire interval τ ∈ [0, τ+

2
]. Using (4) and (39) with

18



σ1 = +1 we get

θ+(τ+

2
) = 2φ+

0
+ 2σ1τ

+

2
,

= 2φ+

0
+ 2τ+

2
.

(55)

φ+

0
=

2π + θ2 − 2τ+

2

2
. (56)

x+(τ+

2
) = −β sin φ+

0
cos τ+

2
+ σ1[1 − cos τ+

2
− β cos φ+

0
sin τ+

2

+ cos θ+(τ+

2
) − cos(2φ+

0
+ σ1τ

+

2
)],

= 1 − cos τ+

2
− β sin(φ+

0
+ τ+

2
) − cos(2φ+

0
+ τ+

2
) + cos θ2,

= 1 − cos τ+

2
− β sin 2π+θ2

2
− cos(θ2 − τ+

2
) + cos θ2.

(57)

y+(τ+

2
) = −β cos φ+

0
cos τ+

2
+ sin τ+

2

− σ1[−β sinφ+

0
sin τ+

2
+ sin θ+(τ+

2
) − sin(2φ+

0
+ σ1τ

+

2
)],

= sin τ+

2
− β cos(φ+

0
+ τ+

2
) + sin(2φ+

0
+ τ+

2
) − sin θ2,

= sin τ+

2
− β cos 2π+θ2

2
+ sin(θ2 − τ+

2
) − sin θ2.

(58)

2.3.4 Crossover Trajectory R2

R2 now follows a two segment trajectory, like L2’s from section 1.3.3 but with the modi-
fication that the first segment follows (40) instead of (6). Consequently, we use (48), (49)
and (50) to find the coordinates at the end of the first segment of the crossover trajectory
(at τ = τ−

1
), and then (5) and (8) with σ1 = −1 to find

θ−(τ−

2
) = θ−(τ−

1
) = −τ−

1
. (59)

τ−

1
= −θ2. (60)

x−(τ−

2
) = x−(τ−

1
) cos(τ−

2
− τ−

1
) + σ1[1 − cos(τ−

2
− τ−

1
) − cos θ−(τ−

1
)

+ y−(τ−

1
) sin(τ−

2
− τ−

1
) + cos(θ−(τ−

1
) + σ1(τ

−

2
− τ−

1
))],

= [−1 + cos τ−

1
+ (β + τ−

1
) sin τ−

1
] cos(τ−

2
− τ−

1
) − 1 + cos(τ−

2
− τ−

1
) + cos τ−

1

− [sin τ−

1
− (β + τ−

1
) cos τ−

1
] sin(τ−

2
− τ−

1
) − cos(−τ−

1
− τ−

2
+ τ−

1
),

= −1 + cos τ−

1
+ (β + τ−

1
) sin τ−

2
,

= −1 + cos θ2 + (β − θ2) sin τ−

2
.

(61)

y−(τ−

2
) = y−(τ−

1
) cos(τ−

2
− τ−

1
) + sin(τ−

2
− τ−

1
) − σ1[− sin θ−(τ−

1
)

+ x−(τ−

1
) sin(τ−

2
− τ−

1
) + sin(θ−(τ−

1
) + σ1(τ

−

2
− τ−

1
))],

= [sin τ−

1
− (β + τ−

1
) cos τ−

1
] cos(τ−

2
− τ−

1
) + sin(τ−

2
− τ−

1
) − sin(−τ−

1
)

+ [−1 + cos τ−

1
+ (β + τ−

1
) sin τ−

1
] sin(τ−

2
− τ−

1
) + sin(−τ−

1
− τ−

2
+ τ−

1
),

= sin τ−

1
− (β + τ−

1
) cos τ−

2
,

= − sin θ2 − (β − θ2) cos τ−

2
.

(62)

19



2.3.5 Crossover Computation

The procedure is the same as in section 1.3.5, except that the physically appropriate con-
ditions (38) become

τ−

1
≤ τ−

2
,

τ+

1
≥ 0,

φ+

0
≥ 0.

(63)

The cases and their equations are

• For L1 with R1, equate (46) with (53) and (47) with (54) to solve for τ+

2
and τ−

2
.

Then (45) and (52) can be used to find τ+

1
and τ−

1
.

• For L1 with R2, equate (46) with (61) and (47) with (62) to solve for τ+

2
and τ−

2
.

