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ABSTRACT
We present a connection between the viability kernel and maximal
reachable sets. Current numerical schemes that compute the vi-
ability kernel suffer from a complexity that is exponential in the
dimension of the state space. In contrast, extremely efficient and
scalable techniques are available that compute maximal reachable
sets. We show that under certain conditions these techniques can
be used to conservatively approximate the viability kernel for pos-
sibly high-dimensional systems. We demonstrate the results on two
practical examples, one of which is a seven-dimensional problem
of safety in anesthesia.

Categories and Subject Descriptors
J.2 [Physical Sciences & Engineering]: Engineering; I.6.4 [Simulation
& Modeling]: Model Validation & Analysis

Keywords
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1. INTRODUCTION
Reachability analysis and viability theory provide solid frame-

works for control synthesis and trajectory analysis of constrained
dynamical systems in a set-valued fashion (cf. [1, 18, 3]) and have
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been utilized in diverse applications such as aircraft collision avoid-
ance and air traffic management [2, 27, 32], stabilization of under-
water vehicles [35], and control of uncertain oscillatory systems
[7], among others.

Reachability analysis identifies the set of states backward (for-
ward) reachable by a constrained dynamical system from a given
target (initial) set of states. The notions of maximal and minimal
reachability analysis were introduced in [29]. Their corresponding
constructs differ in how the time variable and the bounded input
are quantified. In formation of the maximal reachability construct,
the input tries to steer as many states as possible to the target set.
In formation of the minimal reachability construct, the trajectories
reach the target set regardless of the input applied. Based on these
differences, the maximal and minimal reachable sets and tubes (the
set of states traversed by the trajectories over the time horizon [29,
19]) are formed.

Viability theory can provide insight into the behavior of the tra-
jectories inside a given constraint set. The viability kernel is the
set of initial states for which there exists an input (drawing from a
specified set) such that the system respects the state constraint for
all time. Another closely related construct is the invariance kernel
which contains the set of states that remain in the constraint set for
all possible inputs for all time.

It is shown in [29] and [1] that the minimal reachable tube and
the viability kernel are the only constructs that can be used to prove
safety/viability of the system and to synthesize inputs (controllers)
that preserve this safety. Since the viability kernel and the minimal
reachable tube are duals of one another, they need not be treated
separately. In this paper we only focus on the former.

In [17], we formally examined the existing connections between
various backward constructs generated by reachability and viability
frameworks. Here, we will draw a new connection between the
viability kernel and the maximal reachable sets of a constrained
dynamical system.

Backward constructs are computed using two separate categories
of algorithms [29]: The Eulerian methods (e.g. [32, 36, 6, 9]) are
capable of computing the viability kernel (and by duality, the min-
imal reachable tubes). Although versatile in terms of ability to
handle complex dynamics and constraints, these algorithms rely
on gridding the state space and therefore their computational com-
plexity increases exponentially with the dimension of the state, ren-



dering them impractical for systems of dimensionality higher than
three or four. The second category of algorithms are Lagrangian
methods (e.g. [19, 22, 12, 11, 13]) that follow the trajectories and
compute the maximal reachable sets and tube in a scalable and ef-
ficient manner. Their computational complexity is usually poly-
nomial in time and space, making them suitable for application to
high-dimensional systems.

Our main contribution in this paper is as follows: By bridging the
gap between the viability kernel and the maximal reachable sets we
pave the way for more efficient computation of the viability kernel
through the use of Lagrangian algorithms. Significant reduction in
the computational costs can be achieved since instead of a single
calculation with exponential complexity one can perform a series
of calculations with polynomial complexity.

Complexity reduction for the computation of the viability kernel
and the minimal reachable tube has previously been addressed us-
ing Hamilton-Jacobi projections [33] and structure decomposition
[38, 16, 15, 31].

In Section 2 we formally define the viability kernel and the max-
imal reachable set and formulate our problem. Section 3 presents
our main results: the connection between these constructs in con-
tinuous time and discrete time. Computational algorithms are pro-
vided in Section 4, and the results are demonstrated on two practi-
cal examples in Section 5. Conclusions are provided in Section 6.

1.1 Basic Notations
For any two subsets A and S of the Euclidean space Rn, the

erosion of A by S is defined as A ⊖ S := {x ∈ Rn | Sx ⊆ A}
where Sx := {y + x | y ∈ S}, ∀x ∈ Rn. We denote by

◦
S the

interior of S and use B(γ) to denote a norm-ball of radius γ ∈ R+

centered at the origin in Rn.

