The Particle Level Set Method

Ian Mitchell
Department of Computer Science
The University of British Columbia
Joint work with
Doug Enright, Ronald Fedkiw \& Joel Ferziger (Stanford)

Level Set Methods and Boundaries

- Level sets are just one method of tracking interfaces
- Advantages
- Geometric information easy to extract
- Handles merging and breaking interfaces
- Easy to implement in 3D
- Disadvantages
- Volume loss

Characterizing Boundaries

- Other ways to model moving boundaries
- Discretization of front with particles (Tryggvason)
- Marker particles (Harlow \& Welch, Raad \& Chen)
- Characteristic function / Volume of Fluid (Noh \& Woodward, Hirt \& Nichols, Brackbill, Pilliod \& Puckett)

Marker Particle

Volume of Fluid

Particle Level Set Method

- Passively advected particles detect and correct errors in regions that the level set solution resolves poorly
- [Enright, Fedkiw, Ferziger \& Mitchell, JCP 2002]
- Example
- 2D rigid body rotation of notched disk [Zalesak, 1979]
- 100×100 grid, notch width 5 , roughly 16 particles per cell

Initial conditions

After one rotation

error in regular level set solution

A Mixture of Particles and Level Sets

- For each particle identify
- Side of interface (inside or outside)
- Distance to interface (radius)
- If no error, level set and particles are moved independently
- Particle radii adjust, subject to maximum and minimum
- If a particle is on the wrong side of the interface
- Adjust nearest node's level set value according to particle's local circular level set
- If multiple particles are on the wrong side
- First, check particles from the same side and choose deepest node value
- Second, check particles from opposite sides and choose shallowest node value

Massless Marker Particles

- Two sets of particles placed near interface
- Positive particles with $s_{p}=+1$ in $\phi>0$
- Negative particles with $s_{p}=-1$ in $\phi>0$
- Particles move with $d x_{p} / d t=u\left(x_{p}\right)$
- Each particle has a variable radius $r_{p} \in[\Delta x / 10, \Delta x / 2]$
- Particles used to enhance interface resolution

Three Non-Overlapping Circles

Six Overlapping Circles

Initialization of Particles

- Particles of both signs are initially randomly placed within a user defined band of the interface $\{x \mid \phi(x)<3 \Delta x\}$
- Number of particles per cell used is dimension dependent, we use 4 per dimension (4 in 1D, 16 in 2D, 64 in 3D, etc)

Particle Attraction

- Need to move particles to the appropriate side of interface
- Direction of shortest path to interface given by $N\left(x_{p}\right)$

$$
x_{p}^{\prime}=x_{p}+\lambda\left(\phi_{\text {goal }}-\phi_{c u r r e n t}\right) N\left(x_{p}\right)
$$

Coupling I: Identifying Errors

- Error detected if particle is on wrong side of interface
- First order errors in level sets, so only need first order movement of and fix by particles

Coupling II: Quantifying Errors

- Spheres associated with particles are generators of locally defined level set functions, $\phi_{p}(x)$

$$
\phi_{p}(x)=s_{p}\left(r_{p}-\left\|x-x_{p}\right\|\right)
$$

- $\phi_{p}(x)$ is defined only on the corners of the cell which contains particle p

Coupling III: Reducing the Errors

- Use escaped particles to form reduced-error representation of ϕ

$$
\begin{aligned}
\phi^{+}(x) & =\max _{p \in E^{+}}\left(\phi(x), \phi_{p}(x)\right) \\
\phi^{-}(x) & =\min _{p \in E^{-}}\left(\phi(x), \phi_{p}(x)\right) \\
\phi^{\prime}(x) & = \begin{cases}\phi^{+}(x), & \text { if }\left|\phi^{+}(x)\right| \leq\left|\phi^{-}(x)\right| \\
\phi^{-}(x), & \text { otherwise }\end{cases}
\end{aligned}
$$

Sample Computational Cycle

Notched Sphere

- 3D version of Zalesak's disk
- 100^{3} grid, notch width 5 , roughly 64 particles per cell

Rendering by Sou Cheng Choi

0	0	0	0
0	0	0	0
0	0	0	0

0	0	0	0
0	0	0	0

Pushing the Limits

- Fully 3D vortex stretch of sphere (vortex in $x-y$ and $x-z$ planes)
- 100^{3} grid, error is evaluated by time reversing the flow
- [LeVeque, 1996]

Level Set Only

Particle Level Set

Application: Animating Fluids

- [Enright, Marschner, \& Fedkiw, Siggraph 2002]
- Coupled particle level set with ghost fluid method to track complex free surface evolution
- Animation demands computation speed and physical plausibility

What About Shocks?

- Level set regularizes regions of high curvature
- An error for rigid body rotations and other pure advections
- Correct behavior around shocks
- Particle level set assumes that particles are correct
- Example: square moving inward with unit normal speed

14 Jan 07

Ian Mitchell (UBC Computer Science)
21