Then (45) and (60) can be used to find τ+

1
and τ−

1
.

• For L2 with R1, equate (57) with (53) and (58) with (54) to solve for τ+

2
and τ−

2
.

Then (56) and (52) can be used to find φ+

0
and τ−

1
.

• For L2 with R2, equate (57) with (61) and (58) with (62) to solve for τ+

2
and τ−

2
.

Then (56) and (60) can be used to find φ+

0
and τ−

1
.

2.4 The Rest of the Barrier

The general procedure is the same as that outlined in section 1.4, with only a few differences
in the equations used to take account of the switch of inputs.

2.4.1 Barrier Type L1

Subsets L1.1 and L1.2 are computed in the manner described in section 1.4.1 for the barrier
type L1 with the pursuer at the origin, except for the modifications

• σ1 = +1 for both L1.1 and L1.2

• ζ ∈ [0, 2π+θ2

2
] and η = 2π+θ2−2ζ

2
for L1.1

• η2 = η1+2π+θ2

2
for L1.2

2.4.2 Barrier Type R1

Subsets R1.1 and R1.2 are computed in the manner described in section 1.4.2 for the barrier
type R1 with the pursuer at the origin, except for the modifications

• σ1 = −1 for both R1.1 and R1.2

• ζ ∈ [θ2

2
, 0] and η = 2ζ−θ2

2
for R1.1

• η2 = η1−θ2

2
for R1.2

20



−1 0 1 2
−0.5

0

0.5

1

1.5

2

2.5

3

x

y

−1

0

1

2

0123

−150

−100

−50

0

x
y

θ

−180° −150° 

−120° 

−90° 

−60° 

−30° 

Figure 6: Cross sections of the barrier for β = 0.5 and the evader at the origin

2.4.3 Barrier Type L2

There is only one subset L2.1, which is computed in the same manner as L1.1 in section 2.4.1
except with a restricted range of ζ ∈ [φ+

0
, 2π+θ2

2
].

2.4.4 Barrier Type R2

There are three subsets R2.1, R2.2, and R2.3; the first two are computed in the same manner
as R1.1 and R1.2 in section 2.4.2. The third subset R2.3 is a single trajectory computed by
by

1. Find x(τ−

1
) and y(τ−

1
) from (40) with x0 and y0 from (39) (with φ0 = 0) and σ1 = −1.

2. Compute x(τ) and y(τ) from (5) for τ ∈ [τ−

1
, τ−

2
] with x0 = x(τ−

1
), y0 = y(τ−

1
), and

σ1 = σ2 = −1.

R2.3 is this segment of trajectory x(τ) and y(τ) for τ ∈ [τ−

1
, τ−

2
].

2.5 Results

Figure 6 shows the same cross sections of the barrier as figure 5, but for the game with the
evader at the origin. While the barrier at θ2 = −180◦ is the same, the “points” of the other
cross sections face into the capture region rather than out from it. As a result, the helical
bulge of the three dimensional capture region for the game with the evader at the origin

21



−5

0

5

10

−5 0 5 10 15 20
x

y

−5
0

5
10−5 0 5 10 15 20

−150

−100

−50

0

y
x

θ

Figure 7: Cross sections of the barrier for the aircraft collision avoidance example

is narrower in the x direction but thicker in the θ direction than the corresponding helical
bulge of the game with the pursuer at the origin.

The same trajectory combinations occur in the slices as occurred in figure 5: the upper two
are L1 and R1, while the lower five are L2 and R2. The star, triangle, square and circle
symbols mark the endpoints of the various barrier subsets.

Figure 7 shows cross sections of the barrier for the three dimensional aircraft collision
avoidance example from [2, 3]. It is generated by computing the barrier for the β = 1 case,
switching the x and y coordinates, and scaling those same coordinates by 5.

3 The Hamilton-Jacobi Formulation

We envision that a primary use of the computations above will be in the validation of
numerical schemes for solving Hamilton-Jacobi (HJ) equations. This section discusses

• How to cast the determination of the barrier for the game of two identical vehicles
into a HJ framework.

• How to use the analytic barriers determined in sections 1 and 2 to validate a numeric

22



solution to the appropriate HJ equation.

• The results obtained from our current numerical HJ solver and its convergence prop-
erties.