2. PROBLEM FORMULATION
Consider a continuously valued dynamical system

L(x(t)) = f(x(t), u(t)), x(0) = x0 (1)

with state space X := Rn, state vector x(t) ∈ X , and input
u(t) ∈ U where U is a compact and convex subset of Rm. Depend-
ing on whether the system evolves in continuous time (t ∈ R+)
or discrete time (t ∈ Z+), L(·) denotes the derivative operator
or the unit forward shift operator, respectively. In the continuous-
time case, we assume that the vector field f : X × U → X is
Lipschitz in x and continuous in u. Let U[0,t] := {u : [0, t] →
Rm measurable, u(t) ∈ U a.e.}. With an arbitrary, finite time
horizon τ > 0, for every t ∈ [0, τ ], x0 ∈ X , and u(·) ∈ U[0,t],
there exists a unique trajectory xu

x0
: [0, t] → X that satisfies the

initial condition xu
x0
(0) = x0 and the differential/difference equa-

tion (1) almost everywhere. When clear from the context, we shall
drop the subscript and superscript from the trajectory notation.

Take a state constraint (“safe”) set K with a nonempty interior.
We examine the following backward constructs:

Definition 1. (Viability Kernel) The (finite horizon) viability
kernel of K is the set of all initial states in K for which there ex-
ists an input such that the trajectories emanating from those states
remain within K for all time t ∈ [0, τ ]:

V iab[0,τ ](K) :=
{
x0 ∈ X | ∃u(·) ∈ U[0,τ ], ∀t ∈ [0, τ ],

xu
x0
(t) ∈ K

}
.

(2)

Definition 2. (Maximal Reachable Set) The maximal reach-
able set at time t is the set of initial states for which there exists an

input such that the trajectories emanating from those states reachK
exactly at time t:

Reach♯
t(K) :=

{
x0 ∈ X | ∃u(·) ∈ U[0,t], x

u
x0
(t) ∈ K

}
. (3)

Problem 1. Express the viability kernel V iab[0,τ ](K) in terms
of the maximal reachable sets Reach♯

t(K), t ∈ [0, τ ].

The viability kernel has traditionally been computed using Eu-
lerian methods [6, 32, 26]. By addressing Problem 1, we enable
the use of efficient Lagrangian methods for the computation of the
viability kernel for possibly high-dimensional systems.

3. MAIN RESULTS

3.1 Continuous-Time Systems
Consider the case in which (1) is the continuous-time system

ẋ(t) = f(x(t), u(t)), x(0) = x0, t ∈ R+. (4)

We will show that we can approximate V iab[0,τ ](K) by consider-
ing a nested sequence of sets that are reachable in small sub-time
intervals of [0, τ ].

Definition 3. We say that a vector field f : X × U → X is
bounded on K if there exists a norm ∥·∥ : X → R+ and a real
number M > 0 such that for all x ∈ K and u ∈ U we have
∥f(x, u)∥ ≤M .

Definition 4. A partition P = {t0, t1, . . . , tn} of [0, τ ] is a set
of distinct points t0, t1, . . . , tn ∈ [0, τ ] with t0 = 0, tn = τ and
t0 < t1 < · · · < tn. Further, we denote
• the number n of intervals [tk−1, tk] in P by |P |,
• the size of the largest interval by ∥P∥ := max

|P |
k=1{tk+1 −

tk}, and
• the set of all partitions of [0, τ ] by P([0, τ ]).

Definition 5. For a signal u : [0, τ ] → U and a partition P =
{t0, . . . , tn} of [0, τ ], define the tokenization {uk}k of u corre-
sponding to P as the set of functions uk : [0, tk− tk−1]→ U such
that

uk(t) = u(t+ tk−1). (5)

Conversely, for a set of functions uk : [0, tk − tk−1] → U , define
their concatenation u : [0, τ ]→ U as

u(t) = uk(t− tk−1) if t ̸= 0, (6a)
u(0) = u1(0) (6b)

where k is the unique integer such that t ∈ (tk−1, tk].

Definition 6. The ∥·∥-distance of a point x ∈ X from a nonempty
set S ⊂ X is defined as

dist(x,S) := inf
s∈S
∥x− s∥. (7)

For a fixed set S, the map x 7→ dist(x,S) is continuous.

