Level Set Methods
CPSC 542D, Term 2, Winter 2006-2007
Assigned Monday, January 15. Due Monday January 22.

Homework \#1

1. Classifying sets. For each of the sets S_{i} listed below, very briefly describe:

- The qualitative shape of the set.
- The convexity, connectedness and/or boundedness of the set.
- The dimension and codimension of the set (not its boundary).
- The boundary of the set (if any).
- The interior of the set (if any).
- Whether the set could be represented by an implicit surface function $\phi(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that either $S_{i}=\left\{x \in \mathbb{R}^{n} \mid \phi(x) \leq 0\right\}$ or $S_{i}=\left\{x \in \mathbb{R}^{n} \mid \phi(x)=0\right\}$. If yes, give such a function and specify whether S_{i} is the zero sublevel set (the interior, codimension 0) or the zero level set (the surface, codimension 1). If no, explain why not.

In what follows, x_{j} is the $j^{\text {th }}$ component of the n dimensional vector $x \in \mathbb{R}^{n}$.
(a) $S_{1}=\left\{x \in \mathbb{R}^{3} \mid x_{1}=0\right\}$.
(b) $S_{2}=\left\{x \in \mathbb{R}^{3} \mid x_{2} \leq \sin \left(\pi x_{1}\right)\right\}$.
(c) $S_{3}=\left\{x \in \mathbb{R}^{3} \mid \sqrt{\sum_{i=1}^{3} x_{i}^{2}} \leq 5\right\}$.
(d) $S_{4}=\left\{x \in \mathbb{R}^{2} \mid 0 \leq x_{2} \leq \cos \left(\pi x_{1}\right) \wedge-2 \leq x_{1} \leq+2\right\}$.
(e) $S_{5}=\left\{x \in \mathbb{R}^{2} \mid \sqrt{x_{1}^{2}+x_{2}^{2}}=1\right\}$.
(f) $S_{6}=\left\{x \in[0,2 \pi) \times \mathbb{R} \mid \sin \left(x_{1}\right) \leq x_{2} \leq \cos \left(x_{1}\right)\right\}$. Let x_{1} have periodic conditions on the edges of its range.
(g) $S_{7}=\left\{x \in \mathbb{R}^{3} \mid \sqrt{(r-2)^{2}+x_{3}^{2}} \leq 1\right\}$, where $r=\sqrt{x_{1}^{2}+x_{2}^{2}}$.
(h) $S_{8}=\left\{x \in \mathbb{R}^{4} \mid a^{T} x=1\right\}$, where $a=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$.
(i) $S_{9}=\left\{x \in \mathbb{R}^{3} \mid x_{2}=\sin \left(x_{1}\right) \wedge x_{3}=\cos \left(x_{1}\right)\right\}$.
(j) $S_{10}=\left\{x \in \mathbb{R}^{2} \mid \mathbf{A} x \leq b\right\}$, where

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
0 & -1
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

(k) $S_{11}=\left\{x \in \mathbb{R}^{2} \mid x_{2}=x_{1}-1 \wedge x_{1}=x_{2}^{2}\right\}$.
(1) $S_{12}=\{x \in[-1,+1] \mid x$ is rational $\}$.
2. A dynamic surface. Consider a square with sides of full length $l=0.2$ centered at $c=$ $(0.5,0.0)$ in \mathbb{R}^{2}. We wish to move this square under the velocity field

$$
\frac{d x}{d t}=\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=v(x)=2 \pi\left[\begin{array}{c}
-x_{2} \\
x_{1}
\end{array}\right], \quad x \in \mathbb{R}^{2},
$$

which is equivalent to a rigid body rotation about the origin.
Using a point cloud representation and MatLab's initial value ODE solvers (probably ode23 or ode45), simulate this motion for $t \in[0,1]$ (one full rotation). There is no need to maintain connectivity information between the points.
Use subplot and plot to display the motion at $t_{i}=i / 8$ for $i=\{0,1,2, \ldots, 8\}$ as a 3×3 grid of subplots. Use variants of the axis command to ensure that the scaling of the axes is equal (so that the square looks like a square) and each of the subplots uses the sames bounds. Use the title, xlabel and ylabel commands for labelling. Submit both your (labelled) plot and your (documented) code listing.
On the course web site you will find example.m, which shows the type of code comments and figure labels I expect. If necessary, you can also add figure labeling by hand after printing. Don't forget to include your name in both the code and on the figures.