3.1 The Hamilton-Jacobi PDE

Because our own numeric schemes [3] have been based on level set methods, we may use
some level set terminology in this section. In particular, we will encode surfaces like the
barrier as the zero level set of some scalar function that we will call the level set function.

Let Ψ(z, τ) be our level set function (where z is the system state vector (2)). Ψ is the
solution to the HJ equation

dΨ

dτ
+ H(z,∇Ψ) = 0. (64)

Note that we run the HJ equation backwards in time from the terminal (capture) condi-
tions. In order to solve this equation we must specify the HJ initial conditions Ψ(z, 0), the
boundary conditions, and the Hamiltonian H(z, p) (where p = ∇Ψ). The first two are the
same regardless of whether the pursuer or the evader is at the origin, while the Hamiltonian
differs slightly between the two games.

The initial conditions
Ψ(z, 0) =

√

x2 + y2 − β (65)

encode the capture cylinder in that {z : Ψ(z, 0) = 0} is a cylinder of radius β running
parallel to the θ axis. We have chosen initial conditions such that ‖∇Ψ(z, 0)‖ = 1, which
is appropriate for our level set based schemes. However, since we are only interested in
the zero level set of Ψ, any initial condition which produced the same zero level set would
work—for example, Ψ′(z, 0) = x2 + y2 − β2 might be better for other numeric HJ schemes.
The boundary conditions are straightforward: periodic in θ and free in x and y.

The Hamiltonian with inputs is constructed from (1) (note that we multiply the dynamics
by −1 to run backwards in time)

H(z, p, σ1, σ2) = px(σ1y − sin θ) + py(1 − σ1x − cos θ) + pθ(σ1 − σ2),

= py − py cos θ − px sin θ + σ1(pxy − pyx + pθ) − σ2pθ,

where we have denoted the first, second and third components of the gradient p = ∇Ψ as
px, py and pθ respectively. To get rid of the inputs we appeal to differential game theory [4],
and at this point the two games’ Hamiltonians diverge.

With the pursuer at the origin, σ1 is the pursuer’s input and seeks to maximize the size
of the reachable region while σ2 is the evader’s input and seeks to minimize the size of the
reachable region. Given (64), |σ1| ≤ 1 and |σ2| ≤ 1, it is not too hard to see that the
optimal inputs are therefore

σ1 = − sign(pxy − pyx + pθ),

σ2 = sign(pθ).

23



The resulting Hamiltonian for the pursuer at the origin is thus

HP (z, p) = py − py cos θ − px sin θ − |pxy − pyx + pθ| + |pθ|. (66)

The opposite is true with the evader at the origin: σ1 is the evader’s input and seeks to
minimize the size of the reachable region while σ2 seeks to maximize its size. The optimal
inputs are therefore

σ1 = sign(pxy − pyx + pθ),

σ2 = − sign(pθ).

The resulting Hamiltonian for the evader at the origin is thus

HE(z, p) = py − py cos θ − px sin θ + |pxy − pyx + pθ| − |pθ|. (67)

Note that both of these Hamiltonians are continuous but not differentiable.

If we went ahead and solved (64) with HP or HE, then the zero level set of Ψ(z, τ) would
contain only those states whose trajectories could reach the capture cylinder for the appro-
priate problem in exactly τ time units—it would omit those states whose trajectories either
did not reach the cylinder or whose trajectories had passed completely through the cylinder
after τ time units. If we are to compute the barrier, we must include any states whose
trajectories could ever reach the capture cylinder, even if those trajectories could later exit
the cylinder.

While such a computation can be accomplished in several ways, we describe the method
with which we have had the most success. If the Hamiltonian in (64) is never negative, Ψ
cannot increase as time advances, so the zero sublevel set of Ψ cannot shrink. Consequently,
any state which passes into the reachable set (as given by the zero sublevel set) must always
remain there. Therefore, instead of using the H∗ (where ∗ is P or E) from (66) or (67)
directly, use the modified Hamiltonian

H̃∗(z, p) = max(0,H∗(z, p)).

After solving (64) with either H̃P or H̃E, the barrier is given by the zero level set of Ψ(z)
where

Ψ(z) = lim
τ→∞

Ψ(z, τ).