3.1.1 Computing an Under-Approximation of the Vi-
ability Kernel

Assume that the vector field f is bounded by M in the norm
∥·∥. We begin by defining an under-approximation of the state con-
straint set (Figure 1(a)):

K↓(P ) := {x ∈ K | dist(x,Kc) ≥M∥P∥}. (8)



(a) We define
the initial under-
approximation
of the safe set
K|P |(P )=K↓(P )

(b) We calcu-
late the set of
backward reach-
able states from
K|P |(P )

(c) We intersect
the backward
reachable set with
the initial set to
get K|P |−1(P )

(d) Next, we
calculate the
set of backward
reachable states
from K|P |−1(P )

(e) Again, we
intersect the back-
ward reachable
set with the initial
set to get a new
set K|P |−2(P )

(f) By repeating
this process, we
reach an under-
approximation
K0(P ) of the
viability kernel.

Figure 1: Iteratively constructing an under-approximation of
V iab[0,τ ](K).

We under-approximateK by a distance M∥P∥ because we are only
considering the system’s state at discrete times t0, t1, . . . , tn. At a
time t in the interval [ti, ti+1], a trajectory x(·) can travel a distance
of at most

∥x(t)− x(ti)∥ ≤
∫ t

ti

∥ẋ(τ)∥dτ ≤M(t− ti) ≤M∥P∥ (9)

from its initial location x(ti). As we shall see, formulating the
subset (8) will ensure that the state does not leave K at any time
during [0, τ ].

This set defines the first step of our recursion. We then define a
sequence of |P | sets recursively:

K|P |(P ) = K↓(P ), (10a)

Kk−1(P ) = K↓(P ) ∩Reach♯
tk−tk−1

(Kk(P ))

for k ∈ {1, . . . , |P |}. (10b)

At each time step, we calculate the set of states from which you can
reach Kk(P ), then intersect this set with the set of safe states (see
Figure 1). The final set K0(P ) is an approximation of V iab[0,τ ](K).

Note that the resulting set depends on our choice of a partition
P of the time interval [0, τ ]. We claim that for any partition P ,
K0(P ) is an under-approximation.

PROPOSITION 1. Suppose that the vector field f : X ×U → X
is bounded on a set K ⊆ X . Then for any partition P of [0, τ ] the
final set K0(P ) defined by the recurrence relation (10) satisfies

K0(P ) ⊆ V iab[0,τ ](K). (11)

PROOF. Since f is bounded on K, there exists a norm ∥·∥ and
a real number M > 0 with ∥f(x, u)∥ ≤ M for all x ∈ K. Now,
fix a partition P of [0, τ ] and take a point x0 ∈ K0(P ). By the
construction of K0(P ), this means that for each k = 1, . . . , |P |
there is some point xk ∈ Kk(P ) and an input uk : [0, tk−tk−1]→
U such that xk can be reached from xk−1 at time tk − tk−1 using
input uk. Thus, taking the concatenation of the inputs uk, we get
an input u : [0, τ ] → U such that the solution x : [0, τ ] → X
to the initial value problem ẋ = f(x, u), x(0) = x0, satisfies
x(tk) = xk ∈ Kk(P ) ⊆ {x ∈ K | dist(x,Kc) ≥ M∥P∥}. We
claim that this guarantees that x(t) ∈ K for all t ∈ [0, τ ]. Indeed,
any t ∈ [0, τ) lies is some interval [tk, tk+1). Since f is bounded
by M , we have

∥x(t)− x(tk)∥ ≤M(t− tk) < M(tk+1 − tk) ≤M∥P∥. (12)

Further, x(tk) ∈ Kk(P ) implies that dist(x(tk),Kc) ≥ M∥P∥.
Combining these, we see that

dist(x(t),Kc) ≥ dist(x(tk),Kc)− ∥x(t)− x(tk)∥
> M∥P∥ −M∥P∥ = 0

(13)

and hence x(t) ∈ K. Thus, x0 ∈ V iab[0,τ ](K).

3.1.2 Precision of the Approximation
The approximation can be made to be arbitrarily precise by choos-

ing a sufficiently fine partition. This is true in the sense that the
union of the approximating sets K0(P ) taken over all possible par-
titions P of [0, τ ] is bounded between the viability kernels of K
and its interior

◦
K.

PROPOSITION 2. Suppose that the vector field f : X ×U → X
is bounded on a set K ⊆ X . Then we have

V iab[0,τ ](
◦
K) ⊆

∪
P∈P([0,τ ])

K0(P ) ⊆ V iab[0,τ ](K). (14)

In particular, when K is open,∪
P∈P([0,τ ])

K0(P ) = V iab[0,τ ](K). (15)

PROOF. The second inclusion in (14) follows directly from Propo-

sition 1. To prove the first inclusion, take a state x0 ∈ V iab[0,τ ](
◦
K).

There exists an input u : [0, τ ] → U such that the solution x(·)
to the initial value problem ẋ = f(x, u), x(0) = x0, satisfies

x(t) ∈
◦
K for all t ∈ [0, τ ]. Since

◦
K is open, for any x ∈

◦
K we

have dist(x,Kc) > 0. Further, x : [0, τ ] → X is continuous so
the function t 7→ dist(x(t),Kc) is continuous on the compact set
[0, τ ]. Thus, we can define d > 0 to be its minimum value. Now
take a partition P of [0, τ ] such that M∥P∥ < d. We need to show
that x0 ∈ K0(P ).

First note that our partition P is chosen such that dist(x(t),Kc) >
M∥P∥ for all t ∈ [0, τ ]. Hence x(tk) ∈ K|P |(P ) for all k =

0, . . . , |P |. To show that x(tk−1) ∈ Reach♯
tk−tk−1

(Kk(P )) for
all k = 1, . . . , |P |, consider the tokenization {uk}k of the input
u corresponding to P . It is easy to verify that for all k, we can
reach x(tk) from x(tk−1) at time tk − tk−1 using input uk. Thus,
in particular, we have x0 = x(t0) ∈ Reach♯

t1−t0
(K1(P )). So

x0 ∈ K0(P ). Hence V iab[0,τ ](
◦
K) ⊆

∪
P∈P([0,τ ]) K0(P ).

3.2 Discrete-Time Systems
Consider the case in which (1) is the discrete-time system

x(t+ 1) = f(x(t), u(t)), x(0) = x0, t ∈ Z+. (16)



Computing V iab[0,τ ](K) under this system is a particular case of
the results presented in Section 3.1. Define a sequence of sets re-
cursively as

Kn = K, (17a)

Kk−1 = K ∩Reach♯
1(Kk), k ∈ {1, . . . , n} (17b)

where τ = n and Reach♯
1(·) is the unit time-step maximal reach-

able set.

PROPOSITION 3. Let K0 be the final set obtained from the re-
currence relation (17). Then,

V iab[0,τ ](K) = K0. (18)

PROOF. Notice that the time variable t is integer valued. As a
result, the tokenization of the input signal u is a discrete sequence
{uk}k with uk := u(t) with t = k − 1 for k = 1, . . . , n.

To show K0 ⊆ V iab[0,τ ](K), via recursion (17) we have that
at each step k there exists uk such that xk−1 ∈ Kk−1 reaches
xk ∈ Kk. Thus, x0 ∈ K0 implies there exists a concatenation
u(·) = {uk}k ∈ U[0,τ ] such that x(t) ∈ K for all t ∈ [0, τ ].
Therefore, x0 ∈ V iab[0,τ ](K).

To show V iab[0,τ ](K) ⊆ K0, take x0 ∈ V iab[0,τ ](K). There
exists u(·) = {uk}k such that x(t) ∈ K for every t. Using the
tokenization of {uk}k we can verify that for some uk we can reach
xk := x(t+1) from xk−1 := x(t). Hence, xk−1 ∈ Reach♯

1(Kk)
for all k ∈ {1, . . . , n}. In particular, for k = 1 we have x0 :=

x(0) ∈ Reach♯
1(K1). Thus, x0 ∈ K ∩Reach♯

1(K1) = K0.

Remark 1. Note that the above iterative scheme is closely re-
lated to the set-valued description of the discrete viability kernel
presented in [36, 6] and the recursive construction of the controlled-
invariant set for discrete-time systems presented in [3].

4. COMPUTATIONAL ALGORITHMS
Thanks to the results in the previous section, any technique that

is capable of computing the maximal reachable set can be used to
compute the viability kernel. Most currently available Lagrangian
methods yield an (under- and/or over-) approximation of the maxi-
mal reachable set. The viability kernel should not be over-approximated
since an over-approximation would contain initial states for which
the viability of the system is inevitably at stake. Thus, to correctly
compute V iab[0,τ ](K) all approximations must be in the form of
under-approximations.

Every step of the recursions (10) and (17) involves a reachability
computation and an intersection operation. Ideally, the sets that are
being intersected should be drawn from classes of shapes that are
closed under such an operation, e.g. polytopes. However, the cur-
rently available reachability techniques that are based on polytopes
(e.g. [24]) do not, in general, scale well with the dimension of the
state. Moreover, the scalable reachability techniques, such as the
methods of zonotopes [12], ellipsoids [19, 23], and support func-
tions [11], generate sets that may prove to be difficult to transform
into a polytope. For instance, one may compute a polytopic under-
approximation of the reachable sets using their support functions
based on the approach presented in [25]. However, that approach
requires calculation of the facet representation of the resulting poly-
topes from their vertices before each intersection operation, which
is known to be computationally demanding in higher dimensions.