3.2 Validation against the Analytic Barrier

If Ψ(z) has been determined via some numerical scheme for solving the HJ equation and
‖∇Ψ(z)‖ = 1, the following technique can be used to validate its results against the ap-
propriate analytically determined barrier from either section 1 or 2. Given a point z∗ on
the analytic barrier, the error in the numeric solution to the HJ equation for that point
is |Ψ(z∗)|—if z∗ is not a grid point, use a sufficiently high order interpolation to compute
Ψ(z∗); for example, Matlab’s interp3 command. Given a large number of z∗, statistics on
maximum and average error can be computed. It is important that the crossover points
are included among the z∗, since it is at these nonsmooth points on the barrier that the
maximum error in the HJ solution is likely to occur.

24



3.3 Our Current Results

We conclude this section with some comments on our own experiences in solving the HJ
formulation of these games. We have developed an HJ solver on an equally spaced Carte-
sian grid in C++ using 5th order accurate Weighted Essentially Non-Oscillatory (WENO)
stencils for the gradient approximation, a Lax-Friedrichs numerical approximation for the
Hamiltonian, and a 2nd order accurate Total Variation Diminishing (TVD) Runge-Kutta
time integrator. We solve the HJ PDE only near the zero level set using an original version
of what has variously been called “narrowbanding” or “local level sets”. Stability near the
boundaries is preserved partly through repeated reinitialization to keep ‖Ψ‖ = 1—for more
details and references, see [3].

We have found in executions of our implementation that the bulge for the game with the
pursuer at the origin is so razor thin at its edge that our attempts to compute the HJ
solution have been unable to come anywhere near resolving the full extent of the bulge.

In contrast, the version of the game with the evader at the origin has a bulge thick enough
that we have been able to resolve it well even on fairly coarse grids. Figure 8 shows the
zero level set of Ψ(z) computed by our numerical scheme on a 1003 grid as a solid surface.
Overlaid on top of this surface are 2600 points from the barrier, as computed by the Matlab
function plotFig7.m described in section 4.3.

Using the script errorLS.m described in section 4.3, we performed a convergence analysis of
the error in our computed Ψ(z) versus approximately 60000 points on the barrier; the results
are shown in figure 9. The solution appears to be convergent in both maximum pointwise
and average error. In addition, the maximum pointwise error is never significantly more
than a grid cell width. We have not yet determined why a (5,2) scheme is showing only
a linear convergence rate—possible culprits include the loss of high order accuracy near
the derivative discontinuities in the solution, or possibly the interpolation scheme used to
compute the errors in Matlab.

4 Matlab

The code is available from the author [5]. There are three sets of files (divided by directory).

4.1 Pursuer at the Origin

The directory PursuerOrigin contains the files necessary to recreate the game that Merz
describes, following the algorithm in section 1. Some additional files produce the figures for
this report.

barrier.m: Generates a collection of points on the barrier for a particular choice of θ2

and β. Left, right and capture circle portions of the barrier are returned separately,
as are points on the left and right barrier separating the barrier subsets; for example,
the “curved” point separates L1.2 and L1.1 on an L1 barrier. This function basically

25



Figure 8: Barrier (evader at origin) as computed by solving (64) with Hamiltonian H̃E

implements the procedures from section 1.4.

crossover.m: Computes the crossover point for a particular choice of θ2 and β. Returns
details of the crossover trajectory types, the parameters τ±

1
, τ±

2
, φ−

0
and the crossover

point. Implements the procedures from section 1.3.

optTraj.m: Helper function for barrier. Computes points on an optimal trajectory.
Implements the equations (4), (5) and (6).

optTraj2.m: Helper function for barrier. Computes points on a two segment optimal
trajectory, as needed by barrier types L1, R1 and L2.

equality.m: Helper function for the fsolve in crossover. Equates the x and y coordi-
nates of the crossover trajectories.

crossX.m: Helper function for equality. Implements the crossover trajectories in the x

coordinate: (17), (32), (28) and (36).

crossY.m: Helper function for equality. Implements the crossover trajectories in the y

coordinate: (18), (33), (29) and (37).

trajODE.m: Implements the system dynamics (1) for use with ode23.

26



50 70 100 140 200
10

−4

10
−3

10
−2

E
rr

or

Grid Size n

(5,2) Scheme

1 norm
∞ norm
∆ x

Figure 9: Error in Ψ(z) when compared to analytically computed barrier

plotFig7.m: Recreates Merz’s Figure 7 using barrier. Used to generate figure 5.

plotBarrier.m: Used to generate figure 2.

plotCrossover.m: Used to generate figure 3.

plotLeftBarrier.m: Used to generate figure 4.