4.1 A Piecewise Ellipsoidal Approach
Here we showcase our results using an efficient algorithm, based

on ellipsoidal techniques [19] implemented in the Ellipsoidal Tool-
box (ET) [22], that sacrifices accuracy in exchange for scalability.

We consider the case in which (1) is a linear time-invariant (LTI)
system

L(x(t)) = Ax(t) +Bu(t) (19)

with A ∈ Rn×n and B ∈ Rn×m.
An ellipsoid in Rn is defined as

E(q,Q) :=
{
x ∈ Rn | ⟨(x− q), Q−1(x− q)⟩ ≤ 1

}
(20)

with center q ∈ Rn and shape matrix Rn×n ∋ Q = QT ≻ 0.
A piecewise ellipsoidal set is the union of a finite number of ellip-
soids.

Among many advantages, ellipsoidal techniques [19, 22] allow
for an efficient computation of under-approximations of the maxi-
mal reachable sets, making them a particularly attractive choice for
the reachability computations involved in our formulation of the
viability kernel.

Suppose K and U are (or can be closely under-approximated as)
compact ellipsoids with nonempty interior. Consider the continuous-
time case and the recursion (10). (The arguments in the discrete-
time case are similar.) Given a partition P and some k ∈ {1, . . . , |P |},
let Kk(P ) = E(xδ, Xδ) ⊂ X . As in [20], with N := {v ∈ Rn |
⟨v, v⟩ = 1} and δ := tk − tk−1 we have

Reach♯
δ−t(Kk(P )) =

∪
ℓδ∈N

E(x∗(t),X−
ℓ (t)), ∀t ∈ [0, δ],

(21)
where x∗(t) and X−

ℓ (t) are the center and the shape matrix of
the internal approximating ellipsoid at time t that is tangent to
Reach♯

δ−t(Kk(P )) in the direction ℓ(t) ∈ Rn. For a fixed ℓ(δ) =
ℓδ ∈ N , the direction ℓ(t) is obtained from the adjoint equation
ℓ̇(t) = −ATℓ(t). The center x∗(t) (with x∗(δ) = xδ) and the
shape matrix X−

ℓ (t) (with X−
ℓ (δ) = Xδ) are determined from

differential equations described in [21]. (cf. [23] for their discrete-
time counterparts.)

In practice, only a finite number of directions is used for the
maximal reachable set computations. LetM be a finite subset of
N . Then,

Reach♯
δ−t(Kk(P )) ⊇

∪
ℓδ∈M

E(x∗(t), X−
ℓ (t)), ∀t ∈ [0, δ].

(22)
Note that the under-approximation in (22) is in general an arbitrar-
ily shaped, non-convex set. Performing our desired operations on
this set while maintaining efficiency may be difficult, if not impos-
sible.

Now, consider the final backward reachable set Reach♯
δ(Kk(P ))

and let Reach
♯(ℓ̃δ)
δ (Kk(P )) denote the maximal reachable set cor-

responding to a single terminal direction ℓ̃δ := ℓ̃(δ) ∈ M. We
have that

Reach
♯(ℓ̃δ)
δ (Kk(P )) = E(x∗(0),X−

ℓ̃
(0))

⊆
∪

ℓδ∈M

E(x∗(0), X−
ℓ (0))

⊆ Reach♯
δ(Kk(P )).

(23)

Therefore, the reachable set computed for a single direction is an
ellipsoidal subset of the actual reachable set.

Let #(·) be a function that maps a set to its maximum volume
inscribed ellipsoid. Algorithms 1 and 2 compute a piecewise ellip-
soidal under-approximation of V iab[0,τ ](K) for continuous-time
and discrete-time systems, respectively.



Algorithm 1 Piecewise ellipsoidal approximation of V iab[0,τ ](K)
(continuous-time)
1: Choose P ∈P([0, τ ]) ◃ Affects precision of approximation
2: K|P |(P )← K⊖B(M∥P∥)

◃ Find {x ∈ K | dist(x,Kc) ≥M∥P∥}
3: K∗

0 (P )← ∅
4: whileM ̸= ∅ do
5: l← ℓτ ∈M
6: k ← |P |
7: while k ̸= 0 do
8: if Kk(P ) = ∅ then
9: K0(P )← ∅

10: break
11: end if
12: G ← Reach

♯(l)
tk−tk−1

(Kk(P ))

◃ Compute the maximal reach set along the direc-
tion l

13: Kk−1(P )← #(K|P |(P ) ∩ G)
◃ Find the maximum volume inscribed ellipsoid in
K|P |(P ) ∩ G

14: k ← k − 1
15: end while
16: K∗

0 (P )← K∗
0 (P ) ∪K0(P )

17: M←M\{l}
18: end while
19: return (K∗

0 (P ))

Algorithm 2 Piecewise ellipsoidal approximation of V iab[0,τ ](K)
(discrete-time)
1: Kn ← K
2: K∗

0 ← ∅
3: whileM ̸= ∅ do
4: l← ℓτ ∈M
5: k ← n
6: while k ̸= 0 do
7: if Kk = ∅ then
8: K0 ← ∅
9: break

10: end if
11: G ← Reach

♯(l)
1 (Kk)

12: Kk−1 ← #(Kn ∩ G)
13: k ← k − 1
14: end while
15: K∗

0 ← K∗
0 ∪K0

16: M←M\{l}
17: end while
18: return (K∗

0 )

PROPOSITION 4. For a given partition P ∈P([0, τ ]), let K∗
0 (P )

be the set generated by Algorithm 1. Then,

K∗
0 (P ) ⊆ V iab[0,τ ](K). (24)

PROOF. Let K̃0(P ) denote the final set constructed recursively
by (10). Also, for a fixed direction l, let K(l)

0 (P ) denote the set
produced at the end of each outer loop in Algorithm 1. Notice
that via (23), for every l ∈ M, K(l)

0 (P ) ⊆ K̃0(P ). Therefore,∪
l∈M K

(l)
0 (P ) ⊆ K̃0(P ). Thus, K∗

0 (P ) =
∪

l∈M K
(l)
0 (P ) ⊆

V iab[0,τ ](K).

Remark 2. A similar argument holds for the discrete-time case
in Algorithm 2, i.e. K∗

0 ⊆ V iab[0,τ ](K).

4.1.1 #(·): Computing the Maximum Volume Inscribed
Ellipsoid

Notice that in the continuous-time case, the sets Y := K|P |(P )

and G := Reach
♯(l)
tk−tk−1

(Kk(P )) are compact ellipsoids for ev-
ery l ∈ M, P ∈ P([0, τ ]), and k ∈ {1, . . . , |P |}. Similarly in
the discrete-time case, Y := Kn and G := Reach

♯(l)
1 (Kk) are

compact ellipsoids for every l ∈ M and k ∈ {1, . . . , n}. Their
intersection is, in general, not an ellipsoid but can be easily under-
approximated by one. The operation #(·) under-approximates this
intersection by computing the maximum volume inscribed ellip-
soid in Y ∩G. The result is an ellipsoid that, while aiming to mini-
mize the accuracy loss, can be used directly as the target set for the
reachability computation in the subsequent time step.

Let us re-write the general ellipsoid as E(q,Q) = {Hx + q |
∥x∥2 ≤ 1} with H = Q

1
2 . Assume Y ∩ G ̸= ∅ and suppose

Y = E(q1, Q1) and G = E(q2, Q2). Following [4], the com-
putation of the maximum volume inscribed ellipsoid in Y ∩ G (a
readily-available feature in ET) can be cast as a convex semidefi-
nite program (SDP):

minimize
H∈Rn×n,q∈Rn,λi∈R

log detH−1 (25a)

subject to

1− λi 0 (q − qi)
T

0 λiI H
q − qi H Qi

 ≽ 0 (25b)

λi > 0, i = 1, 2. (25c)

Using the optimal values for H and q, we will have #(Y ∩ G) =
E(q,HTH).

4.1.2 Loss of Accuracy
A set generated by Algorithms 1 or 2 could be an inaccurate ap-

proximation of V iab[0,τ ](K), especially for large time horizons.
The loss of accuracy is mainly attributed to the function #(·), the
under-approximation of the intersection at every iteration with its
maximum volume inscribed ellipsoid. This approximation error
propagates through the algorithms making them subject to the “wrap-
ping effect”.

In the continuous-time case, the quality of approximation is also
affected by the choice of time interval partition (Proposition 2).
Choosing a finer partition increases the quality of approximation.
However, doing so would also require a larger number of intersec-
tions to be performed in the intermediate steps of the recursion. As
such, one would expect that the error generated by #(·) would be
amplified. Luckily, since with a finer partition the reachable sets
change very little from one time step to the next, the intersection
error at every iteration becomes smaller. The end result is a smaller
accumulative error and therefore a better approximation.