4.2 Evader at the Origin

The directory EvaderOrigin contains the files necessary to recreate the game with the
evader at the origin, following the algorithm in section 2. The functions and names of the
files are the same as those described in section 4.1, with the appropriate modifications to
place the evader at the origin.

4.3 The Analytic Solution of the Hamilton-Jacobi Problem

The directory Converge contains files which are set up to test whether our implementation
of a numerical Hamilton-Jacobi solver is convergent to the true solution as determined
above. Because of the difficulty described at the end of section 3 in numerically solving

27



the Hamilton-Jacobi problem with the pursuer at the origin, we have only implemented
convergence tests for the version of the game with the evader at the origin. Consequently,
the functions barrier, crossover, optTraj, optTraj2, equality, crossX and crossY in
this directory are the same as those from the directory EvaderOrigin (see section 4.2).

plotFig7.m: This file is now a function which generates a large number of points on a
collection of barrier slices. The exact number of points is controlled by the variable dt
set in barrier and the number of slices set in plotFig7. The choice of dt = 0.01 and
an interslice spacing of 0.01π produce about 60000 points. This function also scales,
shifts and swaps the coordinates to agree with the aircraft example from [2, 3].

errorLS.m: Given a level set Ψ(z) and a collection of points on the barrier from plotFig7,
this function computes the pointwise error of Ψ(z) in several different norms using
interpolation. Currently, the level set is loaded from a file by the loadfunc call; the
user should replace this call with his or her own method for getting the level set. Note
that this code was written to demonstrate mere convergence (ie first order accuracy),
and thus linear interpolation was sufficient.

To make an error analysis of a Hamilton-Jacobi solver:

• Implement the Hamilton-Jacobi solver for (64) with Hamiltonian (67), initial con-
ditions (65) (with β = 1), periodic boundary conditions in θ, and free boundary
conditions in x and y. Figure 7 indicates suitable bounds for the computational grid
(remember that θ ∈ [−π, π] or some equivalent domain, even though the figures show
only the bottom half of this domain).

• Evolve Ψ(z, τ) according to (64). Around τ = 2.6, Ψ(z, τ) will have reached a steady
state Ψ(z).

• If necessary, update Ψ(z) so that ‖∇Ψ(z)‖ = 1 using a sufficiently high order reini-
tialization procedure (for references on reinitialization, see [3]).

• In Matlab, use plotFig7 to generate a collection of barrier points. Scale the x and y

coordinates by five and swap them. If necessary, shift the θ coordinate; for example,
we used θ ∈ [0, 2π] for our level set computation, so we had to add 2π to the θ

coordinates from plotFig7.

• Modify errorLS to load Ψ(z) and compute pointwise error estimates.

5 Conclusions

We have managed to recreate Merz’s analysis for the game of two identical cars with the
pursuer at the origin, and to extend it to the game with the evader at the origin. As a
result, we can analytically derive points that lie on the zero level set of the solution to a
nonlinear, continuous but not differentiable Hamilton-Jacobi partial differential equation.

28



These points can be used to determine the convergence properties of three dimensional
numerical Hamilton-Jacobi solvers.

Acknowledgments: We would like to thank Rodney Teo for bringing Merz’s work to
our attention, and Professor Ron Fedkiw for suggesting the method of validating numerical
Hamilton-Jacobi solutions against the analytic barrier computation.

References

[1] A. W. Merz, “The Game of Two Identical Cars”, Journal of Optimization Theory and

Applications, vol. 9, no. 5, pp. 324–343 (1972).

[2] C. J. Tomlin, Hybrid Control of Air Traffic Management Systems. Ph.D. thesis, Depart-
ment of Electrical Engineering, University of California, Berkeley, 1998.

[3] I. Mitchell, A. M. Bayen, and C. J. Tomlin, “Validating a Hamilton-Jacobi Approxima-
tion to Hybrid System Reachable Sets”, in Hybrid Systems: Computation and Control

(M. D. DiBenedetto and A. Sangiovanni-Vincentelli, eds.), LNCS 2034, pp. 418–431,
Springer Verlag, 2001.

[4] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory 2nd ed., Philadelphia:
SIAM, 1999.

[5] At the time of writing, http://www-sccm.stanford.edu/∼mitchell

29