We show this using a trivial example: Consider the double inte-
grator

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t) (26)

subject to ellipsoidal constraints u(t) ∈ U := [−0.25, 0.25] and
x(t) ∈ K := E(0, [ 0.25 0

0 0.25 ]), ∀t ∈ [0, 1]. We employ eight dif-
ferent partitions P of the time interval such that we have |P | =
13, 21, 34, 55, 89, 144, 233, 377, all with equi-length sub-time in-
tervals. The linear vector field is bounded onK in the infinity norm
by M = ∥[ 0 1

0 0 ]∥ supx∈K∥x∥ + ∥[ 01 ]∥ supu∈U∥u∥ = 0.75. Thus,
in Algorithm 1, K|P |(P ) = K⊖ B(0.75× ∥P∥). A piecewise el-
lipsoidal under-approximation of V iab[0,1](K) for every partition
P (with |M| = 10 randomly chosen initial directions) is shown
in Figure 2. Notice that as |P | increases, the fidelity of approxi-



-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5

|P | = 13 |P | = 21 |P | = 34

|P | = 55 |P | = 89 |P | = 144

|P | = 233 |P | = 377

Figure 2: For the set K (red), K0(P ) (green) under-
approximates V iab[0,1](K) (outlined in thick black lines via
[30]) using Algorithm 1 under the double integrator dynamics.
A finer time interval partition results in better approximation.

mation improves. A plot of the error in the accuracy of the under-
approximation as a function of |P | is provided in Figure 3.

5. PRACTICAL EXAMPLES
All computations are performed on a dual core Intel-based com-

puter with 2.8GHz CPU, 6MB of L2 cache and 3GB of RAM
running single-threaded 32-bit MATLAB 7.5.

5.1 Flight Envelope Protection (Continuous-
Time)

Consider the longitudinal aircraft dynamics ẋ(t) = Ax(t) +
Bδe(t),

A =


−0.003 0.039 0 −0.322
−0.065 −0.319 7.740 0
0.020 −0.101 −0.429 0
0 0 1 0

 , B =


0.010
−0.180
−1.160

0


with state x = [u, v, θ̇, θ]T ∈ R4 comprised of deviations in air-
craft velocity [ft/s] along and perpendicular to body axis, pitch-
rate [crad/s], and pitch angle [crad] respectively1, and with input
δe ∈ [−13.3◦, 13.3◦] ⊆ R the elevator deflection. These matri-
ces represent stability derivatives of a Boeing 747 cruising at an
altitude of 40 kft with speed 774 ft/s [5]. The state constraint set

K = E
([

0
0

2.18
0

]
,

[
1075.84 0 0 0

0 67.24 0 0
0 0 42.7716 0
0 0 0 76.0384

])
represents the flight envelope. We require x(t) ∈ K, ∀t ∈ [0, 2].

A partition P is chosen such that |P | = 400 with equi-length
sub-time intervals. Algorithm 1 (with |M| = 8) computes via ET
a piecewise ellipsoidal under-approximation of the viability kernel
V iab[0,2](K) as shown in Figures 4 and 5. Note that for any state
belonging to this set, there exists an input that can protect the flight

1crad = 0.01 rad ≈ 0.57◦.
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Figure 3: Convergence plot of the error as a function of |P | for
the double-integrator example. Error is quantified as the frac-
tion of grid points (total of 71×71) contained in the set differ-
ence between the level-set approximation of the viability kernel
and its piecewise ellipsoidal under-approximation.

envelope over the specified time horizon. The overall computation
time was roughly 10mins. In comparison, the level-set approxima-
tion of the viability kernel (also shown in Figure 5) is computed
in 5.4 hrs with significantly larger memory footprint over a grid
with 45 nodes in each dimension using the Level-Set Toolbox [30].
Since the computed sets are 4D, we plot a series of 3D and 2D
projections of these 4D objects.

5.2 Safety in Anesthesia Automation (Discrete-
Time)

To improve patient recovery, lessen anesthetic drug usage, and
reduce time spent at drug saturation levels, a variety of approaches
to controlling depth of anesthesia have been proposed e.g. in [37,
14, 39, 8, 34, 28].

Over the past few years, an interdisciplinary team of researchers
at the University of British Columbia has been developing an auto-
mated drug delivery system for anesthesia. As part of this effort, an
open-loop bolus-based neuromuscular blockade system was devel-
oped and clinically validated in [10]. Discrete-time Laguerre-based
LTI models of the dynamic response to rocuronium were identified
using data collected from more than 80 patients via clinical trials.
To obtain regulatory certificates to fully close the loop while em-
ploying an infusion-based administration of the drugs, mathemat-
ical guarantees of safety and performance of the system are likely
to be required. The viability kernel and the continual reachability
set [17], respectively, can provide such guarantees. (We note that
while both this paper and [17] use maximal reachable sets for com-
putation, the method in [17] computes the continual reachability set
while here we compute the viability kernel.)

Consider the problem of computing the viability kernel for a
constrained discrete-time LTI system (sampled every 20 s) that de-
scribes the pharmacological response of a patient under anesthesia.
The therapeutic target is defined in the output space (as opposed to
the state space) and the output signal should track a reference set-
point. As in [17], to perform the desired analysis we reformulate
the problem by projecting the output bounds onto the state space
while making the control action regulatory. As such, the original
dynamics are augmented and transformed into an appropriate coor-
dinate system of dimension seven. In this new state space, the first
state z1 represents the drug pseudo-occupancy (a metric related to
the patient’s plasma concentration of the anesthetic [10]) minus its
setpoint value of 0.9 units, the next five states are the second to
sixth Laguerre states transformed from the original coordinates,
and the last state z7 is a constant corresponding to the pseudo-



Figure 4: 3D projections of the under-approximation of
V iab[0,2](K) for Example 5.1. The flight envelope K is the red
transparent region. The green piecewise ellipsoidal sets under-
approximate the viability kernel.

occupancy setpoint. The states are assumed to be constrained by
a slab in R7 that is only bounded in the z1 direction. Note that with
this formulation, the last state z7 is allowed to take on values that
are not needed; of actual interest is the behavior of the remaining
states when z7 equals the pseudo-occupancy setpoint. The input
constraint, which represents the actuator’s physical limitations (i.e.
hard bounds on rocuronium infusion rate), is a closed and bounded
interval in R.

The input constraint set is a one-dimensional ellipsoid. To under-
approximate the state constraint with a non-degenerate ellipsoid we
use a priori knowledge about the typical values of the (Laguerre)
states z2, . . . , z6 and bound them by an ellipsoid with a large spec-
tral radius of λmax = 30 in those directions. (This imposed con-
straint can be further relaxed if necessary.) Guaranteeing that this
ellipsoidal target set K, which is our desired clinical effect, is not
violated during the surgery provides a certificate of safety of the
closed-loop system. Therefore, for a 30min long surgery for in-
stance, we require z(t) ∈ K, ∀t ∈ [0, 90] despite bounded input
authority. Using appropriately synthesized infusion policies, the
states belonging to the viability kernel of K under the extended
system will never leave the desired clinical effect for the duration
of the surgery.

We under-approximate V iab[0,90](K) in 986 s using Algorithm 2
with |M| = 30. Of the 30 randomly chosen initial directions used
in the ellipsoidal computations, 15 resulted in nonempty ellipsoids
that make up the piecewise ellipsoidal under-approximation of the
viability kernel (Figure 6). Note that no similar computations are
currently possible in such high dimensions using Eulerian methods
directly.

6. CONCLUSIONS AND FUTURE WORK
We presented a connection between the viability kernel (and by

duality, the minimal reachable tube) and the maximal reachable
sets of possibly nonlinear systems. Owing to this connection, the
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Figure 5: 2D projections of the under-approximation of
V iab[0,2](K) for Example 5.1. The constraint set K (red) and a
piecewise ellipsoidal under-approximation of the viability ker-
nel (green) are shown. The level-set approximation of the via-
bility kernel, computed via [30], is outlined in thick black lines.

efficient and scalable Lagrangian techniques can be used to ap-
proximate the viability kernel. Motivated by a high-dimensional
problem of guaranteed safety in control of anesthesia, we proposed
a scalable algorithm that computes a piecewise ellipsoidal under-
approximation of the viability kernel for LTI systems based on el-
lipsoidal techniques for reachability.

Empirically quantifying the computational complexity of the piece-
wise ellipsoidal algorithm is a work under way for which we expect
a polynomial complexity in the order of |M||P | (O(Rδ) +O(S))
where O(Rδ) is the complexity of computing the maximal reach-
able set along a given direction over the time interval δ and O(S)
is the complexity of solving the SDP (25).

While the presented algorithm has shown to be effective and ef-
ficient, it may be subject to excessive conservatism particularly for
large time horizons. We are currently developing alternative ap-
proaches that yield a more accurate under-approximation of the vi-
ability kernel while still preserving the scalability property.

Finally, the presented connection between the viability kernel
and the maximal reachable sets paves the way to synthesizing “safety-
preserving” optimal control laws in a more efficient and scalable
manner.
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